Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 362
Filter
1.
Article in English | MEDLINE | ID: mdl-38953505

ABSTRACT

Eight geldings weighing 544 ± 16 kg were used to evaluate feeding a postexercise protein meal on plasma amino acids during recovery. Horses were fed sweet feed, corn, grass hay and equal amounts of a protein pellet (32% CP) with meals (MP group) or postexercise (EP group). Horses exercised 1-2 h/day, 5 days/week, for 12 weeks. A pre and poststudy 4 days total urine and feces collection was conducted. Urine and fecal samples were analyzed for nitrogen (N) to calculate N balance. Blood samples were drawn immediately after and at 1 and 3 h postexercise at the start and end of the study for plasma amino acid concentrations. Absorbed N and N retention were greater for the MP group compared to the EP group (p = 0.038, 0.033 respectively). An interaction revealed an increase in fecal N (p = 0.01) and decreased N digestibility for the MP group compared to the EP group at the end of the study. Plasma concentrations for 8 out of 14 amino acids were less for the EP group immediately after exercise compared to the MP group (p < 0.02). Plasma concentrations of lysine and arginine were greater for the EP group compared to the MP group at 1 and 3 h after exercise (p < 0.05 and 0.04 respectively). Changes were different for 8 out of the 14 amino acids immediately post exercise, 7 out of 14 amino acids at 1 h postexercise and 10 out of 14 amino acids at 3 h postexercise with positive changes for the EP group and negative changes for the MP group. The EP group had improved supply of plasma amino acids in the recovery period that sustained for 3 h postexercise and are indicative of better amino acid supply supporting muscle development.

2.
J Anim Sci Biotechnol ; 15(1): 91, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38961455

ABSTRACT

BACKGROUND: Broilers stand out as one of the fastest-growing livestock globally, making a substantial contribution to animal meat production. However, the molecular and epigenetic mechanisms underlying the rapid growth and development of broiler chickens are still unclear. This study aims to explore muscle development patterns and regulatory networks during the postnatal rapid growth phase of fast-growing broilers. We measured the growth performance of Cornish (CC) and White Plymouth Rock (RR) over a 42-d period. Pectoral muscle samples from both CC and RR were randomly collected at day 21 after hatching (D21) and D42 for RNA-seq and ATAC-seq library construction. RESULTS: The consistent increase in body weight and pectoral muscle weight across both breeds was observed as they matured, with CC outpacing RR in terms of weight at each stage of development. Differential expression analysis identified 398 and 1,129 genes in the two dimensions of breeds and ages, respectively. A total of 75,149 ATAC-seq peaks were annotated in promoter, exon, intron and intergenic regions, with a higher number of peaks in the promoter and intronic regions. The age-biased genes and breed-biased genes of RNA-seq were combined with the ATAC-seq data for subsequent analysis. The results spotlighted the upregulation of ACTC1 and FDPS at D21, which were primarily associated with muscle structure development by gene cluster enrichment. Additionally, a noteworthy upregulation of MUSTN1, FOS and TGFB3 was spotted in broiler chickens at D42, which were involved in cell differentiation and muscle regeneration after injury, suggesting a regulatory role of muscle growth and repair. CONCLUSIONS: This work provided a regulatory network of postnatal broiler chickens and revealed ACTC1 and MUSTN1 as the key responsible for muscle development and regeneration. Our findings highlight that rapid growth in broiler chickens triggers ongoing muscle damage and subsequent regeneration. These findings provide a foundation for future research to investigate the functional aspects of muscle development.

3.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892283

ABSTRACT

Skeletal muscle grows in response to a combination of genetic and environmental factors, and its growth and development influence the quality of pork. Elucidating the molecular mechanisms regulating the growth and development of skeletal muscle is of great significance to both animal husbandry and farm management. The Jiangquan black pig is an excellent pig breed based on the original Yimeng black pig, importing the genes of the Duroc pig for meat traits, and cultivated through years of scientific selection and breeding. In this study, full-length transcriptome sequencing was performed on three growth stages of Jiangquan black pigs, aiming to study the developmental changes in Jiangquan black pigs at different developmental stages at the molecular level and to screen the key genes affecting the growth of skeletal muscle in Jiangquan black pigs. We performed an enrichment analysis of genes showing differential expression and constructed a protein-protein interaction network with the aim of identifying core genes involved in the development of Jiangquan black pigs. Notably, genes such as TNNI2, TMOD4, PLDIM3, MYOZ1, and MYH1 may be potential regulators of muscle development in Jiangquan black pigs. Our results contribute to the understanding of the molecular mechanisms of skeletal muscle development in this pig breed, which will facilitate molecular breeding efforts and the development of pig breeds to meet the needs of the livestock industry.


Subject(s)
Gene Expression Profiling , Muscle, Skeletal , Transcriptome , Animals , Muscle, Skeletal/metabolism , Muscle, Skeletal/growth & development , Swine/genetics , Swine/growth & development , Gene Expression Profiling/methods , Gene Expression Regulation, Developmental , Muscle Development/genetics , Breeding , Protein Interaction Maps/genetics
4.
Front Vet Sci ; 11: 1375042, 2024.
Article in English | MEDLINE | ID: mdl-38872802

ABSTRACT

The Chengkou mountain chicken, a native Chinese poultry breed, holds significant importance in the country's poultry sector due to its delectable meat and robust stress tolerance. Muscle growth and development are pivotal characteristics in poultry breeding, with muscle fiber development during the embryonic period crucial for determining inherent muscle growth potential. Extensive evidence indicates that non-coding RNAs (ncRNAs) play a regulatory role in muscle growth and development. Among ncRNAs, circular RNAs (circRNAs), characterized by a closed-loop structure, have been shown to modulate biological processes through the regulation of microRNAs (miRNAs). This study seeks to identify and characterize the spatiotemporal-specific expression of circRNAs during embryonic muscle development in Chengkou mountain chicken, and to construct the potential regulatory network of circRNAs-miRNA-mRNAs. The muscle fibers of HE-stained sections became more distinct, and their boundaries were more defined over time. Subsequent RNA sequencing of 12 samples from four periods generated 9,904 novel circRNAs, including 917 differentially expressed circRNAs. The weighted gene co-expression network analysis (WGCNA)-identified circRNA source genes significantly enriched pathways related to cell fraction, cell growth, and muscle fiber growth regulation. Furthermore, a competitive endogenous RNA (ceRNA) network constructed using combined data of present and previous differentially expressed circRNAs, miRNA, and mRNA revealed that several circRNA transcripts regulate MYH1D, MYH1B, CAPZA1, and PERM1 proteins. These findings provide insight into the potential pathways and mechanisms through which circRNAs regulate embryonic muscle development in poultry, a theoretical support for trait improvement in domestic chickens.

5.
BMC Genom Data ; 25(1): 54, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849746

ABSTRACT

BACKGROUND: The analysis of differentially expressed genes in muscle tissues of sheep at different ages is helpful to analyze the gene expression trends during muscle development. In this study, the longissimus dorsi muscle of pure breeding Hu sheep (H), Suffolk sheep and Hu sheep hybrid F1 generation (SH) and East Friesian and Hu sheep hybrid sheep (EHH) three strains of sheep born 2 days (B2) and 8 months (M8) was used as the research object, and transcriptome sequencing technology was used to identify the differentially expressed genes of sheep longissimus dorsi muscle in these two stages. Subsequently, GO and KEGG enrichment analysis were performed on the differential genes. Nine differentially expressed genes were randomly selected and their expression levels were verified by qRT-PCR. RESULTS: The results showed that 842, 1301 and 1137 differentially expressed genes were identified in H group, SH group and EHH group, respectively. Among them, 191 differential genes were enriched in these three strains, including pre-folding protein subunit 6 (PFDN6), DnaJ heat shock protein family member A4 (DNAJA4), myosin heavy chain 8 (MYH8) and so on. GO and KEGG enrichment analysis was performed on 191 differentially expressed genes shared by the three strains to determine common biological pathways. The results showed that the differentially expressed genes were significantly enriched in ribosomes, unfolded protein binding, FoxO signaling pathway, glycolysis / glycogen generation and glutathione signaling pathway that regulate muscle protein synthesis and energy metabolism. The results of qRT-PCR were consistent with transcriptome sequencing, which proved that the sequencing results were reliable. CONCLUSIONS: Overall, this study revealed the important genes and signaling pathways related to sheep skeletal muscle development, and the result laid a foundation for further understanding the mechanism of sheep skeletal muscle development.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Developmental , Muscle, Skeletal , Animals , Sheep/genetics , Sheep/growth & development , Sheep/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/growth & development , Transcriptome , Muscle Development/genetics
6.
Poult Sci ; 103(8): 103882, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38833745

ABSTRACT

Long-term intensive genetic selection has led to significant differences between broiler and layer chickens, which are evident during the embryonic period. Despite this, there is a paucity of research on the genetic regulation of the initial formation of muscle fiber morphology in chick embryos. Embryonic d 17 (E17) is the key time point for myoblast fusion completion and muscle fiber morphology formation in chickens. This study aimed to explore the genetic regulatory mechanisms underlying the early muscle fiber morphology establishment in broiler chickens of Cornish (CC) and White Plymouth Rock (RR) and layer chickens of White Leghorn (WW) at E17 using the transcriptomic and chromatin accessibility sequencing of pectoral major muscles. The results showed that broiler chickens exhibited significant higher embryo weight and pectoral major muscle weight at E17 compared to layer chickens (P = 0.000). A total of 1,278, 1,248, and 892 differentially expressed genes (DEGs) of RNA-seq data were identified between CC vs. WW, RR vs. WW, and CC vs. RR, separately. All DEGs were combined for cluster analysis and they were divided into 6 clusters, including cluster 1 with higher expression in broilers and cluster 6 with higher expression in layers. DEGs in cluster 1 were enriched in terms related to macrophage activation (P = 0.002) and defense response to bacteria (P = 0.002), while DEGs in cluster 6 showed enrichment in protein-DNA complex (P = 0.003) and monooxygenase activity (P = 0.000). ATAC-seq data analysis identified a total of 38,603 peaks, with 13,051 peaks for CC, 18,780 peaks for RR, and 6,772 peaks for WW. Integrative analysis of transcriptomic and chromatin accessibility data revealed GOLM1, ISLR2, and TOPAZ1 were commonly upregulated genes in CC and RR. Furthermore, screening of all upregulated DEGs in cluster 1 from CC and RR identified GOLM1, ISLR2, and HNMT genes associated with neuroimmune functions and MYOM3 linked to muscle morphology development, showing significantly elevated expression in broiler chickens compared to layer chickens. These findings suggest active neural system connectivity during the initial formation of muscle fiber morphology in embryonic period, highlighting the early interaction between muscle fiber formation morphology and the nervous system. This study provides novel insights into late chick embryo development and lays a deeper foundation for further research.

7.
Genes (Basel) ; 15(5)2024 05 10.
Article in English | MEDLINE | ID: mdl-38790235

ABSTRACT

The process of muscle growth directly affects the yield and quality of pork food products. Muscle fibers are created during the embryonic stage, grow following birth, and regenerate during adulthood; these are all considered to be phases of muscle development. A multilevel network of transcriptional, post-transcriptional, and pathway levels controls this process. An integrated toolbox of genetics and genomics as well as the use of genomics techniques has been used in the past to attempt to understand the molecular processes behind skeletal muscle growth and development in pigs under divergent selection processes. A class of endogenous noncoding RNAs have a major regulatory function in myogenesis. But the precise function of miRNA-423-5p in muscle development and the related molecular pathways remain largely unknown. Using target prediction software, initially, the potential target genes of miR-423-5p in the Guangxi Bama miniature pig line were identified using various selection criteria for skeletal muscle growth and development. The serum response factor (SRF) was found to be one of the potential target genes, and the two are negatively correlated, suggesting that there may be targeted interactions. In addition to being strongly expressed in swine skeletal muscle, miR-423-5p was also up-regulated during C2C12 cell development. Furthermore, real-time PCR analysis showed that the overexpression of miR-423-5p significantly reduced the expression of myogenin and the myogenic differentiation antigen (p < 0.05). Moreover, the results of the enzyme-linked immunosorbent assay (ELISA) demonstrated that the overexpression of miR-423-5p led to a significant reduction in SRF expression (p < 0.05). Furthermore, miR-423-5p down-regulated the luciferase activities of report vectors carrying the 3' UTR of porcine SRF, confirming that SRF is a target gene of miR-423-5p. Taken together, miR-423-5p's involvement in skeletal muscle differentiation may be through the regulation of SRF.


Subject(s)
MicroRNAs , Muscle Development , Muscle, Skeletal , Swine, Miniature , Animals , Mice , Cell Line , Gene Expression Regulation, Developmental , MicroRNAs/genetics , MicroRNAs/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/growth & development , Serum Response Factor/metabolism , Serum Response Factor/genetics , Swine, Miniature/genetics , Swine, Miniature/growth & development
8.
Biology (Basel) ; 13(5)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38785766

ABSTRACT

Mink is a kind of small and precious fur animal resource. In this study, we employed transcriptomics technology to analyze the gene expression profile of mink pectoral muscle tissue, thereby elucidating the regulatory mechanisms underlying mink growth and development. Consequently, a total of 25,954 gene expression profiles were acquired throughout the growth and development stages of mink at 45, 90, and 120 days. Among these profiles, 2607 genes exhibited significant differential expression (|log2(fold change)| ≥ 2 and p_adj < 0.05). GO and KEGG enrichment analyses revealed that the differentially expressed genes were primarily associated with the mitotic cell cycle process, response to growth factors, muscle organ development, and insulin resistance. Furthermore, GSEA enrichment analysis demonstrated a significant enrichment of differentially expressed genes in the p53 signaling pathway at 45 days of age. Subsequent analysis revealed that genes associated with embryonic development (e.g., PEG10, IGF2, NRK), cell cycle regulation (e.g., CDK6, CDC6, CDC27, CCNA2), and the FGF family (e.g., FGF2, FGF6, FGFR2) were all found to be upregulated at 45 days of age in mink, which suggested a potential role for these genes in governing early growth and developmental processes. Conversely, genes associated with skeletal muscle development (PRVA, TNNI1, TNNI2, MYL3, MUSTN1), a negative regulator of the cell cycle gene (CDKN2C), and IGFBP6 were found to be up-regulated at 90 days of age, suggesting their potential involvement in the rapid growth of mink. In summary, our experimental data provide robust support for elucidating the regulatory mechanisms underlying the growth and development of mink.

9.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731894

ABSTRACT

Triptolide is a natural compound in herbal remedies with anti-inflammatory and anti-proliferative properties. We studied its effects on critical signaling processes within the cell, including Notch1 and STAT3 signaling. Our research showed that triptolide reduces cancer cell proliferation by decreasing the expression of downstream targets of these signals. The levels of each signal-related protein and mRNA were analyzed using Western blot and qPCR methods. Interestingly, inhibiting one signal with a single inhibitor alone did not significantly reduce cancer cell proliferation. Instead, MTT assays showed that the simultaneous inhibition of Notch1 and STAT3 signaling reduced cell proliferation. The effect of triptolide was similar to a combination treatment with inhibitors for both signals. When we conducted a study on the impact of triptolide on zebrafish larvae, we found that it inhibited muscle development and interfered with muscle cell proliferation, as evidenced by differences in the staining of myosin heavy chain and F-actin proteins in confocal fluorescence microscopy. Additionally, we noticed that inhibiting a single type of signaling did not lead to any significant muscle defects. This implies that triptolide obstructs multiple signals simultaneously, including Notch1 and STAT3, during muscle development. Chemotherapy is commonly used to treat cancer, but it may cause muscle loss due to drug-related adverse reactions or other complex mechanisms. Our study suggests that anticancer agents like triptolide, inhibiting essential signaling pathways including Notch1 and STAT3 signaling, may cause muscle atrophy through anti-proliferative activity.


Subject(s)
Cell Proliferation , Diterpenes , Epoxy Compounds , Phenanthrenes , Receptor, Notch1 , STAT3 Transcription Factor , Animals , Humans , Cell Line, Tumor , Cell Proliferation/drug effects , Diterpenes/pharmacology , Epoxy Compounds/pharmacology , Phenanthrenes/pharmacology , Receptor, Notch1/metabolism , Receptor, Notch1/genetics , Receptors, Notch/metabolism , Signal Transduction/drug effects , STAT3 Transcription Factor/metabolism , Zebrafish , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics
10.
Adv Sci (Weinh) ; 11(24): e2305706, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38582509

ABSTRACT

Haplotype-resolved 3D chromatin architecture related to allelic differences in avian skeletal muscle development has not been addressed so far, although chicken husbandry for meat consumption has been prevalent feature of cultures on every continent for more than thousands of years. Here, high-resolution Hi-C diploid maps (1.2-kb maximum resolution) are generated for skeletal muscle tissues in chicken across three developmental stages (embryonic day 15 to day 30 post-hatching). The sequence features governing spatial arrangement of chromosomes and characterize homolog pairing in the nucleus, are identified. Multi-scale characterization of chromatin reorganization between stages from myogenesis in the fetus to myofiber hypertrophy after hatching show concordant changes in transcriptional regulation by relevant signaling pathways. Further interrogation of parent-of-origin-specific chromatin conformation supported that genomic imprinting is absent in birds. This study also reveals promoter-enhancer interaction (PEI) differences between broiler and layer haplotypes in skeletal muscle development-related genes are related to genetic variation between breeds, however, only a minority of breed-specific variations likely contribute to phenotypic divergence in skeletal muscle potentially via allelic PEI rewiring. Beyond defining the haplotype-specific 3D chromatin architecture in chicken, this study provides a rich resource for investigating allelic regulatory divergence among chicken breeds.


Subject(s)
Chickens , Haplotypes , Muscle, Skeletal , Animals , Chickens/genetics , Haplotypes/genetics , Muscle, Skeletal/metabolism , Chromosome Mapping/methods , Genome/genetics
11.
Curr Issues Mol Biol ; 46(4): 3713-3728, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38666961

ABSTRACT

The aim of this study was to explore the molecular mechanisms through which different levels of GAA affect chicken muscle development by influencing miRNA expression, to lay a theoretical foundation for the identification of key functional small RNAs related to poultry muscle development, and to provide new insights into the regulatory mechanisms of GAA on muscle development and meat quality in broilers. It provides a new theoretical basis for using GAA as a feed additive to improve feed performance. Small RNA sequencing technology was utilized to obtain the expression profiles of miRNA in the broiler pectoral muscle fed with different levels of GAA (0 g/kg, 1.2 g/kg and 3.6 g/kg). An analysis of differentially expressed miRNAs revealed 90 such miRNAs in the three combination comparisons, with gga-miR-130b-5p exhibiting significant differences across all three combinations. Furthermore, three of the differentially expressed miRNAs were performed by RT-qPCR verification, yielding results consistent with those obtained from small RNA sequencing. Target gene prediction, as well as the GO and KEGG enrichment analysis of differentially expressed miRNAs, indicated their involvement in muscle cell differentiation and other processes, particularly those associated with the MAPK signaling pathway. This study has, thus, provided valuable insights and resources for the further exploration of the miRNA molecular mechanism underlying the influence of guanidine acetic acid on broiler muscle development. Combined with previous studies and small RNA sequencing, adding 1.2 g/kg GAA to the diet can better promote the muscle development of broilers.

12.
Poult Sci ; 103(6): 103708, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631230

ABSTRACT

Meat production performance is the most important economic trait in broilers, and skeletal muscle, as the largest organ in animals, is directly related to meat production during embryonic and postnatal growth and development. N6-Methyladenosine (m6A) is a chemical modification occurs on RNA adenosine that has been reported to participate in a variety of biological processes in all species. However, there are still few reports on the regulatory role of muscle growth and development in poultry after birth. This study aims to reveal the distribution of m6A modification sites in chicken pectoralis major muscle after birth and find out the regulatory relationship between m6A and muscle development. As representatives of leaner (Xinghua chicken [XH]) and hypertrophic (White Recessive Rock chicken [WRR]) broilers, there are significant differences in body weight, muscle fiber diameter, and muscle fiber cross-sectional area between XH and WRR chickens. RNA sequencing detected a total of 397 differentially expressed genes (DEG) in the pectoralis major muscle of XH and WRR chicken, and these DEGs were mainly enriched in catalytic activity and metabolic pathways. MeRIP sequencing results showed that among all 6,476 differentially modified m6A peaks, about 90% peaks (5,823) were differentially down regulated in XH chickens. The joint analysis of the mRNA and MeRIP sequencing data found 145 DEGs with differential m6A peak, ALKBH5 as a m6A demethylase, was also included. The highly expression of ALKBH5 in the muscle tissue of poultry and differential expression between XH and WRR chickens suggest that ALKBH5 may play a crucial role in regulating muscle development. Our results revealed that there were significant differences in growth rate, body weight, muscle fiber diameter, and fiber cross-section area between WRR and XH chicken, as well as significant differences in m6A methylation level and muscle metabolism level.


Subject(s)
Adenosine , Chickens , Muscle Development , Animals , Chickens/growth & development , Chickens/genetics , Adenosine/analogs & derivatives , Adenosine/metabolism , Pectoralis Muscles/growth & development , Pectoralis Muscles/metabolism , Sequence Analysis, RNA/veterinary , Male
13.
Cells ; 13(8)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38667334

ABSTRACT

Meat yield, determined by muscle growth and development, is an important economic trait for the swine industry and a focus of research in animal genetics and breeding. PDZ and LIM domain 5 (PDLIM5) are cytoskeleton-related proteins that play key roles in various tissues and cells. These proteins have multiple isoforms, primarily categorized as short (PDLIM5-short) and long (PDLIM5-long) types, distinguished by the absence and presence of an LIM domain, respectively. However, the expression patterns of swine PDLIM5 isoforms and their regulation during porcine skeletal muscle development remain largely unexplored. We observed that PDLIM5-long was expressed at very low levels in pig muscles and that PDLIM5-short and total PDLIM5 were highly expressed in the muscles of slow-growing pigs, suggesting that PDLIM5-short, the dominant transcript in pigs, is associated with a slow rate of muscle growth. PDLIM5-short suppressed myoblast proliferation and myogenic differentiation in vitro. We also identified two single nucleotide polymorphisms (-258 A > T and -191 T > G) in the 5' flanking region of PDLIM5, which influenced the activity of the promoter and were associated with muscle growth rate in pigs. In summary, we demonstrated that PDLIM5-short negatively regulates myoblast proliferation and differentiation, providing a theoretical basis for improving pig breeding programs.


Subject(s)
LIM Domain Proteins , Muscle Development , Animals , Muscle Development/genetics , LIM Domain Proteins/genetics , LIM Domain Proteins/metabolism , Swine , Cell Proliferation/genetics , Cell Differentiation/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/growth & development , Polymorphism, Single Nucleotide/genetics , Myoblasts/metabolism , Myoblasts/cytology , Promoter Regions, Genetic/genetics
14.
J Agric Food Chem ; 72(15): 8595-8605, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38591744

ABSTRACT

The nutritional composition of the diet significantly impacts the overall growth and development of weaned piglets. The current study aimed to explore the effects and underlying mechanisms of dietary tryptophan consumption on muscle fiber type transformation during the weaning period. Thirty weaned piglets with an average body weight of 6.12 ± 0.16 kg were randomly divided into control (CON, 0.14% Trp diet) and high Trp (HT, 0.35% Trp) groups and maintained on the respective diet for 28 days. The HT group of weaned piglets exhibited highly significant improvements in growth performance and an increased proportion of fast muscle fibers. Transcriptome sequencing revealed the potential contribution of differentially expressed circular RNAs toward the transformation of myofiber types in piglets and toward the regulation of expression of related genes by targeting the microRNAs, miR-34c and miR-182, to further regulate myofiber transformation. In addition, 145 DE circRNAs were identified as potentially protein-encoding, with the encoded proteins associated with a myofiber type transformation. In conclusion, the current study greatly advances and refines our current understanding of the regulatory networks associated with piglet muscle development and myofiber type transformation and also contributes to the optimization of piglet diet formulation.


Subject(s)
MicroRNAs , Tryptophan , Animals , Swine/genetics , Tryptophan/metabolism , Weaning , RNA, Circular/genetics , Dietary Supplements , Diet/veterinary , MicroRNAs/genetics
15.
Gen Comp Endocrinol ; 352: 114500, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38508470

ABSTRACT

Circular RNAs (circRNAs) are non-coding RNAs with endogenous regulatory functions, including regulating skeletal muscle development. However, its role in the development of skeletal muscle in Japanese flounder (Paralichthys olivaceus) is not clear. Therefore we screened a candidate circpdlim5a, which is derived from the gene pdlim5a, from the skeletal muscle transcriptome of Japanese flounder. We characterized circpdlim5a, which was more stable compared to the linear RNA pdlim5a. Distributional characterization of circpdlim5a showed that circpdlim5a was predominantly distributed in the nucleus and was highly expressed in the skeletal muscle of adult Japanese flounder (24 months). When we further studied the circpdlim5a function, we found that it inhibited the expression of proliferation and differentiation genes according to the over-expression experiment of circpdlim5a in myoblasts. We concluded that circpdlim5a may inhibit the proliferation and differentiation of myoblasts and thereby inhibit skeletal muscle development in Japanese flounder. This experiment provides information for the study of circRNAs by identifying circpdlim5a and exploring its function, and offers clues for molecular breeding from an epigenetic perspective.


Subject(s)
Flounder , Animals , Flounder/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Transcriptome
16.
Int J Biol Macromol ; 264(Pt 2): 130737, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460642

ABSTRACT

Muscle development and intramuscular fat (IMF) deposition are intricate physiological processes characterized by multiple gene expressions and interactions. In this research, the phenotypic variations in the breast muscle of Jingyuan chickens were examined at three different time points: 42, 126, and 180 days old. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were performed to identify differentially methylated genes (DMGs) responsible for regulating muscle development and IMF deposition. The findings indicate a significant increase in breast muscle weight (BMW), myofiber diameter, and cross-sectional area, as well as IMF content, in correlation with the progressive number of growing days in Jingyuan chickens. The findings also revealed that 380 hypo-methylated and 253 hyper-methylated DMGs were identified between the three groups of breast muscle. Module gene and DMG association analysis identified m6A methylation-mediated multiple DMGs associated with muscle development and fat metabolism. In vitro cell modeling analysis reveals stage-specific differences in the expression of CUBN, MEGF10, BOP1, and BMPR2 during the differentiation of myoblasts and intramuscular preadipocytes. Cycloleucine treatment significantly inhibited the expression levels of CUBN, BOP1, and BMPR2, and promoted the expression of MEGF10. These results suggest that m6A methylation-mediated CUBN, MEGF10, BOP1, and BMPR2 can serve as potential candidate genes for regulating muscle development and IMF deposition, and provide an important theoretical basis for further investigation of the functional mechanism of m6A modification involved in adipogenesis.


Subject(s)
Adipogenesis , Chickens , Animals , Chickens/genetics , Chickens/metabolism , Adipogenesis/genetics , Gene Expression Profiling , Lipid Metabolism/genetics , Muscle Development/genetics
17.
Int J Mol Sci ; 25(6)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38542412

ABSTRACT

Thousands of lncRNAs have been found in zebrafish embryogenesis and adult tissues, but their identification and organogenesis-related functions have not yet been elucidated. In this study, high-throughput sequencing was performed at three different organogenesis stages of zebrafish embryos that are important for zebrafish muscle development. The three stages were 10 hpf (hours post fertilization) (T1), 24 hpf (T2), and 36 hpf (T3). LncRNA gas5, associated with muscle development, was screened out as the next research target by high-throughput sequencing and qPCR validation. The spatiotemporal expression of lncRNA gas5 in zebrafish embryonic muscle development was studied through qPCR and in situ hybridization, and functional analysis was conducted using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/Cas9, CRISPR/Cas9). The results were as follows: (1) A total of 1486 differentially expressed lncRNAs were identified between T2 and T1, among which 843 lncRNAs were upregulated and 643 were downregulated. The comparison with T3 and T2 resulted in 844 differentially expressed lncRNAs, among which 482 lncRNAs were upregulated and 362 lncRNAs were downregulated. A total of 2137 differentially expressed lncRNAs were found between T3 and T1, among which 1148 lncRNAs were upregulated and 989 lncRNAs were downregulated, including lncRNA gas5, which was selected as the target gene. (2) The results of spatiotemporal expression analysis showed that lncRNA gas5 was expressed in almost all detected embryos of different developmental stages (0, 2, 6, 10, 16, 24, 36, 48, 72, 96 hpf) and detected tissues of adult zebrafish. (3) After lncRNA gas5 knockout using CRISPR/Cas9 technology, the expression levels of detected genes related to muscle development and adjacent to lncRNA gas5 were more highly affected in the knockout group compared with the control group, suggesting that lncRNA gas5 may play a role in embryonic muscle development in zebrafish. (4) The results of the expression of the skeletal myogenesis marker myod showed that the expression of myod in myotomes was abnormal, suggesting that skeletal myogenesis was affected after lncRNA gas5 knockout. The results of this study provide an experimental basis for further studies on the role of lncRNA gas5 in the embryonic skeletal muscle development of zebrafish.


Subject(s)
RNA, Long Noncoding , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Zebrafish/metabolism , Organogenesis/genetics , Embryonic Development/genetics , Muscle Development/genetics
18.
Mol Biol Rep ; 51(1): 386, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38441676

ABSTRACT

BACKGROUND: There was significant difference in muscle development between fat-type and lean-type pig breeds. METHODS AND RESULTS: In current study, transcriptome analysis and bioinformatics analysis were used to compare the difference in longissimus dorsi (LD) muscle at three time-points (38 days post coitus (dpc), 58 dpc, and 78 dpc ) between Huainan (HN) and Large white (LW) pig breeds. A total of 24500 transcripts were obtained in 18 samples, and 2319, 2799, and 3713 differently expressed genes (DEGs) were identified between these two breeds at 38 dpc, 58 dpc, and 78 dpc, respectively. And the number and foldchange of DEGs were increased, the alternative splice also increased. The cluster analysis of DEGs indicated the embryonic development progress of LD muscle between these two breeds was different. There were 539 shared DEGs between HN and LW at three stages, and the top-shared DEGs were associated with muscle development and lipid deposition, such as KLF4, NR4A1, HSP70, ZBTB16 and so on. CONCLUSIONS: The results showed DEGs between Huainan (HN) and Large white (LW) pig breeds, and contributed to the understanding the muscle development difference between HN and LW, and provided basic materials for improvement of meat quality.


Subject(s)
Computational Biology , Gene Expression Profiling , Female , Pregnancy , Swine/genetics , Animals , Cluster Analysis , Embryonic Development , Obesity , Vitamins
19.
Int J Biol Macromol ; 265(Pt 1): 130855, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38490377

ABSTRACT

Transient receptor potential canonical (TRPC) channels allow the intracellular entry of Ca2+ and play important roles in several physio-pathological processes. In this study, we constructed transgenic mice expressing porcine TRPC1 (Tg-pTRPC1) to verify the effects of TRPC1 on skeletal muscle growth and elucidate the underlying mechanism. Porcine TRPC1 increased the muscle mass, fiber cross-sectional area, and exercise endurance of mice and accelerated muscle repair and regeneration. TRPC1 overexpression enhanced ß-catenin expression and promoted myogenesis, which was partly reversed by inhibitors of ß-catenin. TRPC1 facilitated the accumulation of intracellular Ca2+ and nuclear translocation of the NFATC2/NFATC2IP complex involved in the Wnt/Ca2+ pathway, promoting muscle growth. Paired related homeobox 1 (Prrx1) promoted the expression of TRPC1, NFATC2, and NFATC2IP that participate in the regulation of muscle growth. Taken together, our findings indicate that porcine TRPC1 promoted by Prrx1 could regulate muscle development through activating the canonical Wnt/ß-catenin and non-canonical Wnt/Ca2+ pathways.


Subject(s)
Transient Receptor Potential Channels , beta Catenin , Mice , Animals , Swine , beta Catenin/genetics , beta Catenin/metabolism , Muscle, Skeletal/metabolism , Transcription Factors/metabolism , DNA-Binding Proteins/metabolism , Transient Receptor Potential Channels/metabolism , Calcium/metabolism , TRPC Cation Channels/genetics , TRPC Cation Channels/metabolism
20.
Curr Biol ; 34(7): 1438-1452.e6, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38513654

ABSTRACT

Steroid hormones regulate tissue development and physiology by modulating the transcription of a broad spectrum of genes. In insects, the principal steroid hormones, ecdysteroids, trigger the expression of thousands of genes through a cascade of transcription factors (TFs) to coordinate developmental transitions such as larval molting and metamorphosis. However, whether ecdysteroid signaling can bypass transcriptional hierarchies to exert its function in individual developmental processes is unclear. Here, we report that a single non-TF effector gene mediates the transcriptional output of ecdysteroid signaling in Drosophila myoblast fusion, a critical step in muscle development and differentiation. Specifically, we show that the 20-hydroxyecdysone (commonly referred to as "ecdysone") secreted from an extraembryonic tissue, amnioserosa, acts on embryonic muscle cells to directly activate the expression of antisocial (ants), which encodes an essential scaffold protein enriched at the fusogenic synapse. Not only is ants transcription directly regulated by the heterodimeric ecdysone receptor complex composed of ecdysone receptor (EcR) and ultraspiracle (USP) via ecdysone-response elements but also more strikingly, expression of ants alone is sufficient to rescue the myoblast fusion defect in ecdysone signaling-deficient mutants. We further show that EcR/USP and a muscle-specific TF Twist synergistically activate ants expression in vitro and in vivo. Taken together, our study provides the first example of a steroid hormone directly activating the expression of a single key non-TF effector gene to regulate a developmental process via inter-organ signaling and provides a new paradigm for understanding steroid hormone signaling in other developmental and physiological processes.


Subject(s)
Drosophila Proteins , Receptors, Steroid , Animals , DNA-Binding Proteins/metabolism , Ecdysone , Ecdysteroids , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Receptors, Steroid/genetics , Receptors, Steroid/metabolism , Molting/physiology , Drosophila/physiology , Gene Expression Regulation, Developmental
SELECTION OF CITATIONS
SEARCH DETAIL
...