Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 796
Filter
1.
Arthritis Res Ther ; 26(1): 126, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961491

ABSTRACT

BACKGROUND: Lupus nephritis (LN) is a severe complication of systemic lupus erythematosus (SLE) with poor treatment outcomes. The role and underlying mechanisms of ferroptosis in LN remain largely unknown. We aimed to explore ferroptosis-related molecular subtypes and assess their prognostic value in LN patients. METHODS: Molecular subtypes were classified on the basis of differentially expressed ferroptosis-related genes (FRGs) via the Consensus ClusterPlus package. The enriched functions and pathways, immune infiltrating levels, immune scores, and immune checkpoints were compared between the subgroups. A scoring algorithm based on the subtype-specific feature genes identified by artificial neural network machine learning, referred to as the NeuraLN, was established, and its immunological features, clinical value, and predictive value were evaluated in patients with LN. Finally, immunohistochemical analysis was performed to validate the expression and role of feature genes in glomerular tissues from LN patients and controls. RESULTS: A total of 10 differentially expressed FRGs were identified, most of which showed significant correlation. Based on the 10 FRGs, LN patients were classified into two ferroptosis subtypes, which exhibited significant differences in immune cell abundances, immune scores, and immune checkpoint expression. A NeuraLN-related protective model was established based on nine subtype-specific genes, and it exhibited a robustly predictive value in LN. The nomogram and calibration curves demonstrated the clinical benefits of the protective model. The high-NeuraLN group was closely associated with immune activation. Clinical specimens demonstrated the alterations of ALB, BHMT, GAMT, GSTA1, and HAO2 were in accordance with bioinformatics analysis results, GSTA1 and BHMT were negatively correlated with the severity of LN. CONCLUSION: The classification of ferroptosis subtypes and the establishment of a protective model may form a foundation for the personalized treatment of LN patients.


Subject(s)
Ferroptosis , Lupus Nephritis , Neural Networks, Computer , Humans , Ferroptosis/genetics , Ferroptosis/immunology , Lupus Nephritis/immunology , Lupus Nephritis/genetics , Female , Male , Adult , Machine Learning , Prognosis , Middle Aged
2.
Oncol Lett ; 28(2): 389, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38966584

ABSTRACT

The present study aimed to investigate whether local recurrence (LR) after nipple-sparing mastectomy (NSM) and reconstruction was associated with i) Ki67 values and molecular subtypes of the initial lesions, and ii) the size of the initial tumor and the size of the implant. A total of 156 patients with breast cancer with a mean age of 51.58 years (age range, 26-75 years) who underwent NSM with primary implant breast reconstruction were analyzed. After surgery, the mean follow-up time was 59.26 months (range, 17-85 months). Molecular subtypes, Ki67 values, estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) status were recorded for each patient. Additionally, information regarding the size of the implant and the initial tumor size were collected. The information was used to assess LR. For univariate analyses of risk factors, χ2 test, Fisher's exact test, Mann-Whitney U test and Student's t-test for independent samples were used. For multivariate analyses, a Cox proportional-hazards model was used. NSM was the primary treatment for breast cancer in 34/156 patients (21.8%), while 122/156 (78.2%) of patients received neoadjuvant chemotherapy followed by surgery. Luminal B was the most frequent molecular subtype, detected in 82/156 patients (52.6%), whereas the luminal A subtype was detected in 37 patients (23.7%) and the HER2-enriched subtype was detected in 17/156 patients (10.9%). Ki67 expression was low in 13/156 patients (8.3%), while medium expression was detected in 78/156 patients (50.0%) and high expression was present in 58/156 patients (37.2%). LR was noted in 17/156 patients (10.9%). As determined by univariate analysis, lower ER (P=0.010) and PR (P=0.008) expression were indicated to be significant risk factors for LR. In conclusion, in the present patient cohort, low ER and PR expression were risk factors for LR of breast cancer, whereas Ki67 status and molecular subtype were not statistically significant risk factors for LR. Additionally, the size of the initial tumor and the size of the implant were not risk factors for LR. These findings are consistent with the current literature, and should be utilized when discussing treatment options and potential clinical outcomes with patients prior to surgical management.

3.
Mol Med ; 30(1): 101, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997636

ABSTRACT

BACKGROUND: Amyotrophic Lateral Sclerosis (ALS) is a highly heterogenous neurodegenerative disorder that primarily affects upper and lower motor neurons, affecting additional cell types and brain regions. Underlying molecular mechanisms are still elusive, in part due to disease heterogeneity. Molecular disease subtyping through integrative analyses including RNA editing profiling is a novel approach for identification of molecular networks involved in pathogenesis. METHODS: We aimed to highlight the role of RNA editing in ALS, focusing on the frontal cortex and the prevalent molecular disease subtype (ALS-Ox), previously determined by transcriptomic profile stratification. We established global RNA editing (editome) and gene expression (transcriptome) profiles in control and ALS-Ox cases, utilizing publicly available RNA-seq data (GSE153960) and an in-house analysis pipeline. Functional annotation and pathway analyses identified molecular processes affected by RNA editing alterations. Pearson correlation analyses assessed RNA editing effects on expression. Similar analyses on additional ALS-Ox and control samples (GSE124439) were performed for verification. Targeted re-sequencing and qRT-PCR analysis targeting CACNA1C, were performed using frontal cortex tissue from ALS and control samples (n = 3 samples/group). RESULTS: We identified reduced global RNA editing in the frontal cortex of ALS-Ox cases. Differentially edited transcripts are enriched in synapses, particularly in the glutamatergic synapse pathway. Bioinformatic analyses on additional ALS-Ox and control RNA-seq data verified these findings. We identified increased recoding at the Q621R site in the GRIK2 transcript and determined positive correlations between RNA editing and gene expression alterations in ionotropic receptor subunits GRIA2, GRIA3 and the CACNA1C transcript, which encodes the pore forming subunit of a post-synaptic L-type calcium channel. Experimental data verified RNA editing alterations and editing-expression correlation in CACNA1C, highlighting CACNA1C as a target for further study. CONCLUSIONS: We provide evidence on the involvement of RNA editing in the frontal cortex of an ALS molecular subtype, highlighting a modulatory role mediated though recoding and gene expression regulation on glutamatergic synapse related transcripts. We report RNA editing effects in disease-related transcripts and validated editing alterations in CACNA1C. Our study provides targets for further functional studies that could shed light in underlying disease mechanisms enabling novel therapeutic approaches.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontal Lobe , RNA Editing , Synapses , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Humans , Frontal Lobe/metabolism , Synapses/metabolism , Synapses/genetics , Transcriptome , Gene Expression Profiling , Glutamic Acid/metabolism , Computational Biology/methods , Male , Female , Gene Expression Regulation , Middle Aged
4.
Cancer Sci ; 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004948

ABSTRACT

Bladder cancers are heterogeneous in nature, showing diverse molecular profiles and histopathological characteristics, which pose challenges for diagnosis and treatment. However, understanding the molecular basis of such heterogeneity has remained elusive. This study aimed to elucidate the molecular landscape of neuroendocrine-like bladder tumors, focusing on the involvement of ß-catenin localization. Analyzing the transcriptome data and benefiting from the molecular classification tool, we undertook an in-depth analysis of muscle-invasive bladder cancers to uncover the molecular characteristics of the neuroendocrine-like differentiation. The study explored the contribution of transcription factors and chromatin remodeling complexes to neuroendocrine differentiation in bladder cancer. The study revealed a significant correlation between ß-catenin localization and neuroendocrine differentiation in muscle-invasive bladder tumors, highlighting the molecular complexity of neuroendocrine-like tumors. Enrichment of YY1 transcription factor, E2F family members, and Polycomb repressive complex components in ß-catenin-positive tumors suggest their potential contribution to neuroendocrine phenotypes. Our findings contribute valuable insights into the molecular complexity of neuroendocrine-like bladder tumors. By identifying potential therapeutic targets and refining diagnostic strategies, this study advances our understanding of endocrinology in the context of bladder cancer. Further investigations into the functional implications of these molecular relationships are warranted to enhance our knowledge and guide future therapeutic interventions.

5.
Cancer Med ; 13(14): e70041, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39054866

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is among the most hackneyed malignancies. Even patients with identical clinical symptoms and the same TNM stage still exhibit radically different clinical outcomes after receiving equivalent treatment regimens, indicating extensive heterogeneity of CRC. Myriad molecular subtypes of CRC have been exploited for decades, including the most compelling consensus molecular subtype (CMS) classification that has been broadly applied for patient stratification and biomarker-drug combination formulation. Encountering barriers to clinical translation, however, CMS classification fails to fully reflect inter- or intra-tumor heterogeneity of CRC. As a consequence, addressing heterogeneity and precisely managing CRC patients with unique characteristics remain arduous tasks for clinicians. REVIEW: In this review, we systematically summarize molecular subtypes of CRC and further elaborate on their clinical applications, limitations, and future orientations. CONCLUSION: In recent years, exploration of subtypes through cell lines, animal models, patient-derived xenografts (PDXs), organoids, and clinical trials contributes to refining biological insights and unraveling subtype-specific therapies in CRC. Therapeutic interventions including nanotechnology, clustered regulatory interspaced short palindromic repeat/CRISPR-associated nuclease 9 (CRISPR/Cas9), gut microbiome, and liquid biopsy are powerful tools with the possibility to shift the immunologic landscape and outlook for CRC precise medicine.


Subject(s)
Biomarkers, Tumor , Colorectal Neoplasms , Precision Medicine , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/immunology , Precision Medicine/methods , Biomarkers, Tumor/genetics , Animals
6.
Pathol Res Pract ; 260: 155382, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38850879

ABSTRACT

BACKGROUND AND AIMS: Breast cancer, a leading cause of female mortality, has prompted the widespread adoption of Neoadjuvant chemotherapy (NAC) for its potential to minimize metastasis risk and downstaging tumors. Tumor Infiltrating Lymphocytes (TILs) have emerged as key immunological biomarkers, particularly in breast cancer research. This study focuses on evaluating Stromal TILs (sTILs) in pre-NAC core needle biopsies of Invasive Breast Carcinoma, No Special Type (IBC, NST) and correlating it with NAC response. MATERIALS AND METHODS: A retrospective study spanning three years (October 2020 to September 2023) was conducted in a tertiary care hospital, involving 73 patients meeting specific inclusion criteria. Pathological assessments, including hormone receptor status, molecular subtyping, and TILs evaluation, were performed. Logistic regression and statistical analyses were conducted to determine associations between TILs, clinicopathological parameters, and complete response. RESULTS: The study demonstrated excellent discriminatory power of TILs (>10 %) in predicting complete response. Univariate and multivariate logistic regression underscored the independent predictive value of TILs, emphasizing their significance across diverse molecular subtypes. CONCLUSION: This study provides crucial insights into immune response assessment, particularly sTILs, in optimizing breast cancer treatment strategies and patient outcomes during NAC, contributing to the evolving landscape of personalized emphasising oncology.

7.
Sci Rep ; 14(1): 12683, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38831059

ABSTRACT

Ulcerative colitis (UC) is characterized by an abnormal immune response, and the pathogenesis lacks clear understanding. The cGAS-STING pathway is an innate immune signaling pathway that plays a significant role in various pathophysiological processes. However, the role of the cGAS-STING pathway in UC remains largely unclear. In this study, we obtained transcriptome sequencing data from multiple publicly available databases. cGAS-STING related genes were obtained through literature search, and differentially expressed genes (DEGs) were analyzed using R package limma. Hub genes were identified through protein-protein interaction (PPI) network analysis and module construction. The ConsensuClusterPlus package was utilized to identify molecular subtypes based on hub genes. The therapeutic response, immune microenvironment, and biological pathways of subtypes were further investigated. A total of 18 DEGs were found in UC patients. We further identified IFI16, MB21D1 (CGAS), TMEM173 (STING) and TBK1 as the hub genes. These genes are highly expressed in UC. IFI16 exhibited the highest diagnostic value and predictive value for response to anti-TNF therapy. The expression level of IFI16 was higher in non-responders to anti-TNF therapy. Furthermore, a cluster analysis based on genes related to the cGAS-STING pathway revealed that patients with higher gene expression exhibited elevated immune burden and inflammation levels. This study is a pioneering analysis of cGAS-STING pathway-related genes in UC. These findings provide new insights for the diagnosis of UC and the prediction of therapeutic response.


Subject(s)
Colitis, Ulcerative , Membrane Proteins , Nucleotidyltransferases , Signal Transduction , Humans , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Colitis, Ulcerative/genetics , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/immunology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Signal Transduction/genetics , Protein Interaction Maps/genetics , Gene Expression Profiling , Transcriptome
8.
Front Pharmacol ; 15: 1365683, 2024.
Article in English | MEDLINE | ID: mdl-38873416

ABSTRACT

Introduction: IL4I1, also known as Interleukin-4-induced gene 1, is an enzyme that can modulate the immune system by acting as a L-amino acid oxidase. Nevertheless, a precise understanding of the correlation of IL4I1 with immunological features and immunotherapy efficacy in bladder cancer (BLCA) remains incomplete. Methods: We analyzed RNA sequencing data from the Cancer Genome Atlas (TCGA) to investigate the immune function and prognostic importance of IL4I1 across different cancer types. We further examined the TCGA-BLCA cohort for correlations between IL4I1 and various immunological characteristics of tumor microenvironment (TME), such as cancer immune cycle, immune cell infiltration, immune checkpoint expression and T cell inflamed score. Validation was conducted using two independent cohort, GSE48075 and E-MTAB-4321. Finally, RNA sequencing data from the IMvigor210 cohort and immunohistochemistry assays were employed to validate the predictive value of IL4I1 for the TME and immunotherapy efficacy. Results: In our findings, a positive correlation was observed between IL4I1 expression and immunomodulators expression, immune cell infiltration, the cancer immune cycle, and T cell inflamed score in BLCA, suggesting a significant link to the inflamed TME. In addition, studies have shown that IL4I1 elevated levels of individuals tend to be more performance for basal subtype and exhibit enhanced response rates to diverse treatment modalities, specifically immunotherapy. Clinical data from the IMvigor 210 cohort confirmed a higher rate of response to immunotherapy and better survival benefits in patients with high IL4I1 expression. Discussion: To summarize, our research showed that elevated IL4I1 levels are indicative of an inflamed TME, the basal subtype, and a more favorable response to various treatment methods, especially immune checkpoint blockade therapy in BLCA.

9.
BMC Cancer ; 24(1): 732, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877472

ABSTRACT

BACKGROUND: Considering the age relevance of prostate cancer (PCa) and the involvement of the cGAS-STING pathway in aging and cancer, we aim to classify PCa into distinct molecular subtypes and identify key genes from the novel perspective of the cGAS-STING pathway. It is of significance to guide personalized intervention of cancer-targeting therapy based on genetic evidence. METHODS: The 430 patients with PCa from the TCGA database were included. We integrated 29 key genes involved in cGAS-STING pathway and analyzed differentially expressed genes and biochemical recurrence (BCR)-free survival-related genes. The assessments of tumor stemness and heterogeneity and tumor microenvironment (TME) were conducted to reveal potential mechanisms. RESULTS: PCa patients were classified into two distinct subtypes using AURKB, TREX1, and STAT6, and subtype 1 had a worse prognosis than subtype 2 (HR: 21.19, p < 0.001). The findings were validated in the MSKCC2010 cohort. Among subtype 1 and subtype 2, the top ten mutation genes were MUC5B, DNAH9, SLC5A10, ZNF462, USP31, SIPA1L3, PLEC, HRAS, MYOM1, and ITGB6. Gene set variation analysis revealed a high enrichment of the E2F target in subtype 1, and gene set enrichment analysis showed significant enrichment of base excision repair, cell cycle, and DNA replication in subtype 1. TME evaluation indicated that subtype 1 had a significantly higher level of T cells follicular helper and a lower level of plasma cells than subtype 2. CONCLUSIONS: The molecular subtypes mediated by the cGAS-STING pathway and the genetic risk score may aid in identifying potentially high-risk PCa patients who may benefit from pharmacologic therapies targeting the cGAS-STING pathway.


Subject(s)
Membrane Proteins , Nucleotidyltransferases , Prostatic Neoplasms , Signal Transduction , Humans , Male , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Signal Transduction/genetics , Prognosis , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Gene Expression Regulation, Neoplastic , Biomarkers, Tumor/genetics , Mutation , Aged , Gene Expression Profiling , Transcriptome
10.
Clin Exp Immunol ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38938103

ABSTRACT

Psoriasis is a chronic immune-mediated recurrent skin disease causing systemic damage. Increased angiogenesis has been reported to participate in the progression of psoriasis. However, angiogenesis-related genes (ARGs) in psoriasis have not been systematically elucidated. Therefore, we aim to identify potential biomarkers and subtypes using two algorithms. Transcriptome sequencing data of patients with psoriasis were obtained, in which differentially expressed genes were assessed by principal component analysis (PCA). A diagnostic model was developed using random forest algorithm (ntree=400) and validated by ROC curves. Subsequently, we performed consensus clustering to calculate angiogenesis-associated molecular subtypes of psoriasis. Additionally, a correlation analysis was conducted between ARGs and immune cell infiltration. Finally, validation of potential ARG genes was performed by qRT-PCR. We identified 29 differentially expressed ARGs, including 13 increased and 16 decreased. Ten ARGs, CXCL8, ANG, EGF, HTATIP2, ANGPTL4, TNFSF12, RHOB, PML, FOXO4, and EMCN were subsequently sifted by the diagnostic model based on a random forest algorithm. Analysis of the ROC curve (area under the curve [AUC] = 1.0) indicated high diagnostic performance in internal validation. The correlation analysis suggested that CXCL8 has a high positive correlation with neutrophil (R =0.8, P<0.0001) and interleukins pathway (R=0.79, P<0.0001). Furtherer, two ARG-mediated subtypes were obtained, indicating potential heterogeneity. Finally, the qRT-PCR demonstrated that the mRNA expression levels of CXCL8 and ANGPTL4 were elevated in psoriasis patients, with a reduced expression of EMCN observed. The current paper indicated potential ARG-related biomarkers of psoriasis, including CXCL8, ANGPTL4, and EMCN, with two molecular subtypes.

11.
Theranostics ; 14(8): 3104-3126, 2024.
Article in English | MEDLINE | ID: mdl-38855191

ABSTRACT

Background: The stem or progenitor antecedents confer developmental plasticity and unique cell identities to cancer cells via genetic and epigenetic programs. A comprehensive characterization and mapping of the cell-of-origin of breast cancer using novel technologies to unveil novel subtype-specific therapeutic targets is still absent. Methods: We integrated 195,144 high-quality cells from normal breast tissues and 406,501 high-quality cells from primary breast cancer samples to create a large-scale single-cell atlas of human normal and cancerous breasts. Potential heterogeneous origin of malignant cells was explored by contrasting cancer cells against reference normal epithelial cells. Multi-omics analyses and both in vitro and in vivo experiments were performed to screen and validate potential subtype-specific treatment targets. Novel biomarkers of identified immune and stromal cell subpopulations were validated by immunohistochemistry in our cohort. Results: Tumor stratification based on cancer cell-of-origin patterns correlated with clinical outcomes, genomic aberrations and diverse microenvironment constitutions. We found that the luminal progenitor (LP) subtype was robustly associated with poor prognosis, genomic instability and dysfunctional immune microenvironment. However, the LP subtype patients were sensitive to neoadjuvant chemotherapy (NAC), PARP inhibitors (PARPi) and immunotherapy. The LP subtype-specific target PLK1 was investigated by both in vitro and in vivo experiments. Besides, large-scale single-cell profiling of breast cancer inspired us to identify a range of clinically relevant immune and stromal cell subpopulations, including subsets of innate lymphoid cells (ILCs), macrophages and endothelial cells. Conclusion: The present single-cell study revealed the cellular repertoire and cell-of-origin patterns of breast cancer. Combining single-cell and bulk transcriptome data, we elucidated the evolution mimicry from normal to malignant subtypes and expounded the LP subtype with vital clinical implications. Novel immune and stromal cell subpopulations of breast cancer identified in our study could be potential therapeutic targets. Taken together, Our findings lay the foundation for the precise prognostic and therapeutic stratification of breast cancer.


Subject(s)
Breast Neoplasms , Single-Cell Analysis , Tumor Microenvironment , Humans , Single-Cell Analysis/methods , Female , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Tumor Microenvironment/immunology , Animals , Mice , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Prognosis
12.
Discov Oncol ; 15(1): 240, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38907840

ABSTRACT

OBJECTIVE: Examining the distribution of breast cancer (BC) stage and molecular subtype among women aged below (< 45 years), within (45-65 years), and above (> 65 years) the recommended screening age range helps to understand the screening program's characteristics and contributes to enhancing the effectiveness of BC screening programs. METHODS: In this retrospective study, female patients with newly diagnosed BC from 2010 to 2020 were identified. The distribution of cases in terms of TNM stages, severity classes, and subtypes was analysed according to age groups. RESULTS: A total of 3282 women diagnosed with BC were included in the analysis. Among these cases 51.4% were detected outside the screening age group, and these were characterized by a higher TNM stage compared to those diagnosed within the screening age band. We observed significantly higher relative frequency of advanced BC in the older age group compared to both the screening age population and women younger than 45 years (14.9% vs. 8.7% and 7.7%, P < 0.001). HR-/HER2- and HER+ tumours were relatively more frequent among women under age 45 years (HR-/HER2-: 23.6%, HER2+: 20.5%) compared to those within the screening age range (HR-/HER2-: 13.4%, HER2+: 13.9%) and the older age group (HR-/HER2-: 10.4%, HER2+: 11.5%). CONCLUSIONS: The findings of our study shed light on potential areas for the improvement of BC screening programs (e.g., extending screening age group, adjusting screening frequency based on molecular subtype risk status) in Hungary and internationally, as well.

13.
Geroscience ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38922379

ABSTRACT

Oncobiosis has emerged as a key contributor to the development, and modulator of the treatment efficacy of cancer. Hereby, we review the modalities through which the oncobiome can support the progression of tumors, and the emerging therapeutic opportunities they present. The review highlights the inherent challenges and limitations faced in sampling and accurately characterizing oncobiome. Additionally, the review underscores the critical need for the standardization of microbial analysis techniques and the consistent reporting of microbiome data. We provide a suggested metadata set that should accompany microbiome datasets from oncological settings so that studies remain comparable and decipherable.

14.
bioRxiv ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38903083

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) manifests diverse molecular subtypes, including the classical/progenitor and basal-like/squamous subtypes, with the latter known for its aggressiveness. We employed integrative transcriptome and metabolome analyses to identify potential genes contributing to the molecular subtype differentiation and its metabolic features. Transcriptome analysis in PDAC patient cohorts revealed downregulation of adrenoceptor alpha 2A (ADRA2A) in the basal-like/squamous subtype, suggesting its potential role as a candidate suppressor of this subtype. Reduced ADRA2A expression was significantly associated with a high frequency of lymph node metastasis, higher pathological grade, advanced disease stage, and decreased survival among PDAC patients. In vitro experiments demonstrated that ADRA2A transgene expression and ADRA2A agonist inhibited PDAC cell invasion. Additionally, ADRA2A-high condition downregulated the basal-like/squamous gene expression signature, while upregulating the classical/progenitor gene expression signature in our PDAC patient cohort and PDAC cell lines. Metabolome analysis conducted on the PDAC cohort and cell lines revealed that elevated ADRA2A levels were associated with suppressed amino acid and carnitine/acylcarnitine metabolism, which are characteristic metabolic profiles of the classical/progenitor subtype. Collectively, our findings suggest that heightened ADRA2A expression induces transcriptome and metabolome characteristics indicative of classical/progenitor subtype with decreased disease aggressiveness in PDAC patients. These observations introduce ADRA2A as a candidate for diagnostic and therapeutic targeting in PDAC.

15.
J Transl Med ; 22(1): 587, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902737

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is a serious global health burden because of its high morbidity and mortality rates. Hypoxia and massive lactate production are hallmarks of the CRC microenvironment. However, the effects of hypoxia and lactate metabolism on CRC have not been fully elucidated. This study aimed to develop a novel molecular subtyping based on hypoxia-related genes (HRGs) and lactate metabolism-related genes (LMRGs) and construct a signature to predict the prognosis of patients with CRC and treatment efficacy. METHODS: Bulk and single-cell RNA-sequencing and clinical data of CRC were downloaded from the TCGA and GEO databases. HRGs and LMRGs were obtained from the Molecular Signatures Database. The R software package DESeq2 was used to perform differential expression analysis. Molecular subtyping was performed using unsupervised clustering. A predictive signature was developed using univariate Cox regression, random forest model, LASSO, and multivariate Cox regression analyses. Finally, the sensitivity of tumor cells to chemotherapeutic agents before and after hypoxia was verified using in vitro experiments. RESULTS: We classified 575 patients with CRC into three molecular subtypes and were able to distinguish their prognoses clearly. The C1 subtype, which exhibits high levels of hypoxia, has a low proportion of CD8 + T cells and a high proportion of macrophages. The expression of immune checkpoint genes is generally elevated in C1 patients with severe immune dysfunction. Subsequently, we constructed a predictive model, the HLM score, which effectively predicts the prognosis of patients with CRC and the efficacy of immunotherapy. The HLM score was validated in GSE39582, GSE106584, GSE17536, and IMvigor210 datasets. Patients with high HLM scores exhibit high infiltration of CD8 + exhausted T cells (Tex), especially terminal Tex, and oxidative phosphorylation (OXPHOS)-Tex in the immune microenvironment. Finally, in vitro experiments confirmed that CRC cell lines were less sensitive to 5-fluorouracil, oxaliplatin, and irinotecan under hypoxic conditions. CONCLUSION: We constructed novel hypoxia- and lactate metabolism-related molecular subtypes and revealed their immunological and genetic characteristics. We also developed an HLM scoring system that could be used to predict the prognosis and efficacy of immunotherapy in patients with CRC.


Subject(s)
Colorectal Neoplasms , Lactic Acid , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Humans , Prognosis , Lactic Acid/metabolism , Gene Expression Regulation, Neoplastic , Male , Hypoxia/genetics , Hypoxia/metabolism , Tumor Microenvironment/genetics , Female , Cell Line, Tumor , Middle Aged , Cell Hypoxia/genetics , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology
16.
J Neurooncol ; 169(1): 119-127, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38740672

ABSTRACT

BACKGROUND: Breast cancer (BC) is the second most common etiology of brain metastases (BrM). We aimed to examine the incidence of BrM among all BC patients presenting to a large tertiary cancer centre over one decade. METHODS: We included all BC patients presenting consecutively between 2009 and 2019 and cross referenced that cohort to a radiotherapy database, identifying patients treated for BrM at any time following their initial presentation. Cumulative incidences (CI) of BrM diagnoses were calculated using death as a competing risk and compared using the Fine-Gray method. Overall survival was estimated using the Kaplan Meier method. RESULTS: We identified 12,995 unique patients. The CI of BrM in patients who initially presented with Stage 0-4 disease was 2.1%, 3.7%, 9.4%, 10.6%, and 28.7%, respectively at 10 years. For 8,951 patients with available molecular subtype data, 6,470 (72%), 961 (11%), 1,023 (11%), and 497 (6%) had hormone-receptor (HR)-positive/ERBB2-, HR-negative/ERBB2-, HR-positive/ERBB2 + , and HR-negative/ERBB2 + disease, respectively; the CI of BrM in each was 7.6%, 25.3%, 24.1%, and 26.6%, at 10 years following BC diagnosis, respectively. Median overall survival (OS) following BC diagnosis and BrM diagnosis was 28 years 95% CI [25, 32] and 10 months 95% CI [9, 12], respectively. CONCLUSIONS: From a large, registry-based study, we observed that patients with ERBB2 + and triple negative BC have the highest incidence of BrM. Our data supports prospective surveillance brain MRI studies. Given advancements in BrM treatment, clinicians should have a low threshold for brain imaging in BC patients with high risk subtypes.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Humans , Brain Neoplasms/secondary , Brain Neoplasms/epidemiology , Brain Neoplasms/mortality , Female , Breast Neoplasms/pathology , Breast Neoplasms/epidemiology , Middle Aged , Incidence , Adult , Aged , Neoplasm Staging , Follow-Up Studies , Receptor, ErbB-2/metabolism , Retrospective Studies , Aged, 80 and over , Survival Rate , Prognosis
17.
Cancer Biol Med ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38752685

ABSTRACT

OBJECTIVE: Triple-negative breast cancer (TNBC) is a heterogeneous and aggressive cancer. Although our previous study classified primary TNBC into four subtypes, comprehensive longitudinal investigations are lacking. METHODS: We assembled a large-scale, real-world cohort comprised of 880 TNBC patients [465 early-stage TNBC (eTNBC) and 415 metastatic TNBC (mTNBC) patients] who were treated at Fudan University Shanghai Cancer Center. The longitudinal dynamics of TNBC subtypes during disease progression were elucidated in this patient cohort. Comprehensive analysis was performed to compare primary and metastatic lesions within specific TNBC subtypes. RESULTS: The recurrence and metastasis rates within 3 years after initial diagnosis in the eTNBC cohort were 10.1% (47/465). The median overall survival (OS) in the mTNBC cohort was 27.2 months [95% confidence interval (CI), 24.4-30.2 months], which indicated a poor prognosis. The prognostic significance of the original molecular subtypes in both eTNBC and mTNBC patients was confirmed. Consistent molecular subtypes were maintained in 77.5% of the patients throughout disease progression with the mesenchymal-like (MES) subtype demonstrating a tendency for subtype transition and brain metastasis. Additionally, a precision treatment strategy based on the metastatic MES subtype of target lesions resulted in improved progression-free survival in the FUTURE trial. CONCLUSIONS: Our longitudinal study comprehensively revealed the clinical characteristics and survival of patients with the original TNBC subtypes and validated the consistency of most molecular subtypes throughout disease progression. However, we emphasize the major importance of repeat pathologic confirmation of the MES subtype.

18.
Front Immunol ; 15: 1369726, 2024.
Article in English | MEDLINE | ID: mdl-38742117

ABSTRACT

Background: The inflammatory response plays an essential role in the tumor microenvironment (TME) of colorectal cancer (CRC) by modulating tumor growth, progression, and response to therapy through the recruitment of immune cells, production of cytokines, and activation of signaling pathways. However, the molecular subtypes and risk score prognostic model based on inflammatory response remain to be further explored. Methods: Inflammation-related genes were collected from the molecular signature database and molecular subtypes were identified using nonnegative matrix factorization based on the TCGA cohort. We compared the clinicopathological features, immune infiltration, somatic mutation profile, survival prognosis, and drug sensitivity between the subtypes. The risk score model was developed using LASSO and multivariate Cox regression in the TCGA cohort. The above results were independently validated in the GEO cohort. Moreover, we explored the biological functions of the hub gene, receptor interacting protein kinase 2 (RIPK2), leveraging proteomics data, in vivo, and in vitro experiments. Results: We identified two inflammation-related subtypes (inflammation-low and inflammation-high) and have excellent internal consistency and stability. Inflammation-high subtype showed higher immune cell infiltration and increased sensitivity to common chemotherapeutic drugs, while inflammation-low subtype may be more suitable for immunotherapy. Besides, the two subtypes differ significantly in pathway enrichment and biological functions. In addition, the 11-gene signature prognostic model constructed from inflammation-related genes showed strong prognostic assessment power and could serve as a novel prognostic marker to predict the survival of CRC patients. Finally, RIPK2 plays a crucial role in promoting malignant proliferation of CRC cell validated by experiment. Conclusions: This study provides new insights into the heterogeneity of CRC and provides novel opportunities for treatment development and clinical decision making.


Subject(s)
Colorectal Neoplasms , Inflammation , Tumor Microenvironment , Humans , Colorectal Neoplasms/immunology , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Tumor Microenvironment/immunology , Prognosis , Inflammation/immunology , Biomarkers, Tumor , Gene Expression Regulation, Neoplastic , Animals , Female , Male , Mice , Gene Expression Profiling , Transcriptome , Cell Line, Tumor
19.
J Transl Med ; 22(1): 414, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693538

ABSTRACT

Primary testicular lymphoma (PTL) is a rare lymphoma predominantly occurring in the elderly male population. It is characterized by a limited response to treatment and a heightened tendency towards relapse. Histologically, approximately 90% of PTL cases are classified as diffuse large B-cell lymphomas (DLBCL). Genetic features of PTL were delineated in a limited scope within several independent studies. Some of the articles which analyzed the genetic characterization of DLBCL have incorporated PTL samples, but these have been constrained by small sample sizes. In addition, there have been an absence of independent molecular typing studies of PTL. This report summarizes the common mutational features, copy number variations (CNVs) and molecular typing of PTL patients, based on whole-exome sequencing (WES) conducted on a cohort of 25 PTL patients. Among them, HLA, CDKN2A and MYD88 had a high mutation frequency. In addition, we found two core mutational characteristics in PTL including mutation in genes linked to genomic instability (TP53 and CDKN2A) and mutation in immune-related genes (HLA, MYD88, CD79B). We performed molecular typing of 25 PTL patients into C1 subtype with predominantly TP53 mutations and C2 subtype with predominantly HLA mutations. Notably, mutations in the TP53 gene predicted a poor outcome in most types of lymphomas. However, the C1 subtype, dominated by TP53 mutations, had a better prognosis compared to the C2 subtype in PTL. C2 subtype exhibited a worse prognosis, aligning with our finding that the mechanism of immune escape in PTL was primarily the deletions of HLA rather than PD-L1/PD-L2 alterations, a contrast to other DLBCLs. Moreover, we calculated the tumor mutation burden (TMB) and identified that TMB can predict prognosis and recurrence rate in PTL. Our study underscores the significance of molecular typing in PTL based on mutational characteristics, which plays a crucial role in prognostication and guiding therapeutic strategies for patients.


Subject(s)
DNA Copy Number Variations , Genomics , Mutation , Testicular Neoplasms , Humans , Male , Testicular Neoplasms/genetics , Testicular Neoplasms/pathology , Testicular Neoplasms/classification , Mutation/genetics , DNA Copy Number Variations/genetics , Aged , Middle Aged , Lymphoma/genetics , Lymphoma/pathology , Lymphoma/classification , Exome Sequencing , Aged, 80 and over , Adult , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Lymphoma, Large B-Cell, Diffuse/classification
20.
Front Genet ; 15: 1365273, 2024.
Article in English | MEDLINE | ID: mdl-38699235

ABSTRACT

Background: Psoriasis represents a multifaceted and debilitating immune-mediated systemic ailment afflicting millions globally. Despite the continuous discovery of biomarkers associated with psoriasis, identifying lysosomal biomarkers, pivotal as cellular metabolic hubs, remains elusive. Methods: We employed a combination of differential expression analysis and weighted gene co-expression network analysis (WGCNA) to initially identify lysosomal genes. Subsequently, to mitigate overfitting and eliminate collinear genes, we applied 12 machine learning algorithms to screen robust lysosomal genes. These genes underwent further refinement through random forest (RF) and Lasso algorithms to ascertain the final hub lysosomal genes. To assess their predictive efficacy, we conducted receiver operating characteristic (ROC) analysis and verified the expression of diagnostic biomarkers at both bulk and single-cell levels. Furthermore, we utilized single-sample gene set enrichment analysis (ssGSEA), CIBERSORT, and Pearson's correlation analysis to elucidate the association between immune phenotypes and hub lysosomal genes in psoriatic samples. Finally, employing the Cellchat algorithm, we explored potential mechanisms underlying the participation of these hub lysosomal genes in cell-cell communication. Results: Functional enrichment analyses revealed a close association between psoriasis and lysosomal functions. Subsequent intersection analysis identified 19 key lysosomal genes, derived from DEGs, phenotypic genes of WGCNA, and lysosomal gene sets. Following the exclusion of collinear genes, we identified 11 robust genes, further refined through RF and Lasso, yielding 3 hub lysosomal genes (S100A7, SERPINB13, and PLBD1) closely linked to disease occurrence, with high predictive capability for disease diagnosis. Concurrently, we validated their relative expression in separate bulk datasets and single-cell datasets. A nomogram based on these hub genes may offer clinical advantages for patients. Notably, these three hub genes facilitated patient classification into two subtypes, namely metabolic-immune subtype 1 and signaling subtype 2. CMap analysis suggested butein and arachidonic fasudil as preferred treatment agents for subtype 1 and subtype 2, respectively. Finally, through Cellchat and correlation analysis, we identified PRSS3-F2R as potentially promoting the expression of hub genes in the psoriasis group, thereby enhancing keratinocyte-fibroblast interaction, ultimately driving psoriasis occurrence and progression. Conclusion: Our study identifies S100A7, SERPINB13, and PLBD1 as potential diagnostic biomarkers, offering promising prospects for more precisely tailored psoriatic immunotherapy designs.

SELECTION OF CITATIONS
SEARCH DETAIL
...