Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.509
Filter
1.
Diagn. tratamento ; 29(3): 118-26, jul-set. 2024.
Article in Portuguese | LILACS-Express | LILACS | ID: biblio-1561640

ABSTRACT

Contexto e objetivo: A transmissão de doenças por mosquitos afeta a população e a economia de todo o mundo. Há um número considerável de doenças que podem ser transmitidas por mosquitos, com destaque para a malária e a dengue, endêmica em regiões tropicais. Evidentemente, medidas preventivas são imprescindíveis para a redução da transmissão. Avaliar as evidências de efetividade das telas de proteção com e sem inseticida para prevenção de doenças transmitidas por mosquitos. Métodos: Trata-se de sinopse baseada em evidências. Procedeu-se à busca por estudos que associavam o uso de telas de proteção contra mosquitos à redução do contágio de doenças transmitidas por mosquitos em três bases de dados: PubMed (1966-2024), Portal BVS (1982-2024) e Epistemonikos (2024) e também no metabuscador de evidências TRIP DATABASE (2024). O desfecho de análise envolveu a efetividade das telas de proteção na redução de doenças transmitidas por mosquitos. Resultados: Foram encontradas 307 citações. Seis estudos (1 revisão sistemática e 5 ensaios clínicos) foram incluídos. Discussão: A maioria dos estudos envolveu a colocação de telas de proteção com inseticida, havendo evidência de alta certeza para redução de mortalidade por malária e redução na entrada de mosquitos nas habitações, mesmo com redes sem inseticida. Conclusões: Embora não haja robustez na evidência da efetividade das telas de proteção sem inseticidas contra mosquitos transmissores de doenças, o que demanda a necessidade de realização de novos estudos prospectivos, parece lícita e benéfica a utilização de telas de proteção em regiões endêmicas para doenças transmitidas por esses vetores.

2.
Malar J ; 23(1): 213, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020392

ABSTRACT

BACKGROUND: Livestock keeping is one of the potential factors related to malaria transmission. To date, the impact of livestock keeping on malaria transmission remains inconclusive, as some studies suggest a zooprophylactic effect while others indicate a zoopotentiation effect. This study assessed the impact of livestock management on malaria transmission risks in rural Tanzania. Additionally, the study explored the knowledge and perceptions of residents about the relationships between livestock keeping and malaria transmission risks in a selected village. METHODS: In a longitudinal entomological study in Minepa village, South Eastern Tanzania, 40 households were randomly selected (20 with livestock, 20 without). Weekly mosquito collection was performed from January to April 2023. Indoor and outdoor collections used CDC-Light traps, Prokopack aspirators, human-baited double-net traps, and resting buckets. A subsample of mosquitoes was analysed using PCR and ELISA for mosquito species identification and blood meal detection. Livestock's impact on mosquito density was assessed using negative binomial GLMMs. Additionally, in-depth interviews explored community knowledge and perceptions of the relationship between livestock keeping and malaria transmission risks. RESULTS: A total of 48,677 female Anopheles mosquitoes were collected. Out of these, 89% were Anopheles gambiae sensu lato (s.l.) while other species were Anopheles funestus s.l., Anopheles pharoensis, Anopheles coustani, and Anopheles squamosus. The findings revealed a statistically significant increase in the overall number of An. gambiae s.l. outdoors (RR = 1.181, 95%CI 1.050-1.862, p = 0.043). Also, there was an increase of the mean number of An. funestus s.l. mosquitoes collected in households with livestock indoors (RR = 2.866, 95%CI: 1.471-5.582, p = 0.002) and outdoors (RR = 1.579,95%CI 1.080-2.865, p = 0.023). The human blood index of Anopheles arabiensis mosquitoes from houses with livestock was less than those without livestock (OR = 0.149, 95%CI 0.110-0.178, p < 0.001). The majority of participants in the in-depth interviews reported a perceived high density of mosquitoes in houses with livestock compared to houses without livestock. CONCLUSION: Despite the potential for zooprophylaxis, this study indicates a higher malaria transmission risk in livestock-keeping communities. It is crucial to prioritize and implement targeted interventions to control vector populations within these communities. Furthermore, it is important to enhance community education and awareness regarding covariates such as livestock that influence malaria transmission.


Subject(s)
Anopheles , Livestock , Malaria , Mosquito Vectors , Rural Population , Tanzania , Animals , Mosquito Vectors/physiology , Anopheles/physiology , Malaria/prevention & control , Malaria/transmission , Rural Population/statistics & numerical data , Female , Humans , Longitudinal Studies , Animal Husbandry/methods , Insect Bites and Stings/prevention & control , Male , Health Knowledge, Attitudes, Practice , Adult
3.
MethodsX ; 13: 102817, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39049926

ABSTRACT

Aedes mosquitoes are important virus vectors. We provide a toolkit for CRISPR-Cas9-editing of difficult-to-knockdown gene previously shown to be refractory to siRNA silencing in mosquito cells, which is pivotal in understanding vector biology, vector competence, host-pathogen interactions and in gene annotations. Starting from database searches of Ae. albopictus and the C6/36 cell line whole genome shotgun sequences for the prohibitin 2 (PHB2) gene, primers were designed to confirm the gene sequence in our laboratory-passaged C6/36 cell line for the correct design and cloning of CRISPR RNA into an insect plasmid vector to create a single guide RNA for the PHB2 gene target. After transfection of this plasmid vector into the C6/36 cells, cell clones selected by puromycin and/or limiting dilution were analyzed for insertions and deletions (INDELs) using PCR, sequencing and computational sequence decomposition. From this, we have identified mono-allelic and bi-allelic knockout cell clones. Using a mono-allelic knockout cell clone as an example, we characterized its INDELs by molecular cloning and computational analysis. Importantly, mono-allelic knockout was sufficient to reduce >80 % of PHB2 expression, which led to phenotypic switching and the propensity to form foci but was insufficient to affect growth rate or to inhibit Zika virus infection.•We provide a toolkit for CRISPR-Cas9-editing of the virus vector, Aedes albopictus C6/36 cell line•We validate this using a difficult-to-knockdown gene prohibitin 2•This toolkit is pivotal in understanding vector biology, vector competence, host-pathogen interactions and in gene annotations.

4.
Insects ; 15(7)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39057250

ABSTRACT

To mitigate pyrethroid resistance in mosquito vectors of emerging and re-emerging human pathogens, there is an urgent need to discover insecticides with novel modes of action. Natural alternatives, such as extracts derived from plants, may serve as substitutes for traditional synthetic insecticides if they prove to be sustainable, cost-effective, and safe for non-target organisms. Hemp (Cannabis sativa) is a sustainable plant known to produce various secondary metabolites with insecticidal properties, including terpenoids and flavonoids. The goal of this study was to assess the larvicidal activity of hemp leaf extract on mosquito larvae from both pyrethroid-susceptible (PS) and pyrethroid-resistant (PR) strains of Aedes aegypti. Another goal was to identify which components of the extract were responsible for any observed larvicidal activity. We found that a methanol extract of hemp leaves induced similar concentration-dependent larvicidal activity against PS (LC50: 4.4 ppm) and PR (LC50: 4.3 ppm) strains within 48 h. Partitioning of the leaf extract between methanol and hexane fractions revealed that full larvicidal activity was restricted to the methanol fraction. Analysis of this fraction by gas chromatography-mass spectrometry and nuclear magnetic resonance showed it to be dominated by cannabidiol (CBD). Larvicidal assays using authentic CBD confirmed this compound was primarily responsible for the toxicity of the hemp leaf extract against both strains. We conclude that hemp leaf extracts and CBD have the potential to serve as viable sources for the development of novel mosquito larvicides.

5.
Insects ; 15(7)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39057260

ABSTRACT

Mosquito species, including the Asian tiger mosquito, can transmit disease-causing pathogens such as dengue, Zika, and chikungunya, with their population dynamics influenced by a variety of factors including climate shifts, human activity, and local environmental conditions. Understanding these dynamics is vital for effective control measures. Our study, conducted in Jardí Botanic Marimurtra from May to November 2021, monitored Ae. albopictus activity using BG-Traps and investigated larval control effects. We employed Generalized Linear Mixed Models to analyze variables like weather, human presence, and larvicidal control on adult mosquito abundance. Adults of Ae. albopictus exhibited a seasonal pattern influenced by temperature but with bimodal peaks linked to cumulative rainfall. Proximity to stagnant water and visitor influx directly affected mosquito captures. Additionally, the effectiveness of larvicide treatments depended on interactions between preceding rainfall levels and treatment timing. Our research emphasizes the significance of studying vector ecology at local scales to enhance the efficacy of control programs and address the escalating burden of vector-borne diseases. Considering the impacts of extreme weather events and climate shifts is essential for the development of robust vector control strategies. Furthermore, our distinct findings serve as a prime illustration of utilizing statistical modeling to gain mechanistic insights into ecological patterns and processes.

6.
Insects ; 15(7)2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39057263

ABSTRACT

Monitoring mosquito populations is essential for controlling mosquito-borne diseases, and the selection of mosquito traps should be tailored to specific surveillance objectives. Here, we tested four mosquito traps for their efficiency and applicability: the Nozawa-style black light trap (BLT), BG-sentinel trap II (BGT), UV-LED Blackhole Plus Mosquito Buster trap (LED), and digital mosquito monitoring system (DMS). The traps were rotated weekly for a 24 h cycle at the same location for 13 weeks. Overall, 1649 female mosquitoes belonging to seven genera and sixteen species were collected by the traps. The traps exhibited differences in both the number of collected individuals and species composition. The BLT showed superior collection efficiency in terms of the number of collected individuals and species evenness, whereas the BGT showed the highest species diversity among all the traps. Thus, the BLT and BGT are the best choices for effective mosquito surveillance based on trap performance. Additionally, despite the relatively low efficiency of the LED and DMS observed in this study, the LED is known to be efficient when used for indoor conditions such as cowsheds, while the DMS has an advanced function that can automatically count the number of mosquitoes. Thus, our findings provide significant guidelines for planning new mosquito surveillance projects in the ROK.

8.
Parasitol Res ; 123(7): 283, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39042222

ABSTRACT

Mansonia uniformis (Diptera: Culicidae) is recognized as a vector of Brugia malayi and has been reported to transmit Wuchereria bancrofti, both causing lymphatic filariasis in humans. This study employed geometric morphometrics (GM) to investigate wing shape variation and analyzed genetic diversity through cytochrome c oxidase subunit 1 (COI) gene analyses in Ma. uniformis populations across Thailand. Wing GM analyses indicated significant differences in wing shape based on Mahalanobis distances among nearly all population pairs (p < 0.05), with no significant correlation between wing shape and geographic distance (r = 0.210, p > 0.05). Genetic analyses identified 63 haplotypes and 49 polymorphic sites, with the overall population exhibiting a nucleotide diversity of 0.006 (± 0.001) and a haplotype diversity of 0.912 (± 0.017). Deviations from neutrality, as indicated by Tajima's D and Fu's FS tests for the overall Ma. uniformis populations in Thailand, were statistically significant and negative, suggesting population expansion (both p < 0.05). Analysis of molecular variance revealed no significant genetic structure when all populations were categorized based on collection sites and geographic regions. However, significant differences in FST values were observed between some populations. These findings enhance our understanding of the geographical and genetic factors influencing Ma. uniformis populations, which are crucial for developing effective control strategies in Thailand.


Subject(s)
DNA, Mitochondrial , Electron Transport Complex IV , Genetic Variation , Wings, Animal , Animals , Thailand , DNA, Mitochondrial/genetics , Wings, Animal/anatomy & histology , Electron Transport Complex IV/genetics , Culicidae/genetics , Culicidae/anatomy & histology , Culicidae/classification , Insect Vectors/genetics , Insect Vectors/anatomy & histology , Haplotypes
9.
Sci Total Environ ; : 174847, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39025142

ABSTRACT

Citizen science has been particularly effective in gathering reliable, timely, large-scale data on the presence and distributions of animal species, including mosquito vectors of human and zoonotic pathogens. This involves the participation of citizen scientists in research projects, with success strongly dependent on the capacity to disseminate project information and engage citizen scientists to contribute their time. Mosquito Alert is a citizen science that aids in the system surveillances of vector mosquitoes. It involves citizen scientists providing expert-validated photos of targeted mosquitoes, along with records of bites and breeding sites. Since 2020 the system has been disseminated throughout Europe. This article uses models to analyze the effect of promotion activities carried out by the Mosquito Alert ITALIA team from October 2020 to December 2022 on the number of citizen scientists recruited and engaged in the project, and their performance in mosquito identification. Results show a high level of citizen scientist recruitment (N > 18.000; 37 % of overall European participants). This was achieved mostly through articles generated by ad hoc press releases detailing the app's goals and functioning. Press releases were more effective when carried out at the beginning and end of the mosquito season and when mosquito's public health significance was emphasized. Despite the high number of records received (N > 20.000), only 30 % of registered participants sent records, and the probability of a participant sending a record dropped off quickly over time after first registering. Among participants who contributed, ~50 % sent 1 record, ~30 % ≥3 and 4 % >10 records. Participants showed good capacity to identify mosquitoes and improve identification skills with app usage. The results will be valuable for anyone interested in evaluating citizen science, as participation and engagement are seldom quantitatively assessed. Our results are also useful for designing dissemination and education strategies in citizen science projects associated with arthropod vector monitoring.

10.
Acta Trop ; 257: 107321, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972559

ABSTRACT

Fragmented landscapes in Mexico, characterized by a mix of agricultural, urban, and native vegetation cover, presents unique ecological characteristics that shape the mosquito community composition and mosquito-borne diseases. The extent to which landscape influences mosquito populations and mosquito-borne diseases is still poorly understood. This work assessed the effect of landscape metrics -agriculture, urban, and native vegetation cover- on mosquito diversity and arbovirus presence in fragmented tropical deciduous forests in Central Mexico during 2021. Among the 21 mosquito species across six genera we identified, Culex quinquefasciatus was the most prevalent species, followed by Aedes aegypti, Ae. albopictus, and Ae. epactius. Notably, areas with denser native vegetation cover displayed higher mosquito species richness, which could have an impact on phenomena such as the dilution effect. Zika and dengue virus were detected in 85% of captured species, with first reports of DENV in several Aedes species and ZIKV in multiple Aedes and Culex species. These findings underscore the necessity of expanding arbovirus surveillance beyond Ae. aegypti and advocate for a deeper understanding of vector ecology in fragmented landscapes to adequately address public health strategies.

11.
Pathog Glob Health ; : 1-11, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972071

ABSTRACT

Climate change may increase the risk of dengue and yellow fever transmission by urban and sylvatic mosquito vectors. Previous research primarily focused on Aedes aegypti and Aedes albopictus. However, dengue and yellow fever have a complex transmission cycle involving sylvatic vectors. Our aim was to analyze how the distribution of areas favorable to both urban and sylvatic vectors could be modified as a consequence of climate change. We projected, to future scenarios, baseline distribution models already published for these vectors based on the favorability function, and mapped the areas where mosquitoes' favorability could increase, decrease or remain stable in the near (2041-2060) and distant (2061-2080) future. Favorable areas for the presence of dengue and yellow fever vectors show little differences in the future compared to the baseline models, with changes being perceptible only at regional scales. The model projections predict dengue vectors expanding in West and Central Africa and in South-East Asia, reaching Borneo. Yellow fever vectors could spread in West and Central Africa and in the Amazon. In some locations of Europe, the models suggest a reestablishment of Ae. aegypti, while Ae. albopictus will continue to find new favorable areas. The results underline the need to focus more on vectors Ae. vittatus, Ae. luteocephalus and Ae. africanus in West and Central sub-Saharan Africa, especially Cameroon, Central Africa Republic, and northern Democratic Republic of Congo; and underscore the importance of enhancing entomological monitoring in areas where populations of often overlooked vectors may thrive as a result of climate changes.

12.
J Econ Entomol ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970358

ABSTRACT

Insects are a promising source of high-quality protein, and the insect farming industry will lead to higher sustainability when it overcomes scaling up, cost effectiveness, and automation. In contrast to insect farming (raising and breeding insects as livestock), wild insect harvesting (collecting agricultural insect pests), may constitute a simple sustainable animal protein supplementation strategy. For wild harvest to be successful sufficient insect biomass needs to be collected while simultaneously avoiding the collection of nontarget insects. We assessed the performance of the USDA Biomass Harvest Trap (USDA-BHT) device to collect flying insect biomass and as a mosquito surveillance tool. The USDA-BHT device was compared to other suction traps commonly used for mosquito surveillance (Centers for Disease Control and Prevention (CDC) light traps, Encephalitis virus surveillance traps, and Biogents Sentinel traps). The insect biomass harvested in the USDA-BHT was statistically higher than the one harvested in the other traps, however the mosquito collections between traps were not statistically significantly different. The USDA-BHT collected some beneficial insects, although it was observed that their collection was minimized at night. These findings coupled with the fact that sorting time to separate the mosquitoes from the other collected insects was significantly longer for the USDA-BHT, indicate that the use of this device for insect biomass collection conflicts with its use as an efficient mosquito surveillance tool. Nevertheless, the device efficiently collected insect biomass, and thus can be used to generate an alternative protein source for animal feed.

13.
Sci Rep ; 14(1): 15421, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38965297

ABSTRACT

Aedes aegypti and Aedes albopictus are the main vectors of arboviruses such as Dengue, Chikungunya and Zika, causing a major impact on global economic and public health. The main way to prevent these diseases is vector control, which is carried out through physical and biological methods, in addition to environmental management. Although chemical insecticides are the most effective strategy, they present some problems such as vector resistance and ecotoxicity. Recent research highlights the potential of the imidazolium salt "1-methyl-3-octadecylimidazolium chloride" (C18MImCl) as an innovative and environmentally friendly solution against Ae. aegypti. Despite its promising larvicidal activity, the mode of action of C18MImCl in mosquito cells and tissues remains unknown. This study aimed to investigate its impacts on Ae. aegypti larvae and three cell lines of Ae. aegypti and Ae. albopictus, comparing the cellular effects with those on human cells. Cell viability assays and histopathological analyses of treated larvae were conducted. Results revealed the imidazolium salt's high selectivity (> 254) for mosquito cells over human cells. After salt ingestion, the mechanism of larval death involves toxic effects on midgut cells. This research marks the first description of an imidazolium salt's action on mosquito cells and midgut tissues, showcasing its potential for the development of a selective and sustainable strategy for vector control.


Subject(s)
Aedes , Imidazoles , Insecticides , Larva , Aedes/drug effects , Animals , Larva/drug effects , Imidazoles/toxicity , Imidazoles/pharmacology , Insecticides/toxicity , Insecticides/pharmacology , Humans , Mosquito Vectors/drug effects , Cell Line , Cell Survival/drug effects , Mosquito Control/methods
14.
BMC Public Health ; 24(1): 1781, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965485

ABSTRACT

BACKGROUND: Recently, Europe has seen an emergence of mosquito-borne viruses (MBVs). Understanding citizens' perceptions of and behaviours towards mosquitoes and MBVs is crucial to reduce disease risk. We investigated and compared perceptions, knowledge, and determinants of citizens' behavioural intentions related to mosquitoes and MBVs in the Netherlands and Spain, to help improve public health interventions. METHODS: Using the validated MosquitoWise survey, data was collected through participant panels in Spain (N = 475) and the Netherlands (N = 438). Health Belief Model scores measuring behavioural intent, knowledge, and information scores were calculated. Confidence Interval-Based Estimation of Relevance was used, together with potential for change indexes, to identify promising determinants for improving prevention measure use. RESULTS: Spanish participants' responses showed slightly higher intent to use prevention measures compared to those of Dutch participants (29.1 and 28.2, respectively, p 0.03). Most participants in Spain (92.2%) and the Netherlands (91.8%) indicated they used at least one prevention measure, but differences were observed in which types they used. More Spanish participants indicated to have received information on mosquitoes and MBVs compared to Dutch participants. Spanish participants preferred health professional information sources, while Dutch participants favoured government websites. Determinants for intent to use prevention measures included "Knowledge", "Reminders to Use Prevention Measures", and "Information" in the Netherlands and Spain. Determinants for repellent use included "Perceived Benefits" and "Cues to Action", with "Perceived Benefits" having a high potential for behavioural change in both countries. "Self-Efficacy" and "Knowledge" were determinants in both countries for breeding site removal. CONCLUSION: This study found differences in knowledge between the Netherlands and Spain but similarities in determinants for intent to use prevention measures, intent to use repellents and intent to remove mosquito breeding sites. Identified determinants can be the focus for future public health interventions to reduce MBV risks.


Subject(s)
Health Knowledge, Attitudes, Practice , Netherlands , Humans , Spain , Cross-Sectional Studies , Adult , Female , Male , Middle Aged , Animals , Young Adult , Culicidae , Mosquito Vectors , Mosquito Control/methods , Adolescent , Intention , Surveys and Questionnaires , Aged
15.
Acta Trop ; 258: 107324, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39009235

ABSTRACT

Mosquito-borne diseases are a known tropical phenomenon. This review was conducted to assess the mecha-nisms through which climate change impacts mosquito-borne diseases in temperate regions. Articles were searched from PubMed, Scopus, Web of Science, and Embase databases. Identification criteria were scope (climate change and mosquito-borne diseases), region (temperate), article type (peer-reviewed), publication language (English), and publication years (since 2015). The WWH (who, what, how) framework was applied to develop the research question and thematic analyses identified the mechanisms through which climate change affects mosquito-borne diseases. While temperature ranges for disease transmission vary per mosquito species, all are viable for temperate regions, particularly given projected temperature increases. Zika, chikungunya, and dengue transmission occurs between 18-34 °C (peak at 26-29 °C). West Nile virus establishment occurs at monthly average temperatures between 14-34.3 °C (peak at 23.7-25 °C). Malaria establishment occurs when the consecutive average daily temperatures are above 16 °C until the sum is above 210 °C. The identified mechanisms through which climate change affects the transmission of mosquito-borne diseases in temperate regions include: changes in the development of vectors and pathogens; changes in mosquito habitats; extended transmission seasons; changes in geographic spread; changes in abundance and behaviors of hosts; reduced abundance of mosquito predators; interruptions to control operations; and influence on other non-climate factors. Process and stochastic approaches as well as dynamic and spatial models exist to predict mosquito population dynamics, disease transmission, and climate favorability. Future projections based on the observed relations between climate factors and mosquito-borne diseases suggest that mosquito-borne disease expansion is likely to occur in temperate regions due to climate change. While West Nile virus is already established in some temperate regions, Zika, dengue, chikungunya, and malaria are also likely to become established over time. Moving forward, more research is required to model future risks by incorporating climate, environmental, sociodemographic, and mosquito-related factors under changing climates.

16.
Sci Rep ; 14(1): 16944, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39043761

ABSTRACT

The present study aimed to assess mosquito species diversity, distribution, and ecological preferences in the Covè, Ouinhi, and Zangnanado communes, Southern Benin. Such information is critical to understand mosquito bio-ecology and to focus control efforts in high-risk areas for vector-borne diseases. Mosquito collections occurred quarterly in 60 clusters between June 2020 and April 2021, using human landing catches. In addition to the seasonal mosquito abundance, Shannon's diversity, Simpson, and Pielou's equitability indices were also evaluated to assess mosquito diversity. Ecological niche models were developed with MaxEnt using environmental variables to assess species distribution. Overall, mosquito density was higher in the wet season than in the dry season in all communes. A significantly higher Shannon's diversity index was also observed in the wet season than in the dry seasons in all communes (p < 0.05). Habitat suitability of An. gambiae s.s., An. coluzzii, Cx. quinquefasciatus and Ma. africana was highly influenced by slope, isothermality, site aspect, elevation, and precipitation seasonality in both wet and dry seasons. Overall, depending on the season, the ecological preferences of the four main mosquito species were variable across study communes. This emphasizes the impact of environmental conditions on mosquito species distribution. Moreover, mosquito populations were found to be more diverse in the wet season compared to the dry season.


Subject(s)
Biodiversity , Ecosystem , Malaria , Mosquito Vectors , Seasons , Animals , Benin , Mosquito Vectors/physiology , Malaria/transmission , Culicidae/classification , Culicidae/physiology , Humans , Anopheles/physiology , Anopheles/classification
17.
Parasit Vectors ; 17(1): 316, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039577

ABSTRACT

BACKGROUND: The vast majority of vector-borne diseases in the USA are associated with mosquitoes or ticks. Mosquito control is often conducted as part of community programs run by publicly-funded entities. By contrast, tick control focuses primarily on individual residential properties and is implemented predominantly by homeowners and the private pest control firms they contract. We surveyed publicly-funded vector control programs (VCPs), presumed to focus mainly on mosquitoes, to determine what tick-related services they currently offer, and their interest in and capacity to expand existing services or provide new ones. METHODS: We distributed a survey to VCPs in the Northeast, Upper Midwest and Pacific Coast states of the USA, where humans are at risk for bites by tick vectors (Ixodes scapularis or Ixodes pacificus) of agents causing Lyme disease and other tick-borne diseases. The data we report are based on responses from 118 VCPs engaged in vector control and with at least some activities focused on ticks. RESULTS: Despite our survey targeting geographic regions where ticks and tick-borne diseases are persistent and increasing public health concerns, only 11% (12/114) of VCPs reported they took direct action to suppress ticks questing in the environment. The most common tick-related activities conducted by the VCPs were tick bite prevention education for the public (70%; 75/107 VCPs) and tick surveillance (48%; 56/116). When asked which services they would most likely include as part of a comprehensive tick management program, tick bite prevention education (90%; 96/107), tick surveillance (89%; 95/107) and tick suppression guidance for the public (74%; 79/107) were the most common services selected. Most VCPs were also willing to consider engaging in activities to suppress ticks on public lands (68%; 73/107), but few were willing to consider suppressing ticks on privately owned land such as residential properties (15%; 16/107). Across all potential tick-related services, funding was reported as the biggest obstacle to program expansion or development, followed by personnel. CONCLUSIONS: Considering the hesitancy of VCPs to provide tick suppression services on private properties and the high risk for tick bites in peridomestic settings, suppression of ticks on residential properties by private pest control operators will likely play an important role in the tick suppression landscape in the USA for the foreseeable future. Nevertheless, VCPs can assist in this effort by providing locally relevant guidelines to homeowners and private pest control firms regarding best practices for residential tick suppression efforts and associated efficacy evaluations. Publicly-funded VCPs are also well positioned to educate the public on personal tick bite prevention measures and to collect tick surveillance data that provide information on the risk of human encounters with ticks within their jurisdictions.


Subject(s)
Tick Control , Animals , United States , Humans , Tick Control/methods , Tick-Borne Diseases/prevention & control , Ixodes/physiology , Surveys and Questionnaires
18.
FASEB J ; 38(14): e23764, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39042395

ABSTRACT

The mosquito, Aedes aegypti, is the principal vector for several arboviruses. The mosquito midgut is the initial tissue that gets infected with an arbovirus acquired along with a blood meal from a vertebrate host. Blood meal ingestion leads to midgut tissue distention thereby increasing the pore size of the surrounding basal lamina. This allows newly synthesized virions to exit the midgut by traversing the distended basal lamina to infect secondary tissues of the mosquito. We conducted a quantitative label-free proteomic time course analysis with saline meal-fed Ae. aegypti females to identify host factors involved in midgut tissue distention. Around 2000 proteins were detected during each of the seven sampling time points and 164 of those were uniquely expressed. Forty-five of 97 differentially expressed proteins were upregulated during the 96-h time course and most of those were involved in cytoskeleton modulation, metabolic activity, and vesicle/vacuole formation. The F-actin-modulating Ae. aegypti (Aa)-gelsolin was selected for further functional studies. Stable knockout of Aa-gelsolin resulted in a mosquito line, which showed distorted actin filaments in midgut-associated tissues likely due to diminished F-actin processing by gelsolin. Zika virus dissemination from the midgut of these mosquitoes was diminished and delayed. The loss of Aa-gelsolin function was associated with an increased induction of apoptosis in midgut tissue indicating an involvement of Aa-gelsolin in apoptotic signaling in mosquitoes. Here, we used proteomics to discover a novel host factor, Aa-gelsolin, which affects the midgut escape barrier for arboviruses in mosquitoes and apoptotic signaling in the midgut.


Subject(s)
Aedes , Arboviruses , Gelsolin , Insect Proteins , Animals , Aedes/virology , Aedes/metabolism , Gelsolin/metabolism , Gelsolin/genetics , Insect Proteins/metabolism , Insect Proteins/genetics , Arboviruses/physiology , Cytoskeleton/metabolism , Female , Mosquito Vectors/virology , Mosquito Vectors/metabolism , Proteomics/methods , Zika Virus/physiology
19.
Mol Syst Biol ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039212

ABSTRACT

Codon optimality refers to the effect that codon composition has on messenger RNA (mRNA) stability and translation level and implies that synonymous codons are not silent from a regulatory point of view. Here, we investigated the adaptation of virus genomes to the host optimality code using mosquito-borne dengue virus (DENV) as a model. We demonstrated that codon optimality exists in mosquito cells and showed that DENV preferentially uses nonoptimal (destabilizing) codons and avoids codons that are defined as optimal (stabilizing) in either human or mosquito cells. Human genes enriched in the codons preferentially and frequently used by DENV are upregulated during infection, and so is the tRNA decoding the nonoptimal and DENV preferentially used codon for arginine. We found that adaptation during single-host passaging in human or mosquito cells results in the selection of synonymous mutations towards DENV's preferred nonoptimal codons that increase virus fitness. Finally, our analyses revealed that hundreds of viruses preferentially use nonoptimal codons, with those infecting a single host displaying an even stronger bias, suggesting that host-pathogen interaction shapes virus-synonymous codon choice.

20.
Methods Mol Biol ; 2824: 15-25, 2024.
Article in English | MEDLINE | ID: mdl-39039403

ABSTRACT

Vector competence assays allow to measure, in the laboratory, the ability of a mosquito to get infected and then retransmit an arbovirus while mimicking natural vector infection route. Aedes aegypti is a major vector of arboviruses worldwide and thus a reference species used in vector competence assays. Rift Valley fever virus (RVFV) is a major public health threat, mostly in Africa, that infects humans and animals through the bite of mosquito vectors. Here, we describe vector competence assay of Aedes aegypti mosquitoes for RVFV, from mosquito exposure to the virus through an infectious artificial blood meal to the measurement of virus prevalence in the mosquito's body, head, and saliva.


Subject(s)
Aedes , Mosquito Vectors , Rift Valley Fever , Rift Valley fever virus , Animals , Aedes/virology , Rift Valley fever virus/physiology , Rift Valley fever virus/isolation & purification , Mosquito Vectors/virology , Rift Valley Fever/transmission , Rift Valley Fever/virology , Saliva/virology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...