Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters











Publication year range
1.
Planta ; 260(1): 28, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38878167

ABSTRACT

MAIN CONCLUSION: We generated transplastomic tobacco lines that stably express a human Basic Fibroblast Growth Factor (hFGFb) in their chloroplasts stroma and purified a biologically active recombinant hFGFb. MAIN: The use of plants as biofactories presents as an attractive technology with the potential to efficiently produce high-value human recombinant proteins in a cost-effective manner. Plastid genome transformation stands out for its possibility to accumulate recombinant proteins at elevated levels. Of particular interest are recombinant growth factors, given their applications in animal cell culture and regenerative medicine. In this study, we produced recombinant human Fibroblast Growth Factor (rhFGFb), a crucial protein required for animal cell culture, in tobacco chloroplasts. We successfully generated two independent transplastomic lines that are homoplasmic and accumulate rhFGFb in their leaves. Furthermore, the produced rhFGFb demonstrated its biological activity by inducing proliferation in HEK293T cell lines. These results collectively underscore plastid genome transformation as a promising plant-based bioreactor for rhFGFb production.


Subject(s)
Chloroplasts , Fibroblast Growth Factor 2 , Nicotiana , Plants, Genetically Modified , Recombinant Proteins , Nicotiana/genetics , Nicotiana/metabolism , Humans , Fibroblast Growth Factor 2/genetics , Fibroblast Growth Factor 2/metabolism , Chloroplasts/metabolism , Chloroplasts/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , HEK293 Cells , Cell Proliferation , Plant Leaves/metabolism , Plant Leaves/genetics
2.
Front Plant Sci ; 14: 1274767, 2023.
Article in English | MEDLINE | ID: mdl-37965024

ABSTRACT

Recent advancements in plant biotechnology have highlighted the potential of hairy roots as a biotechnological platform, primarily due to their rapid growth and ability to produce specialized metabolites. This study aimed to delve deeper into hairy root development in C. asiatica and explore the optimization of genetic transformation for enhanced bioactive compound production. Previously established hairy root lines of C. asiatica were categorized based on their centelloside production capacity into HIGH, MID, or LOW groups. These lines were then subjected to a meticulous label-free proteomic analysis to identify and quantify proteins. Subsequent multivariate and protein network analyses were conducted to discern proteome differences and commonalities. Additionally, the quantification of rol gene copy numbers was undertaken using qPCR, followed by gene expression measurements. From the proteomic analysis, 213 proteins were identified. Distinct proteome differences, especially between the LOW line and other lines, were observed. Key proteins related to essential processes like photosynthesis and specialized metabolism were identified. Notably, potential biomarkers, such as the Tr-type G domain-containing protein and alcohol dehydrogenase, were found in the HIGH group. The presence of ornithine cyclodeaminase in the hairy roots emerged as a significant biomarker linked with centelloside production capacity lines, indicating successful Rhizobium-mediated genetic transformation. However, qPCR results showed an inconsistency with rol gene expression levels, with the HIGH line displaying notably higher expression, particularly of the rolD gene. The study unveiled the importance of ornithine cyclodeaminase as a traceable biomarker for centelloside production capacity. The strong correlation between this biomarker and the rolD gene emphasizes its potential role in optimizing genetic transformation processes in C. asiatica.

3.
J Virol Methods ; 315: 114710, 2023 05.
Article in English | MEDLINE | ID: mdl-36914098

ABSTRACT

A plant-based heterologous expression system is an attractive option for recombinant protein production because it is based on a eukaryotic system of high feasibility, and low biological risks. Frequently, binary vector systems are used for transient gene-expression in plants. However, plant virus vector-based systems offer advantages for higher protein yields due to their self-replicating machinery. In the present study, we show an efficient protocol using a plant virus vector based on a tobravirus, pepper ringspot virus, that was employed for transient expression of severe acute respiratory syndrome coronavirus 2 partial gene fragments of the spike (named S1-N) and the nucleocapsid (named N) proteins in Nicotiana benthamiana plants. Purified proteins yield of 40-60 µg/g of fresh leaves were obtained. Both proteins, S1-N and N, showed high and specific reactivities against convalescent patients' sera by the enzyme-linked immunosorbent assay format. The advantages and critical points in using this plant virus vector are discussed.


Subject(s)
COVID-19 , RNA Viruses , Humans , SARS-CoV-2/genetics , Recombinant Proteins , Enzyme-Linked Immunosorbent Assay , Spike Glycoprotein, Coronavirus/genetics
4.
Pharmaceutics ; 15(2)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36840033

ABSTRACT

Neurodegenerative diseases (NDDs) are characterized by the progressive degeneration and/or loss of neurons belonging to the central nervous system, and represent one of the major global health issues. Therefore, a number of immunotherapeutic approaches targeting the non-functional or toxic proteins that induce neurodegeneration in NDDs have been designed in the last decades. In this context, due to unprecedented advances in genetic engineering techniques and molecular farming technology, pioneering plant-based immunogenic antigen expression systems have been developed aiming to offer reliable alternatives to deal with important NDDs, including Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Diverse reports have evidenced that plant-made vaccines trigger significant immune responses in model animals, supported by the production of antibodies against the aberrant proteins expressed in the aforementioned NDDs. Moreover, these immunogenic tools have various advantages that make them a viable alternative for preventing and treating NDDs, such as high scalability, no risk of contamination with human pathogens, cold chain free production, and lower production costs. Hence, this article presents an overview of the current progress on plant-manufactured vaccines for NDDs and discusses its future prospects.

5.
Biotechnol Bioeng ; 119(9): 2505-2517, 2022 09.
Article in English | MEDLINE | ID: mdl-35689353

ABSTRACT

Plants are economical and sustainable factories for the production of recombinant proteins. Currently, numerous proteins produced using different plant-based systems with applications as cosmetic and tissue culture ingredients, research and diagnostic reagents, and industrial enzymes are marketed worldwide. In this study, we aimed to demonstrate the usefulness of a plant-based system to synthesize a single-chain antibody (scFv)-elastin-like polypeptide (ELP) fusion to be applied as an affinity precipitation reagent of the difficult to produce recombinant proteins. We used the human tissue transglutaminase (TG2), the main celiac disease autoantigen, as a proof of concept. We cloned a TG2-specific scFv and fused it to a short hydrophobic ELP tag. The anti-TG2-scFv-ELP was produced in Nicotiana benthamiana and was efficiently recovered by an inverse transition cycling procedure improved by coaggregation with bacteria-made free ELP. Finally, the scFv-ELP was used to purify both plant-synthesized human TG2 and also Caco-2-TG2. In conclusion, this study showed for the first time the usefulness of a plant-based expression system to produce an antibody-ELP fusion designed for the purification of low-yield proteins.


Subject(s)
Elastin , Nicotiana , Caco-2 Cells , Elastin/chemistry , Humans , Immunoglobulin Fragments , Peptides/chemistry , Recombinant Fusion Proteins/metabolism , Nicotiana/genetics , Nicotiana/metabolism
6.
Biotechnol Prog ; 37(3): e3141, 2021 05.
Article in English | MEDLINE | ID: mdl-33666366

ABSTRACT

Gastrointestinal infections caused by Clostridium difficile lead to significant impact in terms of morbidity and mortality, causing from mild symptoms, such as a low-grade fever, watery stools, and minor abdominal cramping as well as more severe symptoms such as bloody diarrhea, pseudomembrane colitis, and toxic megacolon. Vaccination is a viable approach to fight against C. difficile and several efforts in this direction are ongoing. Plants are promising vaccine biofactories offering low cost, enhanced safety, and allow for the formulation of oral vaccines. Herein, the CdeM protein, which is a spore antigen associated with immunoprotection against C. difficile, was selected to begin the development of plant-based vaccine candidates. The vaccine antigen is based in a fusion protein (LTB-CdeM), carrying the CdeM antigen, fused to the carboxi-terminus of the B subunit of the Escherichia coli heat-labile enterotoxin (LTB) as a mucosal immunogenic carrier. LTB-CdeM was produced in plants using a synthetic optimized gene according codon usage and mRNA stability criteria. The obtained transformed tobacco lines produced the LTB-CdeM antigen in the range of 52-90 µg/g dry weight leaf tissues. The antigenicity of the plant-made LTB-CdeM antigen was evidenced by GM1-ELISA and immunogenicity assessment performed in test mice revealed that the LTB-CdeM antigen is orally immunogenic inducing humoral responses against CdeM epitopes. This report constitutes the first step in the development of plant-based vaccines against C. difficile infection.


Subject(s)
Antigens, Bacterial , Clostridioides difficile/genetics , Plants, Genetically Modified , Spores, Bacterial/genetics , Vaccines, Edible , Administration, Oral , Animals , Antibodies, Bacterial/blood , Antigens, Bacterial/genetics , Antigens, Bacterial/metabolism , Enterotoxins/genetics , Escherichia coli Proteins/genetics , Immunoglobulin G/blood , Mice , Mice, Inbred BALB C , Molecular Farming , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Vaccines, Edible/genetics , Vaccines, Edible/immunology , Vaccines, Edible/metabolism
7.
Expert Rev Vaccines ; 19(7): 599-610, 2020 07.
Article in English | MEDLINE | ID: mdl-32609047

ABSTRACT

INTRODUCTION: Several Picornaviruses are pathogens that generate serious problems for human and animal health worldwide. Vaccination is an attractive approach to fight against picornaviruses. In this regard, the development of low-cost vaccines is a priority to ensure coverage; especially in developing and low-income countries. In this context, plant-made vaccines are a convenient technology since plant cells are low-cost bioreactors capable of producing complex antigens that preserve their antigenic determinants; moreover, they can serve as biocapsules to achieve oral delivery. AREAS COVERED: In the present review the advances in the development of plant-made vaccines against picornaviruses are summarized and placed in perspective. The main diseases that have been targeted using this approach include Poliovirus, Food and mouth disease virus, Hepatitis A virus, and Enterovirus 71. EXPERT OPINION: Several vaccine candidates against picornavirus have been characterized at the preclinical level; with many of them capable of inducing humoral and cellular responses that led to neutralization of pathogens when evaluated in vitro and test animal challenge assays. Plant-made vaccines are a promise to fight picornaviruses; especially in the developing world where limited resources hamper vaccination coverage. A critical analysis of the road ahead for this technology is provided.


Subject(s)
Antigens, Plant/immunology , Picornaviridae Infections/prevention & control , Viral Vaccines/administration & dosage , Animals , Developing Countries , Humans , Picornaviridae Infections/immunology , Plants/immunology , Vaccination , Viral Vaccines/economics , Viral Vaccines/immunology
8.
AMB Express ; 10(1): 95, 2020 May 20.
Article in English | MEDLINE | ID: mdl-32436057

ABSTRACT

Infectious bursal disease virus (IBDV) is the etiological agent of an immunosuppressive and highly contagious disease that affects young birds, thus causing important economic losses in the poultry industry. Multimeric particles with different architectures based on the capsid protein VP2 have been widely produced for different purposes. We hereby show the production and easy recovery of IBDV subviral particles (SVP) from transiently transformed Nicotiana benthamiana. The SVP, which were observed by electronic microscopy, proved to be antigenically and immunogenically similar to the virion. Indeed, anti-IBDV antibodies from samples of infected birds recognized these SVP and, when injected intramuscularly, these subviral particles also evoked a humoral immune response in chickens. We developed an in-house ELISA using SVP as coating reagent that demonstrated to be highly accurate and in good agreement with a commercial ELISA. This study demonstrates that the recombinant antigen generated and the technology used to produce it are suitable for developing a diagnostic tool against Infectious bursal disease.

9.
Transgenic Res ; 29(3): 295-305, 2020 06.
Article in English | MEDLINE | ID: mdl-32318934

ABSTRACT

Chloroplast transformation has many potential advantages for the production of recombinant proteins in plants. However, it has been reported that chloroplast expression of many proteins, such as human epidermal growth factor (hEGF), results hindered by post-transcriptional mechanisms. hEGF degradation has been related to the redox potential of the stroma and protein misfolding. To solve this problem, we proposed the redirection of hEGF into the thylakoid lumen where the environment could improve disulfide bonds formation stabilizing the functional conformation of the protein. We generated transplastomic tobacco plants targeting hEGF protein to the thylakoid lumen by adding a transit peptide (Str). Following this approach, we could detect thylakoid lumen-targeted hEGF by western blotting while stromal accumulation of hEGF remained undetectable. Southern blot analysis confirmed the integration of the transgene through homologous recombination into the plastome. Northern blot analysis showed similar levels of egf transcripts in the EGF and StrEGF lines. These results suggest that higher stability of the hEGF peptide in the thylakoid lumen is the primary cause of the increased accumulation of the recombinant protein observed in StrEGF lines. They also highlight the necessity of exploring different sub-organellar destinations to improve the accumulation levels of a specific recombinant protein in plastids.


Subject(s)
Chloroplasts/metabolism , Epidermal Growth Factor/metabolism , Nicotiana/metabolism , Plants, Genetically Modified/metabolism , Recombinant Fusion Proteins/metabolism , Thylakoids/metabolism , Transgenes , Chloroplasts/genetics , Epidermal Growth Factor/genetics , Humans , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Plastids/genetics , Plastids/metabolism , Recombinant Fusion Proteins/genetics , Thylakoids/genetics , Nicotiana/genetics , Nicotiana/growth & development
10.
Vaccines (Basel) ; 8(2)2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32295153

ABSTRACT

The emergence of new pathogenic viral strains is a constant threat to global health, with the new coronavirus strain COVID-19 as the latest example. COVID-19, caused by the SARS-CoV-2 virus has quickly spread around the globe. This pandemic demands rapid development of drugs and vaccines. Plant-based vaccines are a technology with proven viability, which have led to promising results for candidates evaluated at the clinical level, meaning this technology could contribute towards the fight against COVID-19. Herein, a perspective in how plant-based vaccines can be developed against COVID-19 is presented. Injectable vaccines could be generated by using transient expression systems, which offer the highest protein yields and are already adopted at the industrial level to produce VLPs-vaccines and other biopharmaceuticals under GMPC-processes. Stably-transformed plants are another option, but this approach requires more time for the development of antigen-producing lines. Nonetheless, this approach offers the possibility of developing oral vaccines in which the plant cell could act as the antigen delivery agent. Therefore, this is the most attractive approach in terms of cost, easy delivery, and mucosal immunity induction. The development of multiepitope, rationally-designed vaccines is also discussed regarding the experience gained in expression of chimeric immunogenic proteins in plant systems.

11.
Protein Pept Lett ; 27(2): 145-157, 2020.
Article in English | MEDLINE | ID: mdl-31622193

ABSTRACT

BACKGROUND: Glycogen storage disease type III (GSDIII, Cori/Forbes disease) is a metabolic disorder due to the deficiency of the Glycogen Debranching Enzyme (GDE), a large monomeric protein (about 176 kDa) with two distinct enzymatic activities: 4-α-glucantransferase and amylo-α-1,6-glucosidase. Several mutations along the amylo-alpha-1,6-glucosidase,4-alphaglucanotransferase (Agl) gene are associated with loss of enzymatic activity. The unique treatment for GSDIII, at the moment, is based on diet. The potential of plants to manufacture exogenous engineered compounds for pharmaceutical purposes, from small to complex protein molecules such as vaccines, antibodies and other therapeutic/prophylactic entities, was shown by modern biotechnology through "Plant Molecular Farming". OBJECTIVE AND METHODS: In an attempt to develop novel protein-based therapeutics for GSDIII, the Agl gene, encoding for the human GDE (hGDE) was engineered for expression as a histidinetagged GDE protein both in Nicotiana benthamiana plants by a transient expression approach, and in axenic hairy root in vitro cultures (HR) from Lycopersicum esculentum and Beta vulgaris. RESULTS: In both plant-based expression formats, the hGDE protein accumulated in the soluble fraction of extracts. The plant-derived protein was purified by affinity chromatography in native conditions showing glycogen debranching activity. CONCLUSION: These investigations will be useful for the design of a new generation of biopharmaceuticals based on recombinant GDE protein that might represent, in the future, a possible therapeutic option for GSDIII.


Subject(s)
Glycogen Debranching Enzyme System/genetics , Nicotiana/growth & development , Plant Roots/cytology , Beta vulgaris/cytology , Beta vulgaris/genetics , Beta vulgaris/metabolism , Cell Culture Techniques , Chromatography, Affinity , Gene Expression Regulation, Plant , Glycogen Debranching Enzyme System/isolation & purification , Glycogen Debranching Enzyme System/metabolism , Humans , Solanum lycopersicum/cytology , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Protein Engineering , Recombinant Proteins/isolation & purification , Nicotiana/genetics , Nicotiana/metabolism
12.
Int J Mol Sci ; 20(6)2019 Mar 17.
Article in English | MEDLINE | ID: mdl-30884891

ABSTRACT

The serine protease inhibitors (SPIs) are widely distributed in living organisms like bacteria, fungi, plants, and humans. The main function of SPIs as protease enzymes is to regulate the proteolytic activity. In plants, most of the studies of SPIs have been focused on their physiological role. The initial studies carried out in plants showed that SPIs participate in the regulation of endogenous proteolytic processes, as the regulation of proteases in seeds. Besides, it was observed that SPIs also participate in the regulation of cell death during plant development and senescence. On the other hand, plant SPIs have an important role in plant defense against pests and phytopathogenic microorganisms. In the last 20 years, several transgenic plants over-expressing SPIs have been produced and tested in order to achieve the increase of the resistance against pathogenic insects. Finally, in molecular farming, SPIs have been employed to minimize the proteolysis of recombinant proteins expressed in plants. The present review discusses the potential biotechnological applications of plant SPIs in the agriculture field.


Subject(s)
Agriculture , Biotechnology , Molecular Farming , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Plants/genetics , Serine Proteinase Inhibitors/genetics , Agriculture/methods , Animals , Biotechnology/methods , Molecular Farming/methods , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Diseases/parasitology , Plant Diseases/prevention & control , Plants/enzymology , Plants/microbiology , Plants/parasitology , Plants, Genetically Modified/enzymology , Plants, Genetically Modified/microbiology , Plants, Genetically Modified/parasitology , Recombinant Proteins/genetics
13.
Toxicon ; 160: 38-46, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30802471

ABSTRACT

Human accidents with venomous snakes represent an overwhelming public health problem, mainly in rural populations of underdeveloped countries. Their high incidence and the severity of the accidents result in 81,000 to 138,000 deaths per year. The treatment is based on the administration of purified antibodies, produced by hyper immunization of animals to generate immunoglobulins (Igs), and then obtained by fractionating hyper immune plasma. The use of recombinant antibodies is an alternative to conventional treatment of snakebite envenoming, particularly the Fv fragment, named the single-chain variable fragment (scFv). We have produced recombinant single chain variable fragment scFv against the venom of the pit viper Bothrops asper at high levels expressed transiently and stably in transgenic plants and in vitro cultures that is reactive to BaP1 (a metalloproteinase from B. asper venom). The yield from stably transformed plants was significantly (p > 0.05) higher than the results in from transient expression. In addition, scFvBaP1 yields from systems derived from stable transformation were: transgenic callus 62 µg/g (±2); biomass from cell suspension cultures 83 µg/g (±0.2); culture medium from suspensions 71.75 mg/L (±6.18). The activity of scFvBaP1 was confirmed by binding and neutralization of the fibrin degradation induced by BnP1 toxins from B. neuwiedi and by Atroxlysin Ia from B. atrox venoms. In the present work, we demonstrated the potential use of plant cells to produce scFvBaP1 to be used in the future as a biotechnological alternative to horse immunization protocols to produce anti-venoms to be used in human therapy against snakebites.


Subject(s)
Metalloendopeptidases/antagonists & inhibitors , Plantibodies/pharmacology , Single-Chain Antibodies/biosynthesis , Single-Chain Antibodies/pharmacology , Animals , Antivenins/biosynthesis , Antivenins/pharmacology , Bothrops , Crotalid Venoms/antagonists & inhibitors , Neutralization Tests , Plantibodies/metabolism , Plants, Genetically Modified/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/pharmacology , Nicotiana/genetics , Nicotiana/metabolism
14.
Toxicon, v. 160, p. 38-46, mar. 2019
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2680

ABSTRACT

Human accidents with venomous snakes represent an overwhelming public health problem, mainly in ruralpopulations of underdeveloped countries. Their high incidence and the severity of the accidents result in 81,000to 138,000 deaths per year. The treatment is based on the administration of purified antibodies, produced byhyper immunization of animals to generate immunoglobulins (Igs), and then obtained by fractionating hyperimmune plasma. The use of recombinant antibodies is an alternative to conventional treatment of snakebiteenvenoming, particularly the Fv fragment, named the single-chain variable fragment (scFv). We have producedrecombinant single chain variable fragment scFv against the venom of the pit viperBothrops asperat high levelsexpressed transiently and stably in transgenic plants andin vitrocultures that is reactive to BaP1 (a metallo-proteinase fromB. aspervenom). The yield from stably transformed plants was significantly (p > 0.05) higherthan the results in from transient expression. In addition, scFvBaP1 yields from systems derived from stabletransformation were: transgenic callus 62µg/g ( ± 2); biomass from cell suspension cultures 83µg/g ( ± 0.2);culture medium from suspensions 71.75 mg/L ( ± 6.18). The activity of scFvBaP1 was confirmed by binding andneutralization of thefibrin degradation induced by BnP1 toxins fromB. neuwiediand by Atroxlysin Ia fromB.atroxvenoms. In the present work, we demonstrated the potential use of plant cells to produce scFvBaP1 to beused in the future as a biotechnological alternative to horse immunization protocols to produce anti-venoms tobe used in human therapy against snakebites.

15.
Methods Mol Biol ; 1789: 65-80, 2018.
Article in English | MEDLINE | ID: mdl-29916072

ABSTRACT

Plant-based platforms are extensively use for the expression of recombinant proteins, including monoclonal antibodies (mAbs). Generally, immunoglobulins (Igs) are sorted to the apoplast, which is often afflicted with intense proteolysis. Here, we describe methods to transiently express mAbs sorted to central vacuole in Nicotiana benthamiana leaves and to characterize the obtained IgG. Central vacuole is an appropriate compartment for the efficient production of Abs, consequently vacuolar sorting should be considered as an alternative strategy to obtain high protein yields.


Subject(s)
Antibodies, Monoclonal/analysis , Immunoglobulin G/analysis , Nicotiana/genetics , Vacuoles/genetics , Agrobacterium tumefaciens/genetics , Agrobacterium tumefaciens/metabolism , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/metabolism , Blotting, Western/methods , Electrophoresis, Polyacrylamide Gel/methods , Enzyme-Linked Immunosorbent Assay/methods , Gene Expression , Immunoglobulin G/genetics , Immunoglobulin G/metabolism , Mass Spectrometry/methods , Plant Leaves/genetics , Plant Leaves/metabolism , Recombinant Proteins/analysis , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Nicotiana/metabolism , Vacuoles/metabolism
16.
Planta ; 245(5): 875-888, 2017 May.
Article in English | MEDLINE | ID: mdl-28349257

ABSTRACT

MAIN CONCLUSION: Corn is an attractive host for vaccine production and oral delivery. The present review provides the current outlook and perspectives for this field. Among seed-crops, corn represents a key source of biomass for food, fuel production, and other applications. Since the beginning of the development of plant-based vaccines, corn was explored for the production and delivery of vaccines. About a dozen of pathogens have been studied under this technology with distinct degrees of development. A vaccine prototype against enterotoxigenic Escherichia coli was evaluated in a phase I clinical trial and several candidates targeting bacterial and viral diseases are under preclinical evaluation. The present review provides an updated outlook on this topic highlighting the employed expression strategies; perspectives for the field are also provided.


Subject(s)
Bacterial Vaccines/metabolism , Enterotoxigenic Escherichia coli/immunology , Escherichia coli Infections/prevention & control , Plants, Genetically Modified , Viral Vaccines/metabolism , Zea mays/metabolism , Bacterial Vaccines/genetics , Bacterial Vaccines/immunology , Escherichia coli Infections/microbiology , Gene Expression , Seeds/genetics , Seeds/immunology , Seeds/metabolism , Viral Vaccines/genetics , Viral Vaccines/immunology , Zea mays/genetics , Zea mays/immunology
17.
Bioengineered ; 8(3): 203-211, 2017 May 04.
Article in English | MEDLINE | ID: mdl-27644793

ABSTRACT

Delivery of recombinant proteins to vegetative tissue vacuoles was considered inconvenient since this compartment was expected to be hydrolytic; nevertheless there is growing evidence that certain foreign proteins accumulate at high yields in vacuoles. For example avidin, cellulolytic enzymes, endolysin, and transglutaminases were produced at high yields when were sorted to leaf central vacuole avoiding the detrimental effect of these proteins on plant growth. Also, several secretory mammalian proteins such as collagen, α1-proteinase inhibitor, complement-5a, interleukin-6 and immunoglobulins accumulated at higher yields in leaf vacuoles than in the apoplast or cytosol. To reach this final destination, fusions to sequence specific vacuolar sorting signals (ssVSS) typical of proteases or proteinase inhibitors and/or Ct-VSS representative of storage proteins or plant lectins were used and both types of motifs were capable to increase accumulation. Importantly, the type of VSSs or position, either the N or C-terminus, did not alter protein stability, levels or pos-translational modifications. Vacuolar sorted glycoproteins had different type of oligosaccharides indicating that foreign proteins reached the vacuole by 2 different pathways: direct transport from the ER, bypassing the Golgi (high mannose oligosaccharides decorated proteins) or trafficking through the Golgi (Complex oligosaccharide containing proteins). In addition, some glycoproteins lacked of paucimannosidic oligosaccharides suggesting that vacuolar trimming of glycans did not occur. Enhanced accumulation of foreign proteins fused to VSS occurred in several plant species such as tobacco, Nicotiana benthamiana, sugarcane, tomato and in carrot and the obtained results were influenced by plant physiological state. Ten different foreign proteins fused to vacuolar sorting accumulated at higher levels than their apoplastic or cytosolic counterparts. For proteins with cytotoxic effects vacuolar sorted forms yields were superior than ER retained variants, but for other proteins the results were the opposite an there were also examples of similar levels for ER and vacuolar variants. In conclusion vacuolar sorting in vegetative tissues is a satisfactory strategy to enhance protein yields that can be used in several plant species.


Subject(s)
Genetic Enhancement/methods , Plants, Genetically Modified/growth & development , Recombinant Proteins/metabolism , Vacuoles/metabolism , Plant Leaves/physiology , Plant Roots/physiology , Plant Stems/physiology , Plants, Genetically Modified/genetics , Recombinant Proteins/genetics , Tissue Distribution
18.
F1000Res ; 5: 2121, 2016.
Article in English | MEDLINE | ID: mdl-27781090

ABSTRACT

Plant expression systems could be used as biofactories of heterologous proteins that have the potential to be used with biopharmaceutical aims and vaccine design. This technology is scalable, safe and cost-effective and it has been previously proposed as an option for vaccine and protein pharmaceutical development in developing countries. Here we present a proposal of how plant expression systems could be used to address Zika and chikungunya outbreaks through development of vaccines and rapid diagnostic kits.

19.
Plant Biotechnol J ; 14(12): 2265-2275, 2016 12.
Article in English | MEDLINE | ID: mdl-27159528

ABSTRACT

Plant-based platforms are extensively used for the expression of recombinant proteins, including monoclonal antibodies. However, to harness the approach effectively and leverage it to its full potential, a better understanding of intracellular processes that affect protein properties is required. In this work, we examined vacuolar (vac) targeting and deposition of the monoclonal antibody (Ab) 14D9 in Nicotiana benthamiana leaves. Two distinct vacuolar targeting signals (KISIA and NIFRGF) were C-terminal fused to the heavy chain of 14D9 (vac-Abs) and compared with secreted and ER-retained variants (sec-Ab, ER-Ab, respectively). Accumulation of ER- and vac-Abs was 10- to 15-fold higher than sec-Ab. N-glycan profiling revealed the predominant presence of plant typical complex fucosylated and xylosylated GnGnXF structures on sec-Ab while vac-Abs carried mainly oligomannosidic (Man 7-9) next to GnGnXF forms. Paucimannosidic glycans (commonly assigned as typical vacuolar) were not detected. Confocal microscopy analysis using RFP fusions showed that sec-Ab-RFP localized in the apoplast while vac-Abs-RFP were exclusively detected in the central vacuole. The data suggest that vac-Abs reached the vacuole by two different pathways: direct transport from the ER bypassing the Golgi (Ab molecules containing Man structures) and trafficking through the Golgi (for Ab molecules containing complex N-glycans). Importantly, vac-Abs were correctly assembled and functionally active. Collectively, we show that the central vacuole is an appropriate compartment for the efficient production of Abs with appropriate post-translational modifications, but also point to a reconsideration of current concepts in plant glycan processing.


Subject(s)
Antibodies, Monoclonal/metabolism , Nicotiana/metabolism , Vacuoles/metabolism , Antibodies, Monoclonal/genetics , Glycosylation , Immunoglobulins/genetics , Immunoglobulins/metabolism , Polysaccharides/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Nicotiana/genetics
20.
Plant Biotechnol J ; 13(8): 1071-7, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26250843

ABSTRACT

Vaccination has proved to be an efficient strategy to deal with viral infections in both human and animal species. However, protection of cattle against viral infections is still a major concern in veterinary science. During the last two decades, the development of efficient plant-based expression strategies for recombinant proteins prompted the application of this methodology for veterinary vaccine purposes. The main goals of viral bovine vaccines are to improve the health and welfare of cattle and increase the production of livestock, in a cost-effective manner. This review explores some of the more prominent recent advances in plant-made viral bovine vaccines against foot-and-mouth disease virus (FMDV), bovine rotavirus (BRV), bovine viral diarrhoea virus (BVDV), bluetongue virus (BTV) and bovine papillomavirus (BPV), some of which are considered to be the most important viral causative agents of economic loss in cattle production.


Subject(s)
Cattle Diseases/immunology , Cattle Diseases/virology , Viral Vaccines/immunology , Virus Diseases/veterinary , Animals , Cattle , Plants , Virus Diseases/immunology , Virus Diseases/virology
SELECTION OF CITATIONS
SEARCH DETAIL