Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 248
Filter
1.
Brain Cogn ; 181: 106219, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39241457

ABSTRACT

In overt movement, internal models make predictions about the sensory consequences of a desired movement, generating the appropriate motor commands to achieve that movement. Using available sensory feedback, internal models are updated to allow for movement adaptation and in-turn better performance. Whether internal models are updated during motor imagery, the mental rehearsal of movement, is not well established. To investigate internal modelling during motor imagery, 66 participants were exposed to a leftwards prism shift while performing actual pointing movements (physical practice; PP), imagined pointing movements (motor imagery; MI), or no pointing movements (control). If motor imagery updates internal models, we hypothesized that aftereffects (pointing in the direction opposite the prism shift) would be observed in MI, like that of PP, and unlike that of control. After prism exposure, the magnitude of aftereffects was significant in PP (4.73° ± 1.56°), but not in MI (0.34° ± 0.96°) and control (0.34° ± 1.04°). Accordingly, PP differed significantly from MI and control. Our results show that motor imagery does not update internal models, suggesting that it is not a direct simulation of overt movement. Furthering our understanding of the mechanisms that underlie learning through motor imagery will lead to more effective applications of motor imagery.

2.
J Neurophysiol ; 132(3): 879-889, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39110513

ABSTRACT

Motor adaptation is attenuated when sensory feedback about the movement is uncertain. Although this was initially shown for small visual errors, attenuation seems not to hold when visual errors are larger and the contributions of implicit adaptation are isolated with the error-clamp method, which makes visual feedback task-irrelevant. Here we ask whether adaptation to a similarly large perturbation is attenuated when task-relevant visual feedback is uncertain. In a first experiment, we tested participants on a 30° movement-contingent visuomotor rotation under both low (cursor) and high (cloud of moving dots) visual feedback uncertainty. In line with optimal integration, we found that the early increase in adaptation and final extent of adaptation were reduced with high feedback uncertainty. In a second experiment, we included several blocks of no-feedback trials during the perturbation block to quantify the contribution of implicit adaptation. Results showed that implicit adaptation was smaller with high compared to low feedback uncertainty throughout the perturbation block. The estimated contribution of explicit adaptation was overall small, particularly for high feedback uncertainty. Our results demonstrate an influence of task-relevant visual feedback, and the resulting target errors, on implicit adaptation. We show that our motor system is sensitive to the feedback it receives even for larger error sizes and accordingly adjusts its learning properties when our ability to achieve the task goal is affected.NEW & NOTEWORTHY Motor adaptation is linked to the estimation of our actions. Whereas uncertainty of task-irrelevant visual feedback appears not to influence implicit adaptation for errors beyond a certain size, here we tested whether this is still the case for task-relevant feedback. We show that implicit adaptation is attenuated when task-relevant visual feedback is uncertain, suggesting a dependency on the assessment of not just sensory prediction errors but also target errors.


Subject(s)
Adaptation, Physiological , Feedback, Sensory , Psychomotor Performance , Visual Perception , Humans , Adaptation, Physiological/physiology , Male , Feedback, Sensory/physiology , Female , Adult , Psychomotor Performance/physiology , Uncertainty , Young Adult , Visual Perception/physiology
3.
J Pain ; : 104660, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39182536

ABSTRACT

In this systematic review, we synthesize the literature investigating the effect of experimentally induced pain in the cervical, shoulder, or orofacial regions on cervical neuromuscular and kinematic features. Databases were searched up to November 1, 2023. A total of 29 studies using hypertonic saline injection (n = 27) or glutamate injection (n = 2) as experimental pain models were included. Meta-analyses revealed reduced upper trapezius activation during shoulder flexion/abduction when pain was induced in the upper trapezius (standardized mean difference: -.90, 95% confidence interval: [-1.29; -.51]), splenius capitis (-1.03 [-1.44; -.63]), and supraspinatus (-.63 [-1.25; -.01]), but not in the subacromial space (.22 [-.16; .60]). Furthermore, experimentally induced pain caused a caudal redistribution of activation within the upper trapezius (.96 [.58; 1.34]) but did not change the mediolateral distribution (.11 [-.22; .42]). None of these adaptations persisted after pain resolution. Low-quality evidence supported the absence of an effect of experimental pain on upper trapezius muscle activation during manual dexterity and cervical flexion/extension tasks, as well as on cervical flexor and extensor muscle activation during cervical and jaw tasks. Inconsistent and limited evidence, attributed to the large heterogeneity of task and outcomes, precluded drawing meaningful conclusions about the effects of experimentally induced pain in the cervical region on cervical kinematics. Overall, cervical muscle activation tended to decrease in response to experimentally induced pain, and the decrease of muscle activation depended on the location of the painful stimulus. These adaptations are only partially representative of muscle activation patterns observed in clinical populations. PERSPECTIVE: This systematic review and meta-analysis revealed a reduced or unchanged muscle activation during experimental pain in the cervical, shoulder, or orofacial regions, depending on the task and location of nociceptive stimulation. There was inconsistent evidence on cervical kinematics. These findings enhance our understanding of neuromuscular adaptations to acute experimental pain.

4.
Hum Mov Sci ; 97: 103258, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39116509

ABSTRACT

PURPOSE: To determine whether the application of continuous lateral trunk support forces during walking would improve trunk postural control and improve gait performance in children with CP. MATERIALS AND METHODS: Nineteen children with spastic CP participated in this study (8 boys; mean age 10.6 ± 3.4 years old). Fourteen of them were tested in the following sessions: 1) walking on a treadmill without force for 1-min (baseline), 2) with lateral trunk support force for 7-min (adaptation), and 3) without force for 1-min (post-adaptation). Overground walking pre/post treadmill walking. Five of them were tested using a similar protocol but without trunk support force (i.e., control). RESULTS: Participants from the experimental group showed enhancement in gait phase dependent muscle activation of rectus abdominis in late adaptation period compared to baseline (P = 0.005), which was retained during the post-adaptation period (P = 0.036), reduced variability of the peak trunk oblique angle during the late post-adaptation period (P = 0.023), and increased overground walking speed after treadmill walking (P = 0.032). Participants from the control group showed modest changes in kinematics and EMG during treadmill and overground walking performance. These results suggest that applying continuous lateral trunk support during walking is likely to induce learning of improved trunk postural control in children with CP, which may partially transfer to overground walking, although we do not have a firm conclusion due to the small sample size in the control group.


Subject(s)
Cerebral Palsy , Electromyography , Postural Balance , Torso , Walking , Humans , Male , Child , Cerebral Palsy/physiopathology , Pilot Projects , Female , Walking/physiology , Postural Balance/physiology , Biomechanical Phenomena/physiology , Torso/physiopathology , Torso/physiology , Adolescent , Adaptation, Physiological/physiology , Gait/physiology , Posture/physiology , Exercise Test , Muscle, Skeletal/physiopathology
5.
Sci Rep ; 14(1): 18407, 2024 08 08.
Article in English | MEDLINE | ID: mdl-39117734

ABSTRACT

Most voluntary actions have only few goals, which provides considerable freedom in the selection of action parameters. Recent studies showed that task-irrelevant aspects of the task context influence the motor parameters of the actions in a way which seems to reflect the relative importance of these aspects within the underlying action representation. The present study investigated how the intensity of auditory action-effects affected force exertion patterns in a self-paced action production task. Participants applied force impulses with their index finger on a force-sensitive resistor every three seconds. In four separate conditions, force impulses elicited no sound, or elicited tones with 69, 59 or 49 dB intensity. The results showed that participants applied more force when tone intensity was lower, and when tones were absent. These force differences were also present in the first 60 ms following tone onset, implying that these reflected differences in motor planning. The results are compatible with the notion that actions are represented in terms of their sensory effects, which are weighted differently-presumably to maintain an optimal level of overall auditory and tactile stimulation in the present case. These results hint at the potential usefulness of motor parameters as readouts of action intentions.


Subject(s)
Touch , Humans , Male , Female , Adult , Young Adult , Touch/physiology , Acoustic Stimulation , Psychomotor Performance/physiology , Fingers/physiology , Auditory Perception/physiology
6.
J Appl Physiol (1985) ; 137(3): 629-645, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39024408

ABSTRACT

Neuromuscular fatigue (NMF) induces temporary reductions in muscle force production capacity, affecting various aspects of motor function. Although studies have extensively explored NMF's impact on muscle activation patterns and postural stability, its influence on motor adaptation processes remains less understood. This article investigates the effects of localized NMF on motor adaptation during upright stance, focusing on reaching tasks. Using a force-field perturbation paradigm, participants performed reaching movements while standing upright before and after inducing NMF in the ankle dorsiflexor muscles. Results revealed that despite maintained postural stability, participants in the NMF group exhibited larger movement errors during reaching tasks, suggesting impaired motor adaptation. This was evident in both initial and terminal phases of adaptation, indicating a disruption in learning processes rather than a decreased adaptation rate. Analysis of electromyography activation patterns highlighted distinct strategies between groups, with the NMF group showing altered activation of both fatigued and nonfatigued muscles. In addition, differences in coactivation patterns suggested compensatory mechanisms to prioritize postural stability despite NMF-induced disruptions. These findings underscore the complex interplay between NMF, motor adaptation, and postural control, suggesting a potential role for central nervous system mechanisms in mediating adaptation processes. Understanding these mechanisms has implications for sports performance, rehabilitation, and motor skill acquisition, where NMF may impact the learning and retention of motor tasks. Further research is warranted to elucidate the transient or long-term effects of NMF on motor adaptation and its implications for motor rehabilitation interventions.NEW & NOTEWORTHY We assessed motor adaptation during force-field reaching following exercise-induced neuromuscular fatigue (NMF) on postural muscles. NMF impaired adaptation in performance. Similarly, diverging activation strategies were observed in the muscles. No effects were seen on measures of postural control. These results suggest the remodulation of motor commands to the muscles in the presence of NMF, which may be relevant in settings where participants could be exposed to NMF while learning, such as sports and rehabilitation.


Subject(s)
Adaptation, Physiological , Electromyography , Muscle Fatigue , Muscle, Skeletal , Postural Balance , Posture , Humans , Muscle Fatigue/physiology , Male , Muscle, Skeletal/physiology , Adaptation, Physiological/physiology , Postural Balance/physiology , Female , Young Adult , Adult , Posture/physiology , Electromyography/methods , Lower Extremity/physiology , Movement/physiology
7.
J Mot Behav ; 56(6): 678-685, 2024.
Article in English | MEDLINE | ID: mdl-39007917

ABSTRACT

This study focused on explicit instruction and evaluated the differences in task performance between participants who were instructed to employ the change and those who were not. Ninety-three healthy young adults were assigned to the accurate information group (AG; n = 31), misinformation group (MG; n = 31), and non-information group (NG; n = 31). All participants manipulated a mouse to track a moving target on a screen with a cursor. The cursor was rotated to 60° in the clockwise direction from the actual mouse position during the 1st to 5th blocks (i.e., motor adaptation task). Subsequently, in the 6th block (i.e., transfer task), we gradually changed the angle of rotation from 60° to 80° to prevent from noticing the change. Participants in the AG were instructed accurate experimental information. Participants in the MG were instructed that the angle of rotation was 60° during the 1st to 6th blocks. Participants in the NG were instructed to manipulate the cursor movement only. The results indicated that an average error distance in the AG was significantly lower than that in the NG in the 6th block. This study suggested that explicit instruction may impair the transfer of motor adaptation in this setting.


Subject(s)
Adaptation, Physiological , Psychomotor Performance , Transfer, Psychology , Upper Extremity , Humans , Young Adult , Female , Male , Transfer, Psychology/physiology , Adaptation, Physiological/physiology , Psychomotor Performance/physiology , Upper Extremity/physiology , Adult , Movement/physiology
8.
J Neurophysiol ; 132(3): 770-780, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39081210

ABSTRACT

Implicit sensorimotor adaptation keeps our movements well calibrated amid changes in the body and environment. We have recently postulated that implicit adaptation is driven by a perceptual error: the difference between the desired and perceived movement outcome. According to this perceptual realignment model, implicit adaptation ceases when the perceived movement outcome-a multimodal percept determined by a prior belief conveying the intended action, the motor command, and feedback from proprioception and vision-is aligned with the desired movement outcome. Here, we examined the role of proprioception in implicit motor adaptation and perceived movement outcome by examining individuals who experience deafferentation (i.e., individuals with impaired proprioception and touch). We used a modified visuomotor rotation task designed to isolate implicit adaptation and probe perceived movement outcomes throughout the experiment. Surprisingly, both implicit adaptation and perceived movement outcome were minimally impacted by chronic deafferentation, posing a challenge to the perceptual realignment model of implicit adaptation.NEW & NOTEWORTHY We tested six individuals with chronic somatosensory deafferentation on a novel task that isolates implicit sensorimotor adaptation and probes perceived movement outcome. Strikingly, both implicit motor adaptation and perceptual movement outcome were not significantly impacted by chronic deafferentation, posing a challenge for theoretical models of adaptation that involve proprioception.


Subject(s)
Adaptation, Physiological , Proprioception , Psychomotor Performance , Humans , Proprioception/physiology , Adaptation, Physiological/physiology , Male , Female , Psychomotor Performance/physiology , Adult , Middle Aged , Movement/physiology , Aged , Somatosensory Disorders/physiopathology
9.
J Neurophysiol ; 132(2): 347-361, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38919148

ABSTRACT

Recent work has shown the fundamental role that cognitive strategies play in visuomotor adaptation. Although algorithmic strategies, such as mental rotation, are flexible and generalizable, they are computationally demanding. To avoid this computational cost, people can instead rely on memory retrieval of previously successful visuomotor solutions. However, such a strategy is likely subject to stimulus-response associations and rely heavily on working memory. In a series of five experiments, we sought to estimate the constraints in terms of capacity and precision of working memory retrieval for visuomotor adaptation. This was accomplished by leveraging different variations of visuomotor item-recognition and visuomotor rotation tasks where we associated unique rotations with specific targets in the workspace and manipulated the set size (i.e., number of rotation-target associations). Notably, from experiment 1 to 4, we found key signatures of working memory retrieval and not mental rotation. In particular, participants were less accurate and slower for larger set sizes and less recent items. Using a Bayesian latent-mixture model, we found that such decrease in performance was the result of increasing guessing behavior and less precise memories. In addition, we estimated that participants' working memory capacity was limited to two to five items, after which guessing increasingly dominated performance. Finally, in experiment 5, we showed how the constraints observed across experiments 1 to 4 can be overcome when relying on long-term memory retrieval. Our results point to the opportunity of studying other sources of memories where visuomotor solutions can be stored (e.g., episodic memories) to achieve successful adaptation.NEW & NOTEWORTHY We show that humans can adapt to feedback perturbations in different variations of the visuomotor rotation task by retrieving the successful solutions from working memory. In addition, using a Bayesian latent-mixture model, we reveal that guessing and low-precision memories are both responsible for the decrease in participants' performance as the number of solutions to memorize increases. These constraints can be overcome by relying on long-term memory retrieval resulting from extended practice with the visuomotor solutions.


Subject(s)
Memory, Short-Term , Mental Recall , Psychomotor Performance , Humans , Memory, Short-Term/physiology , Psychomotor Performance/physiology , Male , Female , Adult , Mental Recall/physiology , Young Adult , Bayes Theorem , Adaptation, Physiological/physiology , Rotation , Visual Perception/physiology
10.
eNeuro ; 11(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38871456

ABSTRACT

Individuals exhibit significant variability in their ability to adapt locomotor skills, with some adapting quickly and others more slowly. Differences in brain activity likely contribute to this variability, but direct neural evidence is lacking. We investigated individual differences in electrocortical activity that led to faster locomotor adaptation rates. We recorded high-density electroencephalography while young, neurotypical adults adapted their walking on a split-belt treadmill and grouped them based on how quickly they restored their gait symmetry. Results revealed unique spectral signatures within the posterior parietal, bilateral sensorimotor, and right visual cortices that differ between fast and slow adapters. Specifically, fast adapters exhibited lower alpha power in the posterior parietal and right visual cortices during early adaptation, associated with quicker attainment of steady-state step length symmetry. Decreased posterior parietal alpha may reflect enhanced spatial attention, sensory integration, and movement planning to facilitate faster locomotor adaptation. Conversely, slow adapters displayed greater alpha and beta power in the right visual cortex during late adaptation, suggesting potential differences in visuospatial processing. Additionally, fast adapters demonstrated reduced spectral power in the bilateral sensorimotor cortices compared with slow adapters, particularly in the theta band, which may suggest variations in perception of the split-belt perturbation. These findings suggest that alpha and beta oscillations in the posterior parietal and visual cortices and theta oscillations in the sensorimotor cortex are related to the rate of gait adaptation.


Subject(s)
Adaptation, Physiological , Electroencephalography , Gait , Humans , Male , Adaptation, Physiological/physiology , Young Adult , Female , Gait/physiology , Adult
11.
J Neurophysiol ; 131(5): 948-949, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38690997
12.
J Neurophysiol ; 131(6): 1250-1259, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38717333

ABSTRACT

Locomotor perturbations provide insights into humans' response to motor errors. We investigated the differences in motor adaptation and muscle cocontraction between young and older adults during perturbed-arm and -leg recumbent stepping. We hypothesized that besides prolonged adaptation due to use-dependent learning, older adults would exhibit greater muscle cocontraction than young adults in response to the perturbations. Perturbations were brief increases in resistance applied during each stride at the extension onset or midextension of the left or right leg. Seventeen young adults and eleven older adults completed four 10-min perturbed stepping tasks. Subjects were instructed to follow a visual pacing cue, step smoothly, and use all their limbs to drive the stepper. Results showed that young and older adults did not decrease their errors with more perturbation experience, and errors did not wash out after perturbations were removed. Interestingly, older adults consistently had smaller motor errors than young adults in response to the perturbations. Older adults used fewer muscles to drive the stepper and had greater cocontraction than young adults. The results suggest that, despite similar motor error responses, young and older adults use distinctive muscle recruitment patterns to perform the motor task. Age-related motor strategies help track motor changes across the human life span and are a baseline for rehabilitation and performance assessment.NEW & NOTEWORTHY Older adults often demonstrate greater cocontraction and motor errors than young adults in response to motor perturbations. We demonstrated that older adults reduced their motor errors more than young adults with brief perturbations during recumbent stepping while maintaining greater muscle cocontraction. In doing so, older adults largely used one muscle pair to drive the stepper, tibialis anterior and soleus, whereas young adults used all muscles. These two muscles are crucial for maintaining upright balance.


Subject(s)
Muscle, Skeletal , Humans , Male , Female , Aged , Muscle, Skeletal/physiology , Adult , Young Adult , Aging/physiology , Adaptation, Physiological/physiology , Electromyography , Psychomotor Performance/physiology , Locomotion/physiology , Middle Aged , Sitting Position
13.
J Neuroeng Rehabil ; 21(1): 81, 2024 05 18.
Article in English | MEDLINE | ID: mdl-38762552

ABSTRACT

BACKGROUND: Proprioceptive impairments are common after stroke and are associated with worse motor recovery and poor rehabilitation outcomes. Motor learning may also be an important factor in motor recovery, and some evidence in healthy adults suggests that reduced proprioceptive function is associated with reductions in motor learning. It is unclear how impairments in proprioception and motor learning relate after stroke. Here we used robotics and a traditional clinical assessment to examine the link between impairments in proprioception after stroke and a type of motor learning known as visuomotor adaptation. METHODS: We recruited participants with first-time unilateral stroke and controls matched for overall age and sex. Proprioceptive impairments in the more affected arm were assessed using robotic arm position- (APM) and movement-matching (AMM) tasks. We also assessed proprioceptive impairments using a clinical scale (Thumb Localization Test; TLT). Visuomotor adaptation was assessed using a task that systematically rotated hand cursor feedback during reaching movements (VMR). We quantified how much participants adapted to the disturbance and how many trials they took to adapt to the same levels as controls. Spearman's rho was used to examine the relationship between proprioception, assessed using robotics and the TLT, and visuomotor adaptation. Data from healthy adults were used to identify participants with stroke who were impaired in proprioception and visuomotor adaptation. The independence of impairments in proprioception and adaptation were examined using Fisher's exact tests. RESULTS: Impairments in proprioception (58.3%) and adaptation (52.1%) were common in participants with stroke (n = 48; 2.10% acute, 70.8% subacute, 27.1% chronic stroke). Performance on the APM task, AMM task, and TLT scores correlated weakly with measures of visuomotor adaptation. Fisher's exact tests demonstrated that impairments in proprioception, assessed using robotics and the TLT, were independent from impairments in visuomotor adaptation in our sample. CONCLUSION: Our results suggest impairments in proprioception may be independent from impairments in visuomotor adaptation after stroke. Further studies are needed to understand factors that influence the relationship between motor learning, proprioception and other rehabilitation outcomes throughout stroke recovery.


Subject(s)
Adaptation, Physiological , Proprioception , Psychomotor Performance , Robotics , Stroke Rehabilitation , Stroke , Humans , Male , Female , Proprioception/physiology , Middle Aged , Adaptation, Physiological/physiology , Stroke/physiopathology , Stroke/complications , Stroke Rehabilitation/methods , Aged , Psychomotor Performance/physiology , Adult
14.
Schizophr Res ; 267: 291-300, 2024 May.
Article in English | MEDLINE | ID: mdl-38599141

ABSTRACT

Schizophrenia is a mental health disorder that often includes psychomotor disturbances, impacting how individuals adjust their motor output based on the cause of motor errors. While previous motor adaptation studies on individuals with schizophrenia have largely focused on large and consistent perturbations induced by abrupt experimental manipulations, such as donning prism goggles, the adaptation process to random perturbations, either caused by intrinsic motor noise or external disturbances, has not been examined - despite its ecological relevance. Here, we used a unified behavioral task paradigm to examine motor adaptation to perturbations of three causal structures among individuals in the remission stage of schizophrenia, youth with ultra-high risk of psychosis, adults with active symptoms, and age-matched controls. Results showed that individuals with schizophrenia had reduced trial-by-trial adaptation and large error variance when adapting to their own motor noise. When adapting to random but salient perturbations, they showed intact adaptation and normal causal inference of errors. This contrasted with reduced adaptation to large yet consistent perturbations, which could reflect difficulties in forming cognitive strategies rather than the often-assumed impairments in procedural learning or sense of agency. Furthermore, the observed adaptation effects were correlated with the severity of positive symptoms across the diagnosis groups. Our findings suggest that individuals with schizophrenia face challenges in accommodating intrinsic perturbations when motor errors are ambiguous but adapt with intact causal attribution when errors are salient.


Subject(s)
Adaptation, Physiological , Psychomotor Performance , Schizophrenia , Humans , Schizophrenia/physiopathology , Male , Female , Adult , Adaptation, Physiological/physiology , Young Adult , Psychomotor Performance/physiology , Adolescent , Psychotic Disorders/physiopathology
15.
PeerJ ; 12: e16887, 2024.
Article in English | MEDLINE | ID: mdl-38436019

ABSTRACT

Groupitizing is a well-established strategy in numerosity perception that enhances speed and sensory precision. Building on the ATOM theory, Anobile proposed the sensorimotor numerosity system, which posits a strong link between number and action. Previous studies using motor adaptation technology have shown that high-frequency motor adaptation leads to underestimation of numerosity perception, while low-frequency adaptation leads to overestimation. However, the impact of motor adaptation on groupitizing, and whether visual motion adaptation produces similar effects, remain unclear. In this study, we investigate the persistence of the advantage of groupitizing after motor adaptation and explore the effects of visual motion adaptation. Surprisingly, our findings reveal that proprioceptive motor adaptation weakens the advantage of groupitizing, indicating a robust effect of motor adaptation even when groupitizing is employed. Moreover, we observe a bidirectional relationship, as groupitizing also weakens the adaptation effect. These results highlight the complex interplay between motor adaptation and groupitizing in numerosity perception. Furthermore, our study provides evidence that visual motion adaptation also has an adaptation effect, but does not fully replicate the effects of proprioceptive motor adaptation on groupitizing. In conclusion, our research underscores the importance of groupitizing as a valuable strategy in numerosity perception, and sheds light on the influence of motion adaptation on this strategy.


Subject(s)
Proprioception , Technology , Motion , Perception
16.
Neuroscience ; 549: 24-41, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38484835

ABSTRACT

Accurate movements of the upper limb require the integration of various forms of sensory feedback (e.g., visual and postural information). The influence of these different sensory modalities on reaching movements has been largely studied by assessing endpoint errors after selectively perturbing sensory estimates of hand location. These studies have demonstrated that both vision and proprioception make key contributions in determining the reach endpoint. However, their influence on motor output throughout movement remains unclear. Here we used separate perturbations of posture and visual information to dissociate their effects on reaching dynamics and temporal force profiles during point-to-point reaching movements. We tested human subjects (N = 32) and found that vision and posture modulate select aspects of reaching dynamics. Specifically, altering arm posture influences the relationship between temporal force patterns and the motion-state variables of hand position and acceleration, whereas dissociating visual feedback influences the relationship between force patterns and the motion-state variables of velocity and acceleration. Next, we examined the extent these baseline motion-state relationships influence motor adaptation based on perturbations of movement dynamics. We trained subjects using a velocity-dependent force-field to probe the extent arm posture-dependent influences persisted after exposure to a motion-state dependent perturbation. Changes in the temporal force profiles due to variations in arm posture were not reduced by adaptation to novel movement dynamics, but persisted throughout learning. These results suggest that vision and posture differentially influence the internal estimation of limb state throughout movement and play distinct roles in forming the response to external perturbations during movement.


Subject(s)
Adaptation, Physiological , Feedback, Sensory , Movement , Posture , Psychomotor Performance , Humans , Male , Feedback, Sensory/physiology , Female , Movement/physiology , Posture/physiology , Adaptation, Physiological/physiology , Adult , Young Adult , Psychomotor Performance/physiology , Biomechanical Phenomena/physiology , Arm/physiology , Proprioception/physiology , Visual Perception/physiology
17.
Sensors (Basel) ; 24(4)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38400224

ABSTRACT

Most people with multiple sclerosis (PwMS) experience significant gait asymmetries between their legs during walking, leading to an increased risk of falls. Split-belt treadmill training, where the speed of each limb is controlled independently, alters each leg's stepping pattern and can improve gait symmetry in PwMS. However, the biomechanical mechanisms of this adaptation in PwMS remain poorly understood. In this study, 32 PwMS underwent a 10 min split-belt treadmill adaptation paradigm with the more affected (MA) leg moving twice as fast as the less affected (LA) leg. The most noteworthy biomechanical adaptation observed was increased peak propulsion asymmetry between the limbs. A kinematic analysis revealed that peak dorsiflexion asymmetry and the onset of plantarflexion in the MA limb were the primary contributors to the observed increases in peak propulsion. In contrast, the joints in the LA limb underwent only immediate reactive adjustments without subsequent adaptation. These findings demonstrate that modulation during gait adaptation in PwMS occurs primarily via propulsive forces and joint motions that contribute to propulsive forces. Understanding these distinct biomechanical changes during adaptation enhances our grasp of the rehabilitative impact of split-belt treadmill training, providing insights for refining therapeutic interventions aimed at improving gait symmetry.


Subject(s)
Multiple Sclerosis , Humans , Adaptation, Physiological , Walking , Gait , Mechanical Phenomena , Exercise Test , Biomechanical Phenomena
18.
J Neurophysiol ; 131(3): 562-575, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38324891

ABSTRACT

The ability to adapt our locomotion in a feedforward (i.e., "predictive") manner is crucial for safe and efficient walking behavior. Equally important is the ability to quickly deadapt and update behavior that is no longer appropriate for the given context. It has been suggested that anxiety induced via postural threat may play a fundamental role in disrupting such deadaptation. We tested this hypothesis, using the "broken escalator" phenomenon: Fifty-six healthy young adults walked onto a stationary walkway ("BEFORE" condition, 5 trials), then onto a moving walkway akin to an airport travelator ("MOVING" condition, 10 trials), and then again onto the stationary walkway ("AFTER" condition, 5 trials). Participants completed all trials while wearing a virtual reality headset, which was used to induce postural threat-related anxiety (raised clifflike drop at the end of the walkway) during different phases of the paradigm. We found that performing the locomotor adaptation phase in a state of increased threat disrupted subsequent deadaptation during AFTER trials: These participants displayed anticipatory muscular activity as if expecting the platform to move and exhibited inappropriate anticipatory forward trunk movement that persisted during multiple AFTER trials. In contrast, postural threat induced during AFTER trials did not affect behavioral or neurophysiological outcomes. These findings highlight that actions learned in the presence of postural threat-induced anxiety are strengthened, leading to difficulties in deadapting these behaviors when no longer appropriate. Given the associations between anxiety and persistent maladaptive gait behaviors (e.g., "overly cautious" gait, functional gait disorders), the findings have implications for the understanding of such conditions.NEW & NOTEWORTHY Safe and efficient locomotion frequently requires movements to be adapted in a feedforward (i.e., "predictive") manner. These adaptations are not always correct, and thus inappropriate behavior must be quickly updated. Here we showed that increased threat disrupts this process. We found that locomotor actions learned in the presence of postural threat-induced anxiety are strengthened, subsequently impairing one's ability to update (or "deadapt") these actions when they are no longer appropriate for the current context.


Subject(s)
Learning , Walking , Young Adult , Humans , Walking/physiology , Learning/physiology , Gait/physiology , Locomotion/physiology , Anxiety , Postural Balance/physiology
19.
J Neurophysiol ; 131(4): 723-737, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38416720

ABSTRACT

The brain engages the processes of multisensory integration and recalibration to deal with discrepant multisensory signals. These processes consider the reliability of each sensory input, with the more reliable modality receiving the stronger weight. Sensory reliability is typically assessed via the variability of participants' judgments, yet these can be shaped by factors both external and internal to the nervous system. For example, motor noise and participant's dexterity with the specific response method contribute to judgment variability, and different response methods applied to the same stimuli can result in different estimates of sensory reliabilities. Here we ask how such variations in reliability induced by variations in the response method affect multisensory integration and sensory recalibration, as well as motor adaptation, in a visuomotor paradigm. Participants performed center-out hand movements and were asked to judge the position of the hand or rotated visual feedback at the movement end points. We manipulated the variability, and thus the reliability, of repeated judgments by asking participants to respond using either a visual or a proprioceptive matching procedure. We find that the relative weights of visual and proprioceptive signals, and thus the asymmetry of multisensory integration and recalibration, depend on the reliability modulated by the judgment method. Motor adaptation, in contrast, was insensitive to this manipulation. Hence, the outcome of multisensory binding is shaped by the noise introduced by sensorimotor processing, in line with perception and action being intertwined.NEW & NOTEWORTHY Our brain tends to combine multisensory signals based on their respective reliability. This reliability depends on sensory noise in the environment, noise in the nervous system, and, as we show here, variability induced by the specific judgment procedure.


Subject(s)
Judgment , Visual Perception , Humans , Judgment/physiology , Visual Perception/physiology , Reproducibility of Results , Hand/physiology , Movement/physiology , Proprioception/physiology
20.
Scand J Med Sci Sports ; 34(1): e14509, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37803936

ABSTRACT

INTRODUCTION: When performing an exercise or a functional test, pain that is evoked by movement or muscle contraction could be a stronger stimulus for changing how individuals move compared to tonic pain. We investigated whether the decrease in muscle force production is larger when experimentally-induced knee pain is directly associated to the torque produced (movement-evoked) compared to a constant painful stimulation (tonic). METHODS: Twenty-one participants performed three isometric knee extension maximal voluntary contractions without pain (baseline), during pain, and after pain. Knee pain was induced using sinusoidal electrical stimuli at 10 Hz over the infrapatellar fat pad, applied continuously or modulated proportionally to the knee extension torque. Peak torque and contraction duration were averaged across repetitions and normalized to baseline. RESULTS: During tonic pain, participants reported lower pain intensity during the contraction than at rest (p < 0.001), whereas pain intensity increased with contraction during movement-evoked pain (p < 0.001). Knee extension torque decreased during both pain conditions (p < 0.001), but a larger reduction was observed during movement-evoked compared to tonic pain (p < 0.001). Participants produced torque for longer during tonic compared to movement-evoked pain (p = 0.005). CONCLUSION: Our results indicate that movement-evoked pain was a more potent stimulus to reduce knee extension torque than tonic pain. The longer contraction time observed during tonic pain may be a result of a lower perceived pain intensity during muscle contraction. Overall, our results suggest different motor adaptation to tonic and movement-evoked pain and support the notion that motor adaptation to pain is a purposeful strategy to limit pain. This mechanistic evidence suggests that individuals experiencing prevalently tonic or movement-evoked pain may exhibit different motor adaptations, which may be important for exercise prescription.


Subject(s)
Muscle Contraction , Muscle, Skeletal , Humans , Muscle, Skeletal/physiology , Muscle Contraction/physiology , Knee Joint/physiology , Knee/physiology , Isometric Contraction/physiology , Pain , Torque , Electric Stimulation/methods , Electromyography/methods
SELECTION OF CITATIONS
SEARCH DETAIL