Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.009
Filter
1.
J Infect Public Health ; 17(9): 102510, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39088990

ABSTRACT

BACKGROUND: Nonspecific acute tropical febrile illnesses (NEATFI) are common in the Latin American tropics. Dengue, Chikungunya, Zika, Mayaro, and Usutu, among others, can coexist in the American tropics. This study aimed to surveil the arboviruses that cause| acute febrile syndrome in patients in the Meta department, Colombia. METHODS: Between June 2021 and February 2023, an epidemiological surveillance study was conducted in the Llanos of the Meta department in Eastern Colombia. RESULTS: One hundred patients in the acute phase with typical prodromal symptoms of NEATFI infection who attended the emergency department of the Villavicencio Departmental Hospital were included. ELISA tests were performed for Dengue, Usutu, Chikungunya, and Mayaro. RT-qPCR was performed to detect the arboviruses Usutu, Dengue, Zika, Mayaro, and Oropouche. The seroprevalence for the Chikungunya, Mayaro, and Usutu viruses was 41 % (28/68), 40 % (27/67), and 62 % (47/75), respectively. Seroconversion for Chikungunya was observed in one patient; two seroconverted to Mayaro and one to Usutu. The NS5 gene fragment of the Usutu virus was detected in nine febrile patients. RT-qPCR of the remaining arboviruses was negative. The clinical symptoms of the nine Usutu-positive patients were very similar to those of Dengue, Chikungunya, Zika, and Mayaro infections. CONCLUSIONS: The pervasive detection of unexpected viruses such as Usutu and Mayaro demonstrated the importance of searching for other viruses different from Dengue. Because Usutu infection and Mayaro fever have clinical features like Dengue, a new algorithm should be proposed to improve the accuracy of acute tropical fevers.

2.
Urologie ; 2024 Aug 06.
Article in German | MEDLINE | ID: mdl-39107624

ABSTRACT

The rapid development of molecular medicine has opened up new perspectives for the diagnosis and treatment of urological tumors. Urology faces the challenge of effectively treating advanced cancer, especially in view of the genetic diversity of urological tumors. The molecular tumor board offers an innovative approach to identify targeted therapy options based on the individual genetic signatures of tumor cells or tumor microenvironment-based treatment options. In this article, the concept of the molecular tumor board in urology is presented using the example of prostate cancer. We discuss the principles, applications, and future prospects of this promising approach.

3.
Pathologie (Heidelb) ; 2024 Aug 07.
Article in German | MEDLINE | ID: mdl-39110167

ABSTRACT

BACKGROUND: Muscle-invasive and metastatic urothelial carcinoma (UC) represents a heterogeneous disease entity with numerous morphological, molecular, and immunological phenotypes. AIMS: This article aims to provide an overview of current histopathological, molecular, and immunological prognostic and predictive factors in muscle-invasive and metastatic UC. RESULTS AND DISCUSSION: Muscle-invasive and metastatic UC exhibits a wide range of divergent differentiations and histological subtypes. The correct diagnosis of these morphological variants is essential, as they may determine the clinical course and may also present specific and potentially therapeutically targetable molecular alterations (e.g., HER2 alterations in micropapillary UC). The morphological subtypes largely correlate with the six molecular consensus subtypes. Furthermore, morphological and molecular subtypes are associated with immunological properties that are relevant for modern immunotherapies, such as the PD-L1 status. Numerous immunotherapy studies in the setting of curatively treatable muscle-invasive UC will be reported in 2024 and 2025, likely leading to an increasing number of PD-L1 testing indications.

4.
Front Neurosci ; 18: 1421675, 2024.
Article in English | MEDLINE | ID: mdl-39005845

ABSTRACT

Alzheimer's disease (AD) is the leading cause of dementia globally, having a pathophysiology that is complex and multifactorial. Recent findings highlight the significant role of non-coding RNAs (ncRNAs), specifically microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and piwi-interacting RNAs (piRNAs) in the molecular mechanisms underlying AD. These ncRNAs are involved in critical biological processes such as cell proliferation, apoptosis, oxidative stress, amyloid-beta aggregation, tau phosphorylation, neuroinflammation, and autophagy, which are pivotal in AD development and progression. This systematic review aims to consolidate current scientific knowledge on the role of ncRNAs in AD, making it the first to encompass the four types of ncRNAs associated with the disease. Our comprehensive search and analysis reveal that ncRNAs not only play crucial roles in the pathogenesis of AD but also hold potential as biomarkers for its early detection and as novel therapeutic targets. Specifically, the findings underscore the significance of miRNAs in regulating genes involved in key AD pathways such as activin receptor signaling pathway, actomyosin contractile ring organization, and advanced glycation endproducts-receptor advanced glycation endproducts (AGE-RAGE) signaling pathway. This review also highlights the potential of ncRNAs in unveiling novel diagnostic and therapeutic strategies, emphasizing the need for further research to validate their clinical utility. Our systematic exploration provides a foundation for future bioinformatic analyses and the development of ncRNA-based precision medicine approaches for AD, offering new insights into the disease's molecular pathology and paving the way for innovative treatment strategies. Systematic review registration: PROSPERO, https://www.crd.york.ac.uk/prospero/, CRD42022355307.

5.
Crit Rev Oncol Hematol ; 201: 104435, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38977143

ABSTRACT

Melanoma pathogenesis, conventionally perceived as a linear accumulation of molecular changes, discloses substantial heterogeneity driven by non-linear biological processes, including the direct transformation of melanocyte stem cells. This heterogeneity manifests in diverse biological phenotypes and developmental states, influencing variable responses to treatments. Unveiling the aberrant mechanisms steering melanoma initiation, progression, and metastasis is imperative. Beyond mutations in oncogenic and tumor suppressor genes, the involvement of distinct molecular pathways assumes a pivotal role in melanoma pathogenesis. Ultraviolet (UV) radiations, a principal factor in melanoma etiology, categorizes melanomas based on cumulative sun damage (CSD). The genomic landscape of lesions correlates with UV exposure, impacting mutational load and spectrum of mutations. The World Health Organization's 2018 classification underscores the interplay between sun exposure and genomic characteristics, distinguishing melanomas associated with CSD from those unrelated to CSD. The classification elucidates molecular features such as tumor mutational burden and copy number alterations associated with different melanoma subtypes. The significance of the mutated BRAF gene and its pathway, notably BRAFV600 variants, in melanoma is paramount. BRAF mutations, prevalent across diverse cancer types, present therapeutic avenues, with clinical trials validating the efficacy of targeted therapies and immunotherapy. Additional driver mutations in oncogenes further characterize specific melanoma pathways, impacting tumor behavior. While histopathological examination remains pivotal, challenges persist in molecularly classifying melanocytic tumors. In this review, we went through all molecular characterization that aid in discriminating common and ambiguous lesions. Integration of highly sensitive molecular diagnostic tests into the diagnostic workflow becomes indispensable, particularly in instances where histology alone fails to achieve a conclusive diagnosis. A diagnostic algorithm based on different molecular features inferred by the various studies is here proposed.

6.
Diagnostics (Basel) ; 14(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39061614

ABSTRACT

Cancer remains a significant global health concern, with increasing genetic and metabolic irregularities linked to its onset. Among various forms of cancer, skin cancer, including squamous cell carcinoma, basal cell carcinoma, and melanoma, is on the rise worldwide, often triggered by ultraviolet (UV) radiation. The propensity of skin cancer to metastasize highlights the importance of early detection for successful treatment. This narrative review explores the evolving role of artificial intelligence (AI) in diagnosing head and neck skin cancers from both radiological and pathological perspectives. In the past two decades, AI has made remarkable progress in skin cancer research, driven by advances in computational capabilities, digitalization of medical images, and radiomics data. AI has shown significant promise in image-based diagnosis across various medical domains. In dermatology, AI has played a pivotal role in refining diagnostic and treatment strategies, including genomic risk assessment. This technology offers substantial potential to aid primary clinicians in improving patient outcomes. Studies have demonstrated AI's effectiveness in identifying skin lesions, categorizing them, and assessing their malignancy, contributing to earlier interventions and better prognosis. The rising incidence and mortality rates of skin cancer, coupled with the high cost of treatment, emphasize the need for early diagnosis. Further research and integration of AI into clinical practice are warranted to maximize its benefits in skin cancer diagnosis and treatment.

7.
Int J Mol Sci ; 25(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39062983

ABSTRACT

Endometrial cancer (EC) is a heterogeneous disease with a rising incidence worldwide. The understanding of its molecular pathways has evolved substantially since The Cancer Genome Atlas (TCGA) stratified endometrial cancer into four subgroups regarding molecular features: POLE ultra-mutated, microsatellite instability (MSI) hypermutated, copy-number high with TP53 mutations, and copy-number low with microsatellite stability, also known as nonspecific molecular subtype (NSMP). More recently, the International Federation of Gynecology and Obstetrics (FIGO) updated their staging classification to include information about POLE mutation and p53 status, as the prognosis differs according to these characteristics. Other biomarkers are being identified and their prognostic and predictive role in response to therapies are being evaluated. However, the incorporation of molecular aspects into treatment decision-making is challenging. This review explores the available data and future directions on tailoring treatment based on molecular subtypes, alongside the challenges associated with their testing.


Subject(s)
Biomarkers, Tumor , Endometrial Neoplasms , Microsatellite Instability , Humans , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Endometrial Neoplasms/therapy , Endometrial Neoplasms/metabolism , Female , Biomarkers, Tumor/genetics , Mutation , Pathology, Molecular , Prognosis , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
8.
Neuropathol Appl Neurobiol ; 50(4): e12994, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38982613

ABSTRACT

AIMS: The question of how to handle clinically actionable outcomes from retrospective research studies is poorly explored. In neuropathology, this problem is exacerbated by ongoing refinement in tumour classification. We sought to establish a disclosure threshold for potential revised diagnoses as determined by the neuro-oncology speciality. METHODS: As part of a previous research study, the diagnoses of 73 archival paediatric brain tumour samples were reclassified according to the WHO 2016 guidelines. To determine the disclosure threshold and clinical actionability of pathology-related findings, we conducted a result-evaluation approach within the ethical framework of BRAIN UK using a surrogate clinical multidisciplinary team (MDT) of neuro-oncology specialists. RESULTS: The MDT identified key determinants impacting decision-making, including anticipated changes to patient management, time elapsed since initial diagnosis, likelihood of the patient being alive and absence of additional samples since cohort inception. Ultimately, none of our research findings were considered clinically actionable, largely due to the cohort's historic archival and high-risk nature. From this experience, we developed a decision-making framework to determine if research findings indicating a change in diagnosis require reporting to the relevant clinical teams. CONCLUSIONS: Ethical issues relating to the use of archival tissue for research and the potential to identify actionable findings must be carefully considered. We have established a structured framework to assess the actionability of research data relating to patient diagnosis. While our specific findings are most applicable to the pathology of poor prognostic brain tumour groups in children, the model can be adapted to a range of disease settings, for example, other diseases where research is dependent on retrospective tissue cohorts, and research findings may have implications for patients and families, such as other tumour types, epilepsy-related pathology, genetic disorders and degenerative diseases.


Subject(s)
Brain Neoplasms , Humans , Brain Neoplasms/pathology , Brain Neoplasms/diagnosis , Child , Decision Making , Retrospective Studies , Biomedical Research
9.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892239

ABSTRACT

N-acetylcysteine (NAC) is a mucolytic agent with antioxidant and anti-inflammatory properties. The respiratory syncytial virus (RSV) is one of the most important etiological factors of lower respiratory tract infections, and exposure to air pollution appears to be additionally associated with higher RSV incidence and disease severity. We aimed to systematically review the existing literature to determine which molecular mechanisms mediate the effects of NAC in an RSV infection and air pollution, and to identify the knowledge gaps in this field. A search for original studies was carried out in three databases and a calibrated extraction grid was used to extract data on the NAC treatment (dose, timing), the air pollutant type, and the most significant mechanisms. We identified only 28 studies conducted in human cellular models (n = 18), animal models (n = 7), and mixed models (n = 3). NAC treatment improves the barrier function of the epithelium damaged by RSV and air pollution, and reduces the epithelial permeability, protecting against viral entry. NAC may also block RSV-activated phosphorylation of the epidermal growth factor receptor (EGFR), which promotes endocytosis and facilitates cell entry. EGFR also enhances the release of a mucin gene, MUC5AC, which increases mucus viscosity and causes goblet cell metaplasia; the effects are abrogated by NAC. NAC blocks virus release from the infected cells, attenuates the cigarette smoke-induced shift from necrosis to apoptosis, and reverses the block in IFN-γ-induced antiviral gene expression caused by the inhibited Stat1 phosphorylation. Increased synthesis of pro-inflammatory cytokines and chemokines is induced by both RSV and air pollutants and is mediated by the nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways that are activated in response to oxidative stress. MCP-1 (monocyte chemoattractant protein-1) and RANTES (regulated upon activation, expressed and secreted by normal T cells) partially mediate airway hyperresponsiveness (AHR), and therapeutic (but not preventive) NAC administration reduces the inflammatory response and has been shown to reduce ozone-induced AHR. Oxidative stress-induced DNA damage and cellular senescence, observed during RSV infection and exposure to air pollution, can be partially reversed by NAC administration, while data on the emphysema formation are disputed. The review identified potential common molecular mechanisms of interest that are affected by NAC and may alleviate both the RSV infection and the effects of air pollution. Data are limited and gaps in knowledge include the optimal timing or dosage of NAC administration, therefore future studies should clarify these uncertainties and verify its practical use.


Subject(s)
Acetylcysteine , Air Pollution , Respiratory Syncytial Virus Infections , Humans , Acetylcysteine/pharmacology , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus Infections/metabolism , Animals , Air Pollution/adverse effects , ErbB Receptors/metabolism
10.
11.
Radiologia (Engl Ed) ; 66(3): 260-277, 2024.
Article in English | MEDLINE | ID: mdl-38908887

ABSTRACT

The 2021 World Health Organization classification of CNS tumours was greeted with enthusiasm as well as an initial potential overwhelm. However, with time and experience, our understanding of its key aspects has notably improved. Using our collective expertise gained in neuro-oncology units in hospitals in different countries, we have compiled a practical guide for radiologists that clarifies the classification criteria for diffuse gliomas in adults. Its format is clear and concise to facilitate its incorporation into everyday clinical practice. The document includes a historical overview of the classifications and highlights the most important recent additions. It describes the main types in detail with an emphasis on their appearance on imaging. The authors also address the most debated issues in recent years. It will better prepare radiologists to conduct accurate presurgical diagnoses and collaborate effectively in clinical decision making, thus impacting decisions on treatment, prognosis, and overall patient care.


Subject(s)
Brain Neoplasms , Glioma , Humans , Glioma/diagnostic imaging , Brain Neoplasms/diagnostic imaging , Adult , World Health Organization , Preoperative Care
12.
Int J Mol Sci ; 25(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38891886

ABSTRACT

We present the case of a 70-year-old never-smoking female patient with epidermal growth factor receptor (EGFR) p.L858R-mutated metastatic non-small cell lung cancer (NSCLC). After three months of first-line treatment with erlotinib, progression occurred and platinum/pemetrexed was initiated, followed by a response for more than two years. After the progression, the molecular testing of a vertebral metastasis revealed a ROS proto-oncogene 1 (ROS1) translocation and a human epidermal growth factor receptor 2 (HER2) p.S310F mutation, in addition to the known EGFR p.L858R mutation. Crizotinib then led to a durable response of 17 months. The molecular retesting of the tumour cells obtained from the recurrent pleural effusion revealed the absence of the ROS1 translocation, whereas the EGFR and HER2 mutations were still present. Afatinib was added to the crizotinib, and the combination treatment resulted in another durable response of more than two years. The patient died more than 7 years after the initial diagnosis of metastatic NSCLC. This case demonstrates that the repeated molecular testing of metastatic NSCLC may identify new druggable genomic alterations that can impact the patient management and improve the patient outcome.


Subject(s)
Adenocarcinoma of Lung , Afatinib , Crizotinib , ErbB Receptors , Lung Neoplasms , Protein-Tyrosine Kinases , Aged , Female , Humans , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Afatinib/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Crizotinib/therapeutic use , ErbB Receptors/genetics , ErbB Receptors/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Mas/genetics , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism
13.
JCI Insight ; 9(12)2024 May 23.
Article in English | MEDLINE | ID: mdl-38805346

ABSTRACT

Tumor evolution is driven by genetic variation; however, it is the tumor microenvironment (TME) that provides the selective pressure contributing to evolution in cancer. Despite high histopathological heterogeneity within glioblastoma (GBM), the most aggressive brain tumor, the interactions between the genetically distinct GBM cells and the surrounding TME are not fully understood. To address this, we analyzed matched primary and recurrent GBM archival tumor tissues with imaging-based techniques aimed to simultaneously evaluate tumor tissues for the presence of hypoxic, angiogenic, and inflammatory niches, extracellular matrix (ECM) organization, TERT promoter mutational status, and several oncogenic amplifications on the same slide and location. We found that the relationships between genetic and TME diversity are different in primary and matched recurrent tumors. Interestingly, the texture of the ECM, identified by label-free reflectance imaging, was predictive of single-cell genetic traits present in the tissue. Moreover, reflectance of ECM revealed structured organization of the perivascular niche in recurrent GBM, enriched in immunosuppressive macrophages. Single-cell spatial transcriptomics further confirmed the presence of the niche-specific macrophage populations and identified interactions between endothelial cells, perivascular fibroblasts, and immunosuppressive macrophages. Our results underscore the importance of GBM tissue organization in tumor evolution and highlight genetic and spatial dependencies.


Subject(s)
Brain Neoplasms , Extracellular Matrix , Glioblastoma , Neoplasm Recurrence, Local , Tumor Microenvironment , Glioblastoma/genetics , Glioblastoma/pathology , Glioblastoma/diagnostic imaging , Humans , Tumor Microenvironment/genetics , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/diagnostic imaging , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Extracellular Matrix/pathology , Extracellular Matrix/metabolism , Extracellular Matrix/genetics , Spatial Analysis , Male , Macrophages/pathology , Female , Telomerase/genetics , Single-Cell Analysis , Mutation , Middle Aged
14.
Oncol Rev ; 18: 1375291, 2024.
Article in English | MEDLINE | ID: mdl-38707485

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) accounts for half of non-Hodgkin lymphoma cases in people living with human immunodeficiency syndrome (PLWH). The interplay of viremia, immune dysregulation and co-infection with oncogenic viruses play a role in pathogenesis of DLBCL in PLWH (HIV-DLBCL). This scoping review aimed to describe the molecular landscape of HIV-DLBCL, investigate the impact of biomarker on clinical outcomes and describe technologies used to characterise HIV-DLBCL. Thirty-two papers published between 2001 and 2023 were included in this review. Samples of HIV-DLBCL were relatively small (16-110). Cohort effects influenced frequencies of molecular characteristics hence their impact on survival was not clear. Molecular features were distinct from HIV-unrelated DLBCL. The most frequently assessed characteristic was cell of origin (81.3% of studies). Somatic mutations were the least researched (6.3% of studies). Overall, biomarker identification in HIV-DLBCL requires broader richer data from larger or pooled samples using more powerful techniques such as next-generation sequencing.

15.
J Clin Invest ; 134(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38690726

ABSTRACT

Proline substitutions within the coiled-coil rod region of the ß-myosin gene (MYH7) are the predominant mutations causing Laing distal myopathy (MPD1), an autosomal dominant disorder characterized by progressive weakness of distal/proximal muscles. We report that the MDP1 mutation R1500P, studied in what we believe to be the first mouse model for the disease, adversely affected myosin motor activity despite being in the structural rod domain that directs thick filament assembly. Contractility experiments carried out on isolated mutant muscles, myofibrils, and myofibers identified muscle fatigue and weakness phenotypes, an increased rate of actin-myosin detachment, and a conformational shift of the myosin heads toward the more reactive disordered relaxed (DRX) state, causing hypercontractility and greater ATP consumption. Similarly, molecular analysis of muscle biopsies from patients with MPD1 revealed a significant increase in sarcomeric DRX content, as observed in a subset of myosin motor domain mutations causing hypertrophic cardiomyopathy. Finally, oral administration of MYK-581, a small molecule that decreases the population of heads in the DRX configuration, significantly improved the limited running capacity of the R1500P-transgenic mice and corrected the increased DRX state of the myofibrils from patients. These studies provide evidence of the molecular pathogenesis of proline rod mutations and lay the groundwork for the therapeutic advancement of myosin modulators.


Subject(s)
Amino Acid Substitution , Distal Myopathies , Proline , Animals , Mice , Humans , Proline/genetics , Proline/metabolism , Distal Myopathies/genetics , Distal Myopathies/metabolism , Distal Myopathies/pathology , Mutation, Missense , Cardiac Myosins/genetics , Cardiac Myosins/metabolism , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Myosin Heavy Chains/chemistry , Female , Male , Mice, Transgenic , Muscle Contraction/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology
16.
Pediatr Dev Pathol ; : 10935266241255277, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38794943

ABSTRACT

Lymphoblastic lymphoma (LBL) with an early T-cell precursor phenotype has only been rarely reported. Nijmegen breakage syndrome (NBS) is an inherited chromosomal instability disorder with known predisposition to malignancies that is very rare as well. We report a case of early T-precursor LBL (ETP-LBL) in a patient with NBS, a rare combination that has not been reported. We raise the question of whether a chromosomal instability disorder such as NBS increases the propensity for early T-precursor acute lymphoblastic leukemia/lymphoma (ETP-ALL/LBL), given that ETP-ALL has been shown to have increased genomic instability compared to T-ALL.

17.
Clin Lab Med ; 44(2): 181-198, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821640

ABSTRACT

Urothelial carcinoma is characterized by the presence of a wide spectrum of histopathologic features and molecular alterations that contribute to its morphologic and genomic heterogeneity. It typically harbors high rates of somatic mutations with considerable genomic and transcriptional complexity and heterogeneity that is reflective of its varied histomorphologic and clinical features. This review provides an update on the recent advances in the molecular characterization and novel molecular taxonomy of urothelial carcinoma and variant histologies.


Subject(s)
Carcinoma, Transitional Cell , Humans , Carcinoma, Transitional Cell/pathology , Carcinoma, Transitional Cell/genetics , Carcinoma, Transitional Cell/diagnosis , Mutation , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/diagnosis , Urologic Neoplasms/pathology , Urologic Neoplasms/genetics , Urologic Neoplasms/diagnosis , Urothelium/pathology
18.
Clin Lab Med ; 44(2): 239-254, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821643

ABSTRACT

Upper gastroesophageal carcinomas consist of cancers arising from the esophagus and stomach. Squamous cell carcinomas and adenocarcinomas are seen in the esophagus and despite arising from the same organ have different biology. Gastric adenocarcinomas are categorized into 4 molecular subtypes: high Epstein-Barr virus load, microsatellite unstable cancers, chromosomal unstable (CIN) cancers, and genomically stable cancers. Genomically stable gastric cancers correlate highly with histologically defined diffuse-type cancers. Esophageal carcinomas and CIN gastric cancers often are driven by high-level amplifications of oncogenes and contain a high degree of intratumoral heterogeneity. Targeted therapeutics is an active area of research for gastroesophageal cancers.


Subject(s)
Adenocarcinoma , Esophageal Neoplasms , Stomach Neoplasms , Humans , Adenocarcinoma/pathology , Adenocarcinoma/diagnosis , Adenocarcinoma/genetics , Carcinoma, Squamous Cell/diagnosis , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Esophageal Neoplasms/pathology , Esophageal Neoplasms/diagnosis , Esophageal Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/diagnosis , Stomach Neoplasms/genetics
19.
Clin Lab Med ; 44(2): 355-376, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821649

ABSTRACT

Lymphoid malignancies are a broad and heterogeneous group of neoplasms. In the past decade, the genetic landscape of these tumors has been explored and cataloged in fine detail offering a glimpse into the mechanisms of lymphomagenesis and new opportunities to translate these findings into patient management. A myriad of studies have demonstrated both distinctive and overlapping molecular and chromosomal abnormalities that have influenced the diagnosis and classification of lymphoma, disease prognosis, and treatment selection.


Subject(s)
Lymphoma , Humans , Chromosome Aberrations , Lymphoma/diagnosis , Lymphoma/genetics , Lymphoma/pathology
20.
Clin Lab Med ; 44(2): 325-337, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821647

ABSTRACT

The rapid adoption of next-generation sequencing in clinical oncology has enabled the detection of molecular biomarkers shared between multiple tumor types. These pan-cancer biomarkers include sequence-altering mutations, copy number changes, gene rearrangements, and mutational signatures and have been demonstrated to predict response to targeted therapy. This article reviews issues surrounding current and emerging pan-cancer molecular biomarkers in clinical oncology: technological advances that enable the broad detection of cancer mutations across hundreds of genes, the spectrum of driver and passenger mutations derived from human cancer genomes, and implications for patient care now and in the near future.


Subject(s)
Biomarkers, Tumor , Neoplasms , Humans , Biomarkers, Tumor/genetics , Neoplasms/diagnosis , Neoplasms/genetics , High-Throughput Nucleotide Sequencing , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...