Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
1.
BMC Public Health ; 24(1): 1777, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961394

ABSTRACT

BACKGROUND: Dyslipidemia, characterized by variations in plasma lipid profiles, poses a global health threat linked to millions of deaths annually. OBJECTIVES: This study focuses on predicting dyslipidemia incidence using machine learning methods, addressing the crucial need for early identification and intervention. METHODS: The dataset, derived from the Lifestyle Promotion Project (LPP) in East Azerbaijan Province, Iran, undergoes a comprehensive preprocessing, merging, and null handling process. Target selection involves five distinct dyslipidemia-related variables. Normalization techniques and three feature selection algorithms are applied to enhance predictive modeling. RESULT: The study results underscore the potential of different machine learning algorithms, specifically multi-layer perceptron neural network (MLP), in reaching higher performance metrics such as accuracy, F1 score, sensitivity and specificity, among other machine learning methods. Among other algorithms, Random Forest also showed remarkable accuracies and outperformed K-Nearest Neighbors (KNN) in metrics like precision, recall, and F1 score. The study's emphasis on feature selection detected meaningful patterns among five target variables related to dyslipidemia, indicating fundamental shared unities among dyslipidemia-related factors. Features such as waist circumference, serum vitamin D, blood pressure, sex, age, diabetes, and physical activity related to dyslipidemia. CONCLUSION: These results cooperatively highlight the complex nature of dyslipidemia and its connections with numerous factors, strengthening the importance of applying machine learning methods to understand and predict its incidence precisely.


Subject(s)
Dyslipidemias , Machine Learning , Humans , Dyslipidemias/epidemiology , Incidence , Iran/epidemiology , Male , Female , Life Style , Algorithms , Health Promotion/methods , Middle Aged , Adult
2.
Front Microbiol ; 15: 1366272, 2024.
Article in English | MEDLINE | ID: mdl-38846568

ABSTRACT

Introduction: Numerous studies show that microbes in the human body are very closely linked to the human host and can affect the human host by modulating the efficacy and toxicity of drugs. However, discovering potential microbe-drug associations through traditional wet labs is expensive and time-consuming, hence, it is important and necessary to develop effective computational models to detect possible microbe-drug associations. Methods: In this manuscript, we proposed a new prediction model named LCASPMDA by combining the learnable graph convolutional attention network and the self-paced iterative sampling ensemble strategy to infer latent microbe-drug associations. In LCASPMDA, we first constructed a heterogeneous network based on newly downloaded known microbe-drug associations. Then, we adopted the learnable graph convolutional attention network to learn the hidden features of nodes in the heterogeneous network. After that, we utilized the self-paced iterative sampling ensemble strategy to select the most informative negative samples to train the Multi-Layer Perceptron classifier and put the newly-extracted hidden features into the trained MLP classifier to infer possible microbe-drug associations. Results and discussion: Intensive experimental results on two different public databases including the MDAD and the aBiofilm showed that LCASPMDA could achieve better performance than state-of-the-art baseline methods in microbe-drug association prediction.

3.
Front Genet ; 15: 1369811, 2024.
Article in English | MEDLINE | ID: mdl-38873111

ABSTRACT

Introduction: MicroRNAs (miRNAs) are small and non-coding RNA molecules which have multiple important regulatory roles within cells. With the deepening research on miRNAs, more and more researches show that the abnormal expression of miRNAs is closely related to various diseases. The relationship between miRNAs and diseases is crucial for discovering the pathogenesis of diseases and exploring new treatment methods. Methods: Therefore, we propose a new sparse autoencoder and MLP method (SPALP) to predict the association between miRNAs and diseases. In this study, we adopt advanced deep learning technologies, including sparse autoencoder and multi-layer perceptron (MLP), to improve the accuracy of predicting miRNA-disease associations. Firstly, the SPALP model uses a sparse autoencoder to perform feature learning and extract the initial features of miRNAs and diseases separately, obtaining the latent features of miRNAs and diseases. Then, the latent features combine miRNAs functional similarity data with diseases semantic similarity data to construct comprehensive miRNAs-diseases datasets. Subsequently, the MLP model can predict the unknown association among miRNAs and diseases. Result: To verify the performance of our model, we set up several comparative experiments. The experimental results show that, compared with traditional methods and other deep learning prediction methods, our method has significantly improved the accuracy of predicting miRNAs-disease associations, with 94.61% accuracy and 0.9859 AUC value. Finally, we conducted case study of SPALP model. We predicted the top 30 miRNAs that might be related to Lupus Erythematosus, Ecute Myeloid Leukemia, Cardiovascular, Stroke, Diabetes Mellitus five elderly diseases and validated that 27, 29, 29, 30, and 30 of the top 30 are indeed associated. Discussion: The SPALP approach introduced in this study is adept at forecasting the links between miRNAs and diseases, addressing the complexities of analyzing extensive bioinformatics datasets and enriching the comprehension contribution to disease progression of miRNAs.

4.
Math Biosci Eng ; 21(4): 5092-5117, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38872528

ABSTRACT

Glaucoma is a chronic neurodegenerative disease that can result in irreversible vision loss if not treated in its early stages. The cup-to-disc ratio is a key criterion for glaucoma screening and diagnosis, and it is determined by dividing the area of the optic cup (OC) by that of the optic disc (OD) in fundus images. Consequently, the automatic and accurate segmentation of the OC and OD is a pivotal step in glaucoma detection. In recent years, numerous methods have resulted in great success on this task. However, most existing methods either have unsatisfactory segmentation accuracy or high time costs. In this paper, we propose a lightweight deep-learning architecture for the simultaneous segmentation of the OC and OD, where we have adopted fuzzy learning and a multi-layer perceptron to simplify the learning complexity and improve segmentation accuracy. Experimental results demonstrate the superiority of our proposed method as compared to most state-of-the-art approaches in terms of both training time and segmentation accuracy.


Subject(s)
Algorithms , Deep Learning , Fuzzy Logic , Glaucoma , Optic Disk , Humans , Optic Disk/diagnostic imaging , Glaucoma/diagnostic imaging , Neural Networks, Computer , Image Processing, Computer-Assisted/methods , Reproducibility of Results , Image Interpretation, Computer-Assisted/methods , Fundus Oculi
5.
Heliyon ; 10(11): e31850, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38882359

ABSTRACT

This study introduces the Worst Moth Disruption Strategy (WMFO) to enhance the Moth Fly Optimization (MFO) algorithm, specifically addressing challenges related to population stagnation and low diversity. The WMFO aims to prevent local trapping of moths, fostering improved global search capabilities. Demonstrating a remarkable efficiency of 66.6 %, WMFO outperforms the MFO on CEC15 benchmark test functions. The Friedman and Wilcoxon tests further confirm WMFO's superiority over state-of-the-art algorithms. Introducing a hybrid model, WMFO-MLP, combining WMFO with a Multi-Layer Perceptron (MLP), facilitates effective parameter tuning for carbon emission prediction, achieving an outstanding total accuracy of 97.8 %. Comparative analysis indicates that the MLP-WMFO model surpasses alternative techniques in precision, reliability, and efficiency. Feature importance analysis reveals that variables such as Oil Efficiency and Economic Growth significantly impact MLP-WMFO's predictive power, contributing up to 40 %. Additionally, Gas Efficiency, Renewable Energy, Financial Risk, and Political Risk explain 26.5 %, 13.6 %, 8 %, and 6.5 %, respectively. Finally, WMFO-MLP performance offers advancements in optimization and predictive modeling with practical applications in carbon emission prediction.

6.
Sensors (Basel) ; 24(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38793886

ABSTRACT

The domain of human locomotion identification through smartphone sensors is witnessing rapid expansion within the realm of research. This domain boasts significant potential across various sectors, including healthcare, sports, security systems, home automation, and real-time location tracking. Despite the considerable volume of existing research, the greater portion of it has primarily concentrated on locomotion activities. Comparatively less emphasis has been placed on the recognition of human localization patterns. In the current study, we introduce a system by facilitating the recognition of both human physical and location-based patterns. This system utilizes the capabilities of smartphone sensors to achieve its objectives. Our goal is to develop a system that can accurately identify different human physical and localization activities, such as walking, running, jumping, indoor, and outdoor activities. To achieve this, we perform preprocessing on the raw sensor data using a Butterworth filter for inertial sensors and a Median Filter for Global Positioning System (GPS) and then applying Hamming windowing techniques to segment the filtered data. We then extract features from the raw inertial and GPS sensors and select relevant features using the variance threshold feature selection method. The extrasensory dataset exhibits an imbalanced number of samples for certain activities. To address this issue, the permutation-based data augmentation technique is employed. The augmented features are optimized using the Yeo-Johnson power transformation algorithm before being sent to a multi-layer perceptron for classification. We evaluate our system using the K-fold cross-validation technique. The datasets used in this study are the Extrasensory and Sussex Huawei Locomotion (SHL), which contain both physical and localization activities. Our experiments demonstrate that our system achieves high accuracy with 96% and 94% over Extrasensory and SHL in physical activities and 94% and 91% over Extrasensory and SHL in the location-based activities, outperforming previous state-of-the-art methods in recognizing both types of activities.


Subject(s)
Algorithms , Biosensing Techniques , Geographic Information Systems , Wearable Electronic Devices , Humans , Biosensing Techniques/methods , Locomotion/physiology , Smartphone , Walking/physiology , Internet of Things
7.
Neural Netw ; 176: 106316, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38653125

ABSTRACT

We consider a square non linear parametric equations system F(P,X) = 0 which is constituted of n non differential equations in the n unknowns {x1,…,xn} that are the components of X while P={p1,…,pm} is a set of m parameters that play a role in the definition of the equations F. We assume that P is restricted to lie in a bounded region and we are interested in developing a solver for obtaining all real solutions exactly (a notion that is defined in the paper) for any parameter values within the bounded region. The starting point of the proposed approach is that we assume that a numerical methods has allowed us to determine the real solutions (but not necessarily all of them) for a very limited number of fixed P called the initial solution set. Starting from this set we show that we can create multiple pairs (parameters, solution) and that these pairs may be structured into coherent learning sets that will be used to train multi-layer perceptrons (MLP). The training process is specific: although it still uses a decrease of a loss function its main objective is to maximize the success rate i.e. the number of occurrences, expressed in percentage of number of samples of the training set, for which the Newton scheme, initialized with the MLP prediction, converges toward the expected solution. We then show that for a sufficiently large number of MLPs we may obtain a 100% success rate for all learning sets. The solver is obtained by running a set of local solvers each of which is based on a specific MLP whose prediction may lead to an exact solution of the system. This solver is tested on verification sets i.e. set of samples constituted of parameter values (all different from the samples in the learning set) and all the solutions of the corresponding system. We show that these sets may be automatically generated and that they may also be used in a self-learning process for improving the performance of the solver established from the initial solution set. This approach is illustrated on two engineering problems in robotics and chemistry and it is shown that the solver provides all solutions for any instance of P with a high probability although we cannot guarantee it. The time required to design the final solver is large but the solving time is extremely low so that this approach should be used when the system has to be solved for a sufficient number of occurrences of the P. Furthermore we will show that the computation time required for establishing the solver may be drastically reduced by using a distributed implementation.


Subject(s)
Neural Networks, Computer , Nonlinear Dynamics , Algorithms , Computer Simulation , Machine Learning
8.
Article in English | MEDLINE | ID: mdl-38649795

ABSTRACT

BACKGROUND: Computed tomography (CT) body compositions reflect age-related metabolic derangements. We aimed to develop a multi-outcome deep learning model using CT multi-level body composition parameters to detect metabolic syndrome (MS), osteoporosis and sarcopenia by identifying metabolic clusters simultaneously. We also investigated the prognostic value of metabolic phenotyping by CT model for long-term mortality. METHODS: The derivation set (n = 516; 75% train set, 25% internal test set) was constructed using age- and sex-stratified random sampling from two community-based cohorts. Data from participants in the individual health assessment programme (n = 380) were used as the external test set 1. Semi-automatic quantification of body compositions at multiple levels of abdominal CT scans was performed to train a multi-layer perceptron (MLP)-based multi-label classification model. External test set 2 to test the prognostic value of the model output for mortality was built using data from individuals who underwent abdominal CT in a tertiary-level institution (n = 10 141). RESULTS: The mean ages of the derivation and external sets were 62.8 and 59.7 years, respectively, without difference in sex distribution (women 50%) or body mass index (BMI; 23.9 kg/m2). Skeletal muscle density (SMD) and bone density (BD) showed a more linear decrement across age than skeletal muscle area. Alternatively, an increase in visceral fat area (VFA) was observed in both men and women. Hierarchical clustering based on multi-level CT body composition parameters revealed three distinctive phenotype clusters: normal, MS and osteosarcopenia clusters. The L3 CT-parameter-based model, with or without clinical variables (age, sex and BMI), outperformed clinical model predictions of all outcomes (area under the receiver operating characteristic curve: MS, 0.76 vs. 0.55; osteoporosis, 0.90 vs. 0.79; sarcopenia, 0.85 vs. 0.81 in external test set 1; P < 0.05 for all). VFA contributed the most to the MS predictions, whereas SMD, BD and subcutaneous fat area were features of high importance for detecting osteoporosis and sarcopenia. In external test set 2 (mean age 63.5 years, women 79%; median follow-up 4.9 years), a total of 907 individuals (8.9%) died during follow-up. Among model-predicted metabolic phenotypes, sarcopenia alone (adjusted hazard ratio [aHR] 1.55), MS + sarcopenia (aHR 1.65), osteoporosis + sarcopenia (aHR 1.83) and all three combined (aHR 1.87) remained robust predictors of mortality after adjustment for age, sex and comorbidities. CONCLUSIONS: A CT body composition-based MLP model detected MS, osteoporosis and sarcopenia simultaneously in community-dwelling and hospitalized adults. Metabolic phenotypes predicted by the CT MLP model were associated with long-term mortality, independent of covariates.

9.
Sci Rep ; 14(1): 7837, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570590

ABSTRACT

Designing Photonic Crystal Fibers incorporating the Surface Plasmon Resonance Phenomenon (PCF-SPR) has led to numerous interesting applications. This investigation presents an exceptionally responsive surface plasmon resonance sensor, seamlessly integrated into a dual-core photonic crystal fiber, specifically designed for low refractive index (RI) detection. The integration of a plasmonic material, namely silver (Ag), externally deposited on the fiber structure, facilitates real-time monitoring of variations in the refractive index of the surrounding medium. To ensure long-term functionality and prevent oxidation, a thin layer of titanium dioxide (TiO2) covers the silver coating. To optimize the sensor, five key design parameters, including pitch, air hole diameter, and silver thickness, are fine-tuned using the Taguchi L8(25) orthogonal array. The optimal results obtained present spectral and amplitude sensitivities that reach remarkable values of 10,000 nm/RIU and 235,882 RIU-1, respectively. In addition, Artificial Neural Network (ANN) optimization techniques, specifically Multi-Layer Perceptron (MLP) and Particle Swarm Optimization (PSO), are used to predict a critical optical property of the sensor confinement loss (αloss). These predictions are derived from the same input structure parameters that are present in the full L32(25) design experiment. A genetic algorithm (GA) is then applied for optimization with the goal of maximizing the confinement loss. Our results highlight the effectiveness of training PSO artificial neural networks and demonstrate their ability to quickly and accurately predict results for unknown geometric dimensions, demonstrating their significant potential in this innovative context. The proposed sensor design can be used for various applications including pharmaceutical inspection and detection of low refractive index analytes.

10.
bioRxiv ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38617261

ABSTRACT

A major limitation of most metabolomics datasets is the sparsity of pathway annotations of detected metabolites. It is common for less than half of identified metabolites in these datasets to have known metabolic pathway involvement. Trying to address this limitation, machine learning models have been developed to predict the association of a metabolite with a "pathway category", as defined by one of the metabolic knowledgebases like the Kyoto Encyclopedia of Gene and Genomes. Most of these models are implemented as a single binary classifier specific to a single pathway category, requiring a set of binary classifiers for generating predictions for multiple pathway categories. This single binary classifier per pathway category approach both multiplies the computational resources necessary for training while diluting the positive entries in gold standard datasets needed for training. To address the limitations of training separate classifiers, we propose a generalization of the metabolic pathway prediction problem using a single binary classifier that accepts both features representing a metabolite and features representing a generic pathway category and then predicts whether the given metabolite is involved in the corresponding pathway category. We demonstrate that this metabolite-pathway features-pair approach is not only competitive with the combined performance of training separate binary classifiers, but it outperforms the previous benchmark models.

11.
Skin Res Technol ; 30(3): e13635, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38500364

ABSTRACT

BACKGROUND: Sensitive skin (SenS) is a syndrome leading to unpleasant sensations with little visible signs. Grading its severity generally relies on questionnaires or subjective ratings. MATERIALS AND METHODS: The SenS status of 183 subjects was determined by trained assessors. Answers from a four-item questionnaire were converted into numerical scores, leading to a 0-15 SenS index that was asked twice or thrice. Parameters from hyperspectral images were used as input for a multi-layer perceptron (MLP) neural network to predict the four-item questionnaire score of subjects. The resulting model was used to evaluate the soothing effect of a cosmetic cream applied to one hemiface, comparing it to that of a placebo applied to the other hemiface. RESULTS: The four-item questionnaire score accurately predicts SenS assessors' classification (92.7%) while providing insight into SenS severity. Most subjects providing repeatable replies are non-SenS, but accepting some variability in answers enables identifying subjects with consistent replies encompassing a majority of SenS subjects. The MLP neural network model predicts the SenS score of subjects with consistent replies from full-face hyperspectral images (R2 Validation set  = 0.969). A similar quality is obtained with hemiface images. Comparing the effect of applying a soothing cosmetic to that of a placebo revealed that subjects with the highest instrumental index (> 5) show significant SenS improvement. CONCLUSION: A four-item questionnaire enables calculating a SenS index grading its severity. Objective evaluation using hyperspectral images with an MLP neural network accurately predicts SenS severity and its favourable evolution upon the application of a soothing cream.


Subject(s)
Cosmetics , Skin Physiological Phenomena , Humans
12.
Comput Biol Med ; 173: 108329, 2024 May.
Article in English | MEDLINE | ID: mdl-38513391

ABSTRACT

Emotion recognition based on Electroencephalography (EEG) signals has garnered significant attention across diverse domains including healthcare, education, information sharing, and gaming, among others. Despite its potential, the absence of a standardized feature set poses a challenge in efficiently classifying various emotions. Addressing the issue of high dimensionality, this paper introduces an advanced variant of the Coati Optimization Algorithm (COA), called eCOA for global optimization and selecting the best subset of EEG features for emotion recognition. Specifically, COA suffers from local optima and imbalanced exploitation abilities as other metaheuristic methods. The proposed eCOA incorporates the COA and RUNge Kutta Optimizer (RUN) algorithms. The Scale Factor (SF) and Enhanced Solution Quality (ESQ) mechanism from RUN are applied to resolve the raised shortcomings of COA. The proposed eCOA algorithm has been extensively evaluated using the CEC'22 test suite and two EEG emotion recognition datasets, DEAP and DREAMER. Furthermore, the eCOA is applied for binary and multi-class classification of emotions in the dimensions of valence, arousal, and dominance using a multi-layer perceptron neural network (MLPNN). The experimental results revealed that the eCOA algorithm has more powerful search capabilities than the original COA and seven well-known counterpart methods related to statistical, convergence, and diversity measures. Furthermore, eCOA can efficiently support feature selection to find the best EEG features to maximize performance on four quadratic emotion classification problems compared to the methods of its counterparts. The suggested method obtains a classification accuracy of 85.17% and 95.21% in the binary classification of low and high arousal emotions in two public datasets: DEAP and DREAMER, respectively, which are 5.58% and 8.98% superior to existing approaches working on the same datasets for different subjects, respectively.


Subject(s)
Algorithms , Procyonidae , Humans , Animals , Emotions , Neural Networks, Computer , Electroencephalography/methods
13.
Sensors (Basel) ; 24(5)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38475221

ABSTRACT

The wrist is one of the most complex joints in our body, composed of eight bones. Therefore, measuring the angles of this intricate wrist movement can prove valuable in various fields such as sports analysis and rehabilitation. Textile stretch sensors can be easily produced by immersing an E-band in a SWCNT solution. The lightweight, cost-effective, and reproducible nature of textile stretch sensors makes them well suited for practical applications in clothing. In this paper, wrist angles were measured by attaching textile stretch sensors to an arm sleeve. Three sensors were utilized to measure all three axes of the wrist. Additionally, sensor precision was heightened through the utilization of the Multi-Layer Perceptron (MLP) technique, a subtype of deep learning. Rather than fixing the measurement values of each sensor to specific axes, we created an algorithm utilizing the coupling between sensors, allowing the measurement of wrist angles in three dimensions. Using this algorithm, the error angle of wrist angles measured with textile stretch sensors could be measured at less than 4.5°. This demonstrated higher accuracy compared to other soft sensors available for measuring wrist angles.

14.
Sensors (Basel) ; 23(23)2023 Nov 26.
Article in English | MEDLINE | ID: mdl-38067789

ABSTRACT

Recently, extensive research has actively been conducted in relation to intelligent manufacturing systems. During the machining process, various factors, such as geometric errors, vibrations, and cutting force fluctuations, lead to shape errors. When a shape error exceeds the tolerance, it results in improper assembly or functionality issues in the assembled part. Predicting shape errors before or during the machining process helps increase production efficiency. In this paper, we propose a methodology that uses monitoring signals and on-machine measurement (OMM) results to predict machining quality in real time. We investigate the correlation between monitoring signals and OMM results and then construct a machine learning model for shape error estimation. The developed model implements a tool offset compensation strategy. The performance of the proposed method is evaluated under various sliding window sizes and the compensation weights. The experimental results confirmed that the proposed algorithm is effective for obtaining a uniform machining quality.

15.
J Appl Stat ; 50(16): 3294-3311, 2023.
Article in English | MEDLINE | ID: mdl-37969894

ABSTRACT

Brain imaging research is a very challenging topic due to complex structure and lack of explicitly identifiable features in the image. With the advancement of magnetic resonance imaging (MRI) technologies, such as diffusion tensor imaging (DTI), developing classification methods to improve clinical diagnosis is crucial. This paper proposes a classification method for DTI data based on a novel neural network strategy that combines a convolutional neural network (CNN) with a multilayer neural network using central-peripheral deviation (CPD), which reflects diffusion dynamics in the white matter by spatially evaluating the deviation of diffusion coefficients between the inner and outer parts of the brain. In our method, a multilayer perceptron (MLP) using CPD is combined with the final layers for classification after reducing the dimensions of images in the convolutional layers of the neural network architecture. In terms of training loss and the classification error, the proposed classification method improves the existing image classification with CNN. For real data analysis, we demonstrate how to process raw DTI image data sets obtained from a traumatic brain injury study (MagNeTS) and a brain atlas construction study (ICBM), and apply the proposed approach to the data, successfully improving classification performance with two age groups.

16.
Article in English | MEDLINE | ID: mdl-38013456

ABSTRACT

Cardiovascular disease (CVD) is the one of the most fatal diseases in the world we have seen in last two decades. For heart disease detection, imprecision in clinical parameters may occur due to error in taking readings or in measuring devices or environmental conditions etc. Hence, introducing fuzzy set theory in feature engineering may give better results as it deals with uncertainty. But in fuzzy set theory, only one uncertainty is considered, which is membership degree or degree of belongingness. Intuitionistic fuzzy set (IFS) considers two uncertainties - membership degree and non-membership degree and so IFS may provide efficient results. To reduce the risk of heart disease, an advanced deep learning algorithm will play a significant role in heart disease prediction that will help physicians to diagnose early. In this paper, we have established a transformation of patient features using i) intuitionistic fuzzy parameters, where Sugeno-type fuzzy complement is used and ii) fuzzy parameters, where gamma membership function is used. These transformed attributes are applied on Deep Learning prediction algorithm as Multi-layer Perceptron (MLP). The novelty of the paper lies from feature transformation to deep learning. It is observed that intuitionistic fuzzy transformation approach, keeping model parameters intact, significantly outperforms non-fuzzy method and gammy fuzzy Transformation, which is reflected in evaluation mechanisms.

17.
Front Bioeng Biotechnol ; 11: 1257591, 2023.
Article in English | MEDLINE | ID: mdl-37823024

ABSTRACT

The human brain is an extremely intricate and fascinating organ that is made up of the cerebrum, cerebellum, and brainstem and is protected by the skull. Brain stroke is recognized as a potentially fatal condition brought on by an unfavorable obstruction in the arteries supplying the brain. The severity of brain stroke may be reduced or controlled with its early prognosis to lessen the mortality rate and lead to good health. This paper proposed a technique to predict brain strokes with high accuracy. The model was constructed using data related to brain strokes. The aim of this work is to use Multi Layer Perceptron (MLP) as a classification technique for stroke data and used multi-optimizers that include Adaptive moment estimation with Maximum (AdaMax), Root Mean Squared Propagation (RMSProp) and Adaptive learning rate method (Adadelta). The experiment shows RMSProp optimizer is best with a data training accuracy of 95.8% and a value for data testing accuracy of 94.9%. The novelty of work is to incorporate multiple optimizers alongside the MLP classifier which offers a comprehensive approach to stroke prediction, providing a more robust and accurate solution. The obtained results underscore the effectiveness of the proposed methodology in enhancing the accuracy of brain stroke detection, thereby paving the way for potential advancements in medical diagnosis and treatment.

18.
Zhongguo Zhong Yao Za Zhi ; 48(16): 4362-4369, 2023 Aug.
Article in Chinese | MEDLINE | ID: mdl-37802862

ABSTRACT

Puerariae Lobatae Radix, the dried root of Pueraria lobata, is a traditional Chinese medicine with a long history. Puerariae Lobatae Caulis as an adulterant is always mixed into Puerariae Lobatae Radix for sales in the market. This study employed hyperspectral imaging(HSI) to distinguish between the two products. VNIR lens(spectral scope of 410-990 nm) and SWIR lens(spectral scope of 950-2 500 nm) were used for image acquiring. Multi-layer perceptron(MLP), partial least squares discriminant analysis(PLS-DA), and support vector machine(SVM) were employed to establish the full-waveband models and select the effective wavelengths for the distinguishing between Puerariae Lobatae Caulis and Puerariae Lobatae Radix, which provided technical and data support for the development of quick inspection equipment based on HSI. The results showed that MLP model outperformed PLS-DA and SVM models in the accuracy of discrimination with full wavebands in VNIR, SWIR, and VNIR+SWIR lens, which were 95.26%, 99.11%, and 99.05%, respectively. The discriminative band selection(DBS) algorithm was employed to select the effective wavelengths, and the discrimination accuracy was 93.05%, 98.05%, and 98.74% in the three different spectral scopes, respectively. On this basis, the MLP model combined with the effective wavelengths within the range of 2 100-2 400 nm can achieve the accuracy of 97.74%, which was close to that obtained with the full waveband. This waveband can be used to develop quick inspection devices based on HSI for the rapid and non-destructive distinguishing between Puerariae Lobatae Radix and Puerariae Lobatae Caulis.


Subject(s)
Pueraria , Hyperspectral Imaging , Medicine, Chinese Traditional , Algorithms , Neural Networks, Computer
19.
J Environ Manage ; 346: 118962, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37714085

ABSTRACT

Accurate prediction of carbon price is of great significance to national energy security and climate environment policies. This paper comes up with a new forecasting model variational mode decomposition, convolutional neural network, bidirectional long short-term memory, and multi-layer perceptron (VMD-CNN-BILSTM-MLP) to predict EUA carbon futures prices in two periods of five years before and after the introduction of emission reduction policies. The parameters of the VMD model are determined by genetic algorithm (GA) firstly, carbon futures prices are broken down into subsequences of different frequencies using the model. The MLP model is then applied to predict the highest frequency sequence. The CNN-BILSTM model is applied to predict other subsequences later. Finally, the predicted values of each subsequence are linearly added to obtain the final result of the entire model. The prediction effect of the model is mainly tested by root mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), coefficient of determination (R2) and the modification of Diebold-Mariano test (MDM). In both periods, the proposed model predicts better than the other models, and the prediction effect of carbon futures price in the first five years is a little better than that in the second five years. In general, the experiment of predicting carbon futures prices in two different periods, the experiment of changing the proportion of data set and the experiment of predicting the whole sample all prove that the mixed model proposed in this paper has good prediction effect.

20.
Comput Biol Med ; 164: 107290, 2023 09.
Article in English | MEDLINE | ID: mdl-37579584

ABSTRACT

The UNet series networks have been a leader in the field of medical image segmentation since their introduction. However, encoder and decoder structures of the traditional UNet series network are complex, with a large number of parameters and floating-point operations. This requires a large amount of data as support for model training, but most medical datasets only contain limited numbers of samples. To address this issue, we propose a global frequency domain UNet (GFUNet), a novel architecture for fast medical image segmentation. Inspired by recent modified Multi-Layer Perceptron(MLP)-like models, we combine Fourier Transform with UNet structure to achieve more efficient and effective encoding and decoding processes. Meanwhile, A dual-domain encoding module is designed to improve the performance of the encoder and decoder by fully used frequency domain feature. Furthermore, due to the excellent property of the Fourier Transform and its optimization, our network greatly reduces the number of parameters compared to other UNets. We evaluate GFUNet on several medical segmentation tasks, achieving improved segmentation performance compared to state-of-the-art network architectures for medical image segmentation. Compared to the original UNet, the results show that we reduce the number of parameters by 46 times, reduce computational complexity by 114 times, and improved the considerable dice score.


Subject(s)
Image Processing, Computer-Assisted , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL
...