Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.007
Filter
1.
Data Brief ; 54: 110281, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38962203

ABSTRACT

This manuscript presents a mulberry leaf dataset collected from five provinces within three regions in Thailand. The dataset contains ten categories of mulberry leaves. We proposed this dataset due to the challenges of classifying leaf images taken in natural environments arising from high inter-class similarity and variations in illumination and background conditions (multiple leaves from a mulberry tree and shadows appearing in the leaf images). We highlight that our research team recorded mulberry leaves independently from various perspectives during our data acquisition using multiple camera types. The mulberry leaf dataset can serve as vital input data passed to computer vision algorithms (conventional deep learning and vision transformer algorithms) for creating image recognition systems. The dataset will allow other researchers to propose novel computer vision techniques to approach mulberry recognition challenges.

2.
Food Chem ; 458: 140228, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38964110

ABSTRACT

The present study found for the first time that phenolic glycosides were an important material basis for mulberry leaves to inhibit lipase. The corresponding IC50 for hyperoside, rutin, astragalin and quercetin were 68, 252, 385 and 815 µg/mL respectively. The inhibitory effect was ranked as monoglycosides > phenolic hydroxyl groups > disaccharides on the benzone ring. Hyperoside bound to lipase in competitive inhibition type with one binding site, while the others bound to lipase in a mixed inhibition type by two similar sites. All four compounds altered the microenvironment and secondary conformation of lipase through static quenching. The docking score, stability, and binding energy were consistent with the compound inhibitory activity. The main binding between compounds and lipase amino acid residues were spontaneously though hydrophobic interactions and hydrogen bonding. The strong hydrogen bonds formed with SER-152 inside the lipase pocket, might be important for the strong inhibitory activity of hyperoside.

3.
Open Life Sci ; 19(1): 20220886, 2024.
Article in English | MEDLINE | ID: mdl-38947764

ABSTRACT

Mulberry is a common crop rich in flavonoids, and its leaves (ML), fruits (M), and branches (Ramulus Mori, RM) have medicinal value. In the present study, a total of 118 flavonoid metabolites (47 flavone, 23 flavonol, 16 flavonoid, 8 anthocyanins, 8 isoflavone, 14 flavanone, and 2 proanthocyanidins) and 12 polyphenols were identified by ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. The most abundant in ML were 8-C-hexosyl-hesperetin O-hexoside and astragalin, the most abundant in M were 8-C-hexosyl-hesperetin O-hexoside and naringenin, and the most abundant in RM were cyanidin 3-O-galactoside and gallocatechin-gallocatechin. The total flavonoid compositions of ML and RM were essentially the same, but the contents of flavonoid metabolite in more than half of them were higher than those in M. Compared with ML, the contents of flavone and flavonoid in RM and M were generally down-regulated. Each tissue part had a unique flavonoid, which could be used as a marker to distinguish different tissue parts. In this study, the differences between flavonoid metabolite among RM, ML, and M were studied, which provided a theoretical basis for making full use of mulberry resources.

4.
Foods ; 13(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38890966

ABSTRACT

People of all age groups consume cookies every day. Consumers' preferences for cookies supplemented with functional plant raw materials have recently increased. Therefore, this research aimed to investigate the influence of a mulberry leaf additive on the proximate and mineral compositions, total phenolic and total chlorophyll content, antioxidant activity, and the hardness and color properties of butter cookies. Wheat and rice flour butter cookies were prepared by replacing the flour with mulberry leaf powder at 0, 4, 8, and 12% (w/w). The results revealed that the investigated chemical and physical characteristics of butter cookies depend on the flour used (rice or wheat) and the addition of mulberry leaf powder. Wheat and rice flour cookies with 12% mulberry leaf powder had the significantly highest contents of fiber (20.34 and 20.23%, respectively), ash (1.73 and 1.75%, respectively), K (170.22 and 160.22 mg 100 g-1, respectively), and Ca (170.45 and 160.68 mg 100 g-1, respectively). The rice flour cookies enriched with 12% leaf powder had the greatest amounts of total phenolics (1.48 mg 100 g-1), Zn (12.25 mg kg-1), Mn (6.28 mg kg-1), Cu (1.95 mg kg-1), and antioxidant activity (67.98%). However, the wheat cookies without mulberry leaf powder contained the most B (9.12 mg kg-1), while the no-added rice cookies contained the most Fe (14.30 mg kg-1). Replacing flour with leaf powder increased the cookies' hardness and decreased their lightness. In conclusion, enriching butter cookies with freeze-dried mulberry leaves can improve their nutritional value and antioxidant activity.

5.
Int J Mol Sci ; 25(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38892365

ABSTRACT

Morus sp. (mulberry) has a long tradition of use as a medicinal treatment, including for cardiovascular disease and type 2 diabetes, being shown to have antioxidant properties and to promote wound healing. Extracellular vesicles (EVs) are sub-micron, membrane-enclosed particles that were first identified in mammalian bodily fluids. EV-like particles have been described in plants (PDVs) and shown to have similar characteristics to mammalian EVs. We hypothesised that some of the health benefits previously attributed to the fruit of Morus sp. could be due to the release of PDVs. We isolated PDVs from Morus nigra and Morus alba via ultracentrifugation and incubated THP-1 monocytes, differentiated THP-1 macrophages, or HMEC-1 endothelial cells with pro-oxidant compounds DMNQ (THP-1) and glucose oxidase (HMEC-1) or lipopolysaccharide (LPS) in the presence of different fractions of mulberry EVs. Mulberry EVs augmented ROS production with DMNQ in THP-1 and caused the downregulation of ROS in HMEC-1. Mulberry EVs increased LPS-induced IL-1ß secretion but reduced CCL2 and TGF-ß secretion in THP-1 macrophages. In scratch wound assays, mulberry EVs inhibited HMEC-1 migration but increased proliferation in both low and high serum conditions, suggesting that they have opposing effects in these two important aspects of wound healing. One of the limitations of plant-derived therapeutics has been overcoming the low bioavailability of isolated compounds. We propose that PDVs could provide the link between physiological dose and therapeutic benefit by protecting plant active compounds in the GIT as well as potentially delivering genetic material or proteins that contribute to previously observed health benefits.


Subject(s)
Extracellular Vesicles , Fruit , Macrophages , Morus , Reactive Oxygen Species , Morus/chemistry , Humans , Extracellular Vesicles/metabolism , Fruit/chemistry , Macrophages/metabolism , Macrophages/drug effects , Reactive Oxygen Species/metabolism , THP-1 Cells , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cell Line , Antioxidants/pharmacology , Cell Movement/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Cell Proliferation/drug effects
6.
Nutrients ; 16(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892603

ABSTRACT

Non-communicable diseases (NCDs) are becoming an increasingly important health concern due to a rapidly ageing global population. The fastest growing NCD, type 2 diabetes mellitus (T2DM), is responsible for over 2 million deaths annually. Lifestyle changes, including dietary changes to low glycemic response (GR) foods, have been shown to reduce the risk of developing T2DM. The aim of this study was to investigate whether three different doses of Reducose®, a mulberry leaf extract, could lower the GR and insulinemic responses (IR) to a full meal challenge in healthy individuals. A double-blind, randomised, placebo-controlled, repeat-measure, crossover design trial was conducted by the Oxford Brookes Centre for Nutrition and Health; 37 healthy individuals completed the study. Participants consumed capsules containing either 200 mg, 225 mg, 250 mg Reducose® or placebo before a test meal consisting of 150 g white bread and egg mayo filler. Capillary blood samples were collected at 15-min intervals in the first hour and at 30-min intervals over the second and third hours to determine glucose and plasma insulin levels. The consumption of all three doses of Reducose® resulted in significantly lower blood glucose and plasma insulin levels compared to placebo. All three doses of Reducose® (200 mg, 225 mg, 250 mg) significantly lowered glucose iAUC 120 by 30% (p = 0.003), 33% (p = 0.001) and 32% (p = 0.002), respectively, compared with placebo. All three doses of Reducose® (200 mg, 225 mg, 250 mg) significantly lowered the plasma insulin iAUC 120 by 31% (p = 0.024), 34% (p = 0.004) and 38% (p < 0.001), respectively. The study demonstrates that the recommended dose (250 mg) and two lower doses (200 mg, 225 mg) of Reducose® can be used to help lower the GR and IR of a full meal containing carbohydrates, fats and proteins.


Subject(s)
Blood Glucose , Cross-Over Studies , Insulin , Morus , Plant Extracts , Plant Leaves , Postprandial Period , Humans , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Double-Blind Method , Morus/chemistry , Blood Glucose/drug effects , Blood Glucose/metabolism , Male , Insulin/blood , Female , Adult , Plant Leaves/chemistry , Middle Aged , Meals , Young Adult , Glycemic Index/drug effects , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/prevention & control
7.
BMC Genomics ; 25(1): 563, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840042

ABSTRACT

BACKGROUND: Broussonetia papyrifera is an economically significant tree with high utilization value, yet its cultivation is often constrained by soil contamination with heavy metals (HMs). Effective scientific cultivation management, which enhances the yield and quality of B. papyrifera, necessitates an understanding of its regulatory mechanisms in response to HM stress. RESULTS: Twelve Metallothionein (MT) genes were identified in B. papyrifera. Their open reading frames ranged from 186 to 372 bp, encoding proteins of 61 to 123 amino acids with molecular weights between 15,473.77 and 29,546.96 Da, and theoretical isoelectric points from 5.24 to 5.32. Phylogenetic analysis classified these BpMTs into three subclasses: MT1, MT2, and MT3, with MT2 containing seven members and MT3 only one. The expression of most BpMT genes was inducible by Cd, Mn, Cu, Zn, and abscisic acid (ABA) treatments, particularly BpMT2e, BpMT2d, BpMT2c, and BpMT1c, which showed significant responses and warrant further study. Yeast cells expressing these BpMT genes exhibited enhanced tolerance to Cd, Mn, Cu, and Zn stresses compared to control cells. Yeasts harboring BpMT1c, BpMT2e, and BpMT2d demonstrated higher accumulation of Cd, Cu, Mn, and Zn, suggesting a chelation and binding capacity of BpMTs towards HMs. Site-directed mutagenesis of cysteine (Cys) residues indicated that mutations in the C domain of type 1 BpMT led to increased sensitivity to HMs and reduced HM accumulation in yeast cells; While in type 2 BpMTs, the contribution of N and C domain to HMs' chelation possibly corelated to the quantity of Cys residues. CONCLUSION: The BpMT genes are crucial in responding to diverse HM stresses and are involved in ABA signaling. The Cys-rich domains of BpMTs are pivotal for HM tolerance and chelation. This study offers new insights into the structure-function relationships and metal-binding capabilities of type-1 and - 2 plant MTs, enhancing our understanding of their roles in plant adaptation to HM stresses.


Subject(s)
Broussonetia , Metallothionein , Metals, Heavy , Phylogeny , Metallothionein/genetics , Metallothionein/metabolism , Metallothionein/chemistry , Metals, Heavy/metabolism , Broussonetia/genetics , Broussonetia/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/chemistry , Stress, Physiological , Amino Acid Sequence , Protein Binding
8.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38908013

ABSTRACT

Mulberry leaves (MLs) are an unconventional feed with fiber and various active ingredients, and are acknowledged as likely to regulate lipid metabolism, while the molecular mechanism remains undefined. Therefore, our objective was to define the role of MLs on the overall lipid metabolism. We conducted a feeding experiment of three groups on growing mutton sheep fed with dried mulberry leaves (DMLs), with fermented mulberry leaves (FMLs), or without MLs (as control). Analyses of transcriptome and widely target lipids demonstrated the addition of MLs triggered big perturbations in genes and metabolites related to glycerolipid, phospholipid, ether lipid, and sphingolipid metabolism. Additionally, the variations of the above lipids in the treatment of MLs possibly facilitate immunity enhancement of growing mutton sheep via the activation of complement and coagulation cascades. Furthermore, treatments with MLs could expedite proceedings of lipid degradation and fatty acid ß oxidation in mitochondria, thereby to achieve the effect of lipid reduction. Besides, added DMLs also fuel fatty acid ß-oxidation in peroxisomes and own much stronger lipolysis than added FMLs, possibly attributed to high fiber content in DMLs. These findings establish the novel lipid-lowering role and immune protection of MLs, which lays the foundation for the medicinal application of MLs.


Mulberry leaves (MLs) are rich in a wide variety of active ingredients and are also a kind of traditional Chinese medicine with the same origin as medicine and food. Previous studies have found that MLs may regulate lipid metabolism. But the exact mechanism remains unclear. Our study reveals that ML supplement not only alters lipid metabolism including glycerol phospholipid, ether lipid as well as sphingolipid metabolism, which may help to improve immunity but also promote fatty acid degradation as well as ß oxidation to achieve the effect of fat reduction.


Subject(s)
Animal Feed , Diet , Dietary Supplements , Fatty Acids , Lipid Metabolism , Morus , Plant Leaves , Animals , Lipid Metabolism/drug effects , Sheep , Fatty Acids/metabolism , Animal Feed/analysis , Diet/veterinary , Oxidation-Reduction
9.
Plant Sci ; 346: 112161, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38879177

ABSTRACT

Paper mulberry (Broussonetia papyrifera) is a fast-growing tree known for its tolerance to diverse biotic and abiotic stresses. To explore genes combating Verticillium wilt, a devasting and formidable disease damage to cotton and many economically significant crops, we purified an antifungal protein, named BpAFP, from the latex of paper mulberry. Based on peptide fingerprint, we cloned the full cDNA sequence of BpAFP and revealed that BpAFP belongs to Class I chitinases, sharing 74 % identity with B. papyrifera leaf chitinase, PMAPII. We further introduced BpAFP into Arabidopsis, tobacco, and cotton. Transgenic plants exhibited significant resistance to Verticillium wilt. Importantly, BpAFP also demonstrated insecticidal activity against herbivorous pests, Plutella xylostella, and Prodenia litura, when feeding the larvae with transgenic leaves. Our finding unveils a dual role of BpAFP in conferring resistance to both plant diseases and lepidopterous pests.

10.
Front Microbiol ; 15: 1399907, 2024.
Article in English | MEDLINE | ID: mdl-38915298

ABSTRACT

Mulberry has also been regarded as a valuable source of forage for ruminants. This study was developed to investigate the impact of four additives and combinations thereof on fermentation quality and bacterial communities associated with whole-plant mulberry silage. Control fresh material (FM) was left untreated, while other groups were treated with glucose (G, 20 g/kg FM), a mixture of Lactobacillus plantarum and L. buchneri (L, 106 CFU/g FM), formic acid (A, 5 mL/kg FM), salts including sodium benzoate and potassium sorbate (S, 1.5 g/kg FM), a combination of G and L (GL), a combination of G and A (GA), or a combination of G and S (GS), followed by ensiling for 90 days. Dry matter content in the A, S, GA, and GS groups was elevated relative to the other groups (p < 0.01). Relative to the C group, all additives and combinations thereof were associated with reductions in pH and NH3-N content (p < 0.01). The A groups exhibited the lowest pH and NH3-N content at 4.23 and 3.27 g/kg DM, respectively (p < 0.01), whereas the C groups demonstrated the highest values at 4.43 and 4.44 g/kg DM, respectively (p < 0.01). The highest levels of lactic acid were observed in the GA and A groups (70.99 and 69.14 g/kg DM, respectively; p < 0.01), followed by the GL, L, and GS groups (66.88, 64.17 and 63.68 g/kg DM, respectively), with all of these values being higher than those for the C group (53.27 g/kg DM; p < 0.01). Lactobacillus were the predominant bacteria associated with each of these samples, but the overall composition of the bacterial community was significantly impacted by different additives. For example, Lactobacillus levels were higher in the G, A, and GA groups (p < 0.01), while those of Weissella levels were raised in the L, GL, and GS groups (p < 0.01), Pediococcus levels were higher in the A and GA groups (p < 0.01), Enterococcus levels were higher in the G and S groups (p < 0.01), and Lactococcus levels were raised in the S group (p < 0.01). Relative to the C group, a reduction in the levels of undesirable Enterobacter was evident in all groups treated with additives (p < 0.01), with the greatest reductions being evident in the A, S, GA, and GS groups. The additives utilized in this study can thus improve the quality of whole-plant mulberry silage to varying extents through the modification of the associated bacterial community, with A and GA addition achieving the most efficient reductions in pH together with increases in lactic acid content and the suppression of undesirable bacterial growth.

11.
Foods ; 13(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38928730

ABSTRACT

Healthy, nutritious, and delicious mulberry wine is loved by everyone, but there is no specific yeast for mulberry wine. To screen for yeasts with low-yield higher alcohols for the fermentation of mulberry wine, we tested five commonly used commercial yeasts available on the market to ferment mulberry wine. All five yeasts were able to meet the requirements in terms of yeast fermentation capacity, speed, and physical and chemical markers of mulberry wine. The national standards were met by the fermentation requirements and the fermented mulberry wine. We identified yeast DV10 as a yeast with low-yield higher alcohols suitable for mulberry wine fermentation. The total higher alcohol content in fermented mulberry wine was 298 mg/L, which was 41.9% lower than that of fermented mulberry wine with yeast EC118. The contents of 17 free amino acids and five sugars in mulberry juice and five yeast-fermented mulberry wines were tested. The results showed that the higher the amino acid and sugar content in yeast-fermented mulberry wine, the higher the content of higher alcohols produced by fermentation. A correlation analysis performed on each higher alcohol produced when yeast DV10 fermented the mulberry wine indicated decreased sugar and related amino acids. The findings demonstrated a substantial negative correlation among the levels of increased alcohol, decreased sugar, and matching amino acid content. Considering the correlation values among increased alcohol, decreased sugar, and related amino acids, the very slight difference suggests that both sugar anabolism and amino acid catabolism pathways have an equivalent impact on the synthesis of higher alcohols during the fermentation of mulberry wine. These results provide a theoretical basis for reducing the content of higher alcohols in mulberry wines, given the history and foundation for producing mulberry wine.

12.
Foods ; 13(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38928750

ABSTRACT

This study aimed to investigate the aroma effects of key volatile compounds in a new type of mulberry leaf Fu brick teas (MTs) and traditional Fu brick teas (FTs). Headspace solid-phase microextraction (HS-SPME), gas chromatography-mass spectrometry (GC-MS), sensory evaluation, and chemometrics were used to determine the differences in key flavour qualities between the two. The results showed that a total of 139 volatile components were identified, with aldehydes, ketones, and alcohols dominating. Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) combined with the odour activity value (OAV) showed that seven aroma compounds had an OAV > 10, including 2-(4-methylcyclohex-3-en-1-yl) propan-2-ol with floral and fruity aroma and green attributes, 6-methylhept-5-en-2-one, (E)-6,10-dimethyl-5,9-Undecadien-2-one, (3E,5E)-octa-3,5-dien-2-one, Benzaldehyde, and (E)-3,7,11,15-tetramethylhexadec-2-en-1-ol, which were more abundant in MTs than FTs; Cedrol with sweet aroma attributes was more consistent in MTs than FTs, and we suggest that these odour compounds are important aroma contributors to MTs. Taken together, these findings will provide new insights into the mechanism of formation of the characteristic attributes of aroma in MTs.

13.
Food Chem Toxicol ; 190: 114843, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38944142

ABSTRACT

Mulberry (Morus alba L) fruit is traditionally used in Chinese medicine and has several beneficial effects, such as hypoglycemic, hypolipidemic, and anti-oxidative effects. We previously developed the synbiotic mulberry (SM) containing probiotic Lactobacilli, prebiotic inulin, and mulberry powder. In food supplement development, toxicity is the most important criterion in food and drug regulations before commercialization. Thus, this study aimed to investigate the subchronic toxicity of SM in male and female Wistar rats to evaluate its biosafety. The subchronic toxicity study was conducted by daily oral administration of SM at doses of 250, 500, and 1000 mg/kgBW for 90 days. Male and female rats were evaluated for body weight, organ coefficients, biochemical and hematological parameters, and vital organ histology. The results showed no mortality or toxic changes in the subchronic toxicity study. These results suggested that no observed adverse effect level (NOAEL) of SM in male and female rats has been considered at 1000 mg/kgBW for subchronic toxicity study.


Subject(s)
Morus , No-Observed-Adverse-Effect Level , Rats, Wistar , Synbiotics , Animals , Female , Morus/chemistry , Male , Synbiotics/administration & dosage , Rats , Administration, Oral , Toxicity Tests, Subchronic , Organ Size/drug effects , Body Weight/drug effects , Dose-Response Relationship, Drug
14.
Front Plant Sci ; 15: 1349456, 2024.
Article in English | MEDLINE | ID: mdl-38911982

ABSTRACT

Introduction: Manganese (Mn) plays a pivotal role in plant growth and development. Aside aiding in plant growth and development, Mn as heavy metal (HM) can be toxic in soil when applied in excess. Morus alba is an economically significant plant, capable of adapting to a range of environmental conditions and possessing the potential for phytoremediation of contaminated soil by HMs. The mechanism by which M. alba tolerates Mn stresses remains obscure. Methods: In this study, Mn concentrations comprising sufficiency (0.15 mM), higher regimes (1.5 mM and 3 mM), and deficiency (0 mM and 0.03 mM), were applied to M. alba in pot treatment for 21 days to understand M. alba Mn tolerance. Mn stress effects on the net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), intercellular CO2 concentration (Ci), chlorophyll content, plant morphological traits, enzymatic and non-enzymatic parameters were analyzed as well as metabolome signatures via non-targeted LC-MS technique. Results: Mn deficiency and toxicity decrease plant biomass, Pn, Ci, Gs, Tr, and chlorophyll content. Mn stresses induced a decline in the activities of catalase (CAT) and superoxide dismutase (SOD), while peroxidase (POD) activity, and leaf Mn content, increased. Soluble sugars, soluble proteins, malondialdehyde (MDA) and proline exhibited an elevation in Mn deficiency and toxicity concentrations. Metabolomic analysis indicates that Mn concentrations induced 1031 differentially expressed metabolites (DEMs), particularly amino acids, lipids, carbohydrates, benzene and derivatives and secondary metabolites. The DEMs are significantly enriched in alpha-linolenic acid metabolism, biosynthesis of unsaturated fatty acids, galactose metabolism, pantothenate and CoA biosynthesis, pentose phosphate pathway, carbon metabolism, etc. Discussion and conclusion: The upregulation of Galactinol, Myo-inositol, Jasmonic acid, L-aspartic acid, Coproporphyrin I, Trigonelline, Pantothenol, and Pantothenate and their significance in the metabolic pathways makes them Mn stress tolerance metabolites in M. alba. Our findings reveal the fundamental understanding of DEMs in M. alba's response to Mn nutrition and the metabolic mechanisms involved, which may hold potential significance for the advancement of M. alba genetic improvement initiatives and phytoremediation programs.

15.
Article in English | MEDLINE | ID: mdl-38937951

ABSTRACT

A 50-day feeding trial was conducted to evaluate the effects of mulberry leaf powder water extract (MLE) on the growth performance, immunity, antioxidant, meat quality and intestinal microbiota of yellow feather broilers. A total of 720 birds (initial body weight 40.07 ± 0.05 g) were randomly distributed into four groups with six replicates per group and 30 birds per replicate. Four diets were formulated with 0% (CON), 200 mg/kg MLE (MLE200), 400 mg/kg MLE (MLE400) and 600 mg/kg MLE (MLE600) supplementation. Results showed that the addition of 200-600 mg/kg MLE to the diet significantly increased the body weight (BW) and average daily weight gain (ADG), but feed to gain ratio (F/G) were linearly decreased (p = 0.045) as dietary MLE increased. Birds fed MLE400 had higher (p < 0.05) total antioxidant capacity (T-AOC), interleukin-10 (Il-10), secretory immunoglobulin A (SIgA) and complement 3 (C3) contents than those fed CON, whereas MLE400 had lower malondialdehyde (MDA) content than CON (p < 0.05). Analysis of 16 S rDNA indicated that supplementation with 200 mg/kg MLE increased the Shannon indices in the caecum (p < 0.05). Supplementation with MLE decreased the abundance of the phylum Proteobacteria and genus Helicobacter, and increased the abundance of the phylum Bacteroidetes in the caecum in broiler chickens (p < 0.05). The drip loss rate in the MLE600 was significantly diminished (p < 0.05), whereas the shear force was significantly elevated (p < 0.05). In summary, dietary supplementation with MLE can effectively improve growth performance, intestinal immunity, serum antioxidant capacity, meat quality and intestinal microbiota of yellow feather broilers. The most appropriate MLE supplementation level was 400 mg/kg. This study provides a practical strategy for the dietary application of MLE in yellow feather broilers.

16.
Plants (Basel) ; 13(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38931091

ABSTRACT

Glutamine synthetase (GS) is a key enzyme involved in nitrogen metabolism. GS can be divided into cytosolic and plastidic subtypes and has been reported to respond to various biotic and abiotic stresses. However, little research has been reported on the function of GS in mulberry. In this study, the full length of MaGS2 was cloned, resulting in 1302 bp encoding 433 amino acid residues. MaGS2 carried the typical GS2 motifs and clustered with plastidic-subtype GSs in the phylogenetic analysis. MaGS2 localized in chloroplasts, demonstrating that MaGS2 is a plastidic GS. The expression profile showed that MaGS2 is highly expressed in sclerotiniose pathogen-infected fruit and sclerotiniose-resistant fruit, demonstrating that MaGS2 is associated with the response to sclerotiniose in mulberry. Furthermore, the overexpression of MaGS2 in tobacco decreased the resistance against Ciboria shiraiana, and the knockdown of MaGS2 in mulberry by VIGS increased the resistance against C. shiraiana, demonstrating the role of MaGS2 as a negative regulator of mulberry resistance to C. shiraiana infection.

17.
Int J Biol Macromol ; 273(Pt 2): 133133, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38876233

ABSTRACT

This study aimed to investigate the problem of color instability in mulberry juice, examine the effect of mannoprotein (MP) dosage on improving the stability of anthocyanins in mulberry juice, and explore the molecular binding mechanism between them. As the mass ratio of anthocyanins to MP of 1.07 × 10-3: 1-1.65 × 10-3: 1, the retention rates of anthocyanins in mulberry juice and simulated system were significantly improved in the photostability experiment, with the highest increase of 128.89 % and 24.11 %, respectively. In the thermal stability experiment, it increased by 7.96 % and 18.49 %, respectively. The synergistic effect of combining MP with anthocyanins has been demonstrated to greatly enhance their antioxidant capacity, as measured by ABTS, FRAP, and potassium ferricyanide reduction method. Furthermore, MP stabilized more anthocyanins to reach the intestine in simulated in vitro digestion. MP and cyanidin-3-glucoside (C3G) interacted with each other through hydrogen bonding and hydrophobic interactions. Specific amino acid residues involved of MP in binding process were identified as threonine (THR), isoleucine (ILE) and arginine (ARG). The identification of the effective mass concentration ratio range and binding sites of MP and anthocyanins provided valuable insights for the application of MP in mulberry juice.


Subject(s)
Anthocyanins , Fruit and Vegetable Juices , Morus , Morus/chemistry , Anthocyanins/chemistry , Fruit and Vegetable Juices/analysis , Antioxidants/chemistry
18.
J Appl Toxicol ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38837228

ABSTRACT

Mulberry (genus Morus) leaves have long been used as a human food, especially in Asia, and animal feed. More recently, mulberry leaf extracts have been introduced as a convenient way to consume mulberry for non-nutritional functional effects. Reducose® 5% is an Morus alba leaf extract that has been highly purified and standardized to a content of 5 ± 0.5% 1-deoxynojirimycin, a naturally present polyhydroxylated piperidine alkaloid analog of D-glucose. This extract has previously been evaluated in acute and subacute (28-day) oral toxicity studies in which no adverse effects of the test item were observed in mice or rats, respectively. Due to continued and growing interest in the extract in multinational markets, we have now further investigated potential toxic effects in subchronic (90-day) oral toxicity study in male and female Han:WIST rats. The test item was administered at doses of 850, 1700, and 2550 mg/kg bw/day, and did not cause adverse effects in clinical signs, body weight development, clinical pathology, gross pathology, or histopathology in comparison to the vehicle-control group. The no-observed-adverse-effect-level was determined to be 2550 mg/kg bw/day. These results add to the existing body of both preclinical and clinical work relevant to the safety of the extract and of interest to regulators in various global markets.

19.
Heliyon ; 10(10): e31518, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38826714

ABSTRACT

Enhancing the valorization of fruit processing by-products is pivotal for advancing the industry. Black mulberry wine residues, a by-product, contains some bioactive compounds, yet its antioxidant and anticancer potentials remain unverified. In this study, ultrasound-assisted enzymatic extraction was optimized by response surface methodology to obtain the flavonoids extracts from black mulberry wine residues, whose antioxidant capacity and anti-cancer activity in vitro was investigated. The results showed that under the optimal extraction conditions (enzyme ratio at pectinase:cellulose = 2:1, mixed enzyme concentration 0.31 mg/mL, enzymatic hydrolysis temperature 55.35 °C, enzymatic hydrolysis time 79.03 min, and ultrasonic time 22.71 min), the extracts from black mulberry wine residues (BMWR-E) reached 5.672 mg/g. At a concentration of 1.2 mg/mL, BMWR-E exhibited strong DPPH and hydroxyl radical scavenging activities. At a concentration of 2.5 mg/mL, BMWR-E showed a strong superoxide anion radical scavenging capacity, with no significant distinction compared to the positive control group (Vitamin C) (p > 0.05). Cell viability assay results showed that BMWR-E was non-toxic to normal BRL-3A cells when applied at concentrations of 0.1-0.3 mg/mL for an incubation period of 24 h, but BMWR-E exhibited the ability to inhibit the proliferation of HepG2 cells. At concentrations of 0.2 mg/mL and above, BMWR-E could induce late apoptosis of HepG2 cells by increasing the protein expression levels of Bax, caspase-3, and caspase-12, reducing the protein expression levels of Bcl-2, inducing cell cycle arrest at G0/G1 phase, thereby inhibiting the proliferation of HepG2 cells. The bioactive properties make BMWR-E possess potential in developing new antioxidants and anti-cancer agents, which would significantly enhance the economic worth of agricultural by-products in product processing. This research can improve the utilization rate of agricultural product processing by-products and protect the environment.

20.
Molecules ; 29(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38893475

ABSTRACT

Oxidative stress significantly contributes to ageing and disease, with antioxidants holding promise in mitigating its effects. Functional foods rich in flavonoids offer a potential strategy to mitigate oxidative damage by free radicals. We investigated the protective effects of mulberry leaf flavonoids (MLF) against H2O2-induced oxidative damage in HepG2 cells. It assessed the inhibitory effect of MLF (62.5-500 µg/mL) on H2O2-induced oxidative damage by analyzing cellular morphology and oxidative stress markers, including ROS production, mitochondrial membrane potential, antioxidant enzyme levels, MDA, and apoptosis-related proteins. The results demonstrated that MLF prevented spiny cell formation triggered by 750 µM H2O2 and significantly reduced ROS levels, restored mitochondrial membrane potential, decreased lactate dehydrogenase and alanine transaminase leakage, and reduced MDA content induced by H2O2. MLF also modulated antioxidant enzymes and attenuated oxidative damage to HepG2 cell DNA, as confirmed by staining techniques. These findings indicate the potential of MLF as a hepatoprotective agent against oxidative damage in HepG2 cells.


Subject(s)
Antioxidants , Flavonoids , Hydrogen Peroxide , Membrane Potential, Mitochondrial , Morus , Oxidative Stress , Plant Leaves , Reactive Oxygen Species , Humans , Morus/chemistry , Oxidative Stress/drug effects , Hep G2 Cells , Flavonoids/pharmacology , Plant Leaves/chemistry , Antioxidants/pharmacology , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Protective Agents/pharmacology , Protective Agents/chemistry , Apoptosis/drug effects , Cell Survival/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...