Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 227
Filter
1.
Front Sports Act Living ; 6: 1428301, 2024.
Article in English | MEDLINE | ID: mdl-39253625

ABSTRACT

Introduction: Massage is an effective treatment for reducing pain, swelling, stiffness, and improving muscle mobility. Although self-reported benefits on muscle stiffness and pain are well-known, studies measuring muscle stiffness objectively are scarce. Methods: A randomized controlled trial involving 30 recreationally active young women (22.3 ± 0.4 years) was conducted. The participants were randomly assigned to either the control group or the intervention group which received a series of five 30-min whole back therapeutic massage sessions over 5 weeks. Shear wave elastography was used to assess muscle stiffness (erector spinae (ESp) and upper trapezius (UT) muscles) before and after the intervention and at 3-week follow-up. Results: For ESp, there was no statistically significant time × group interaction (F = 2.908; p = 0.063). However, there was a statistically significant and large time × group interaction for UT (F = 13.533; p = 0.006; η 2 = 0.19). Post-hoc testing for time indicated that the shear modulus in the intervention group was reduced at follow-up (p = 0.005; d = 1.02), while the difference between baseline and post-intervention measurements were not statistically significant (p = 0.053; d = 0.75). Conclusion: In conclusion, massage significantly reduced proximal UT stiffness both 3 days and 3 weeks after the intervention. However, it had no significant effect on the distal part of UT or the ESp muscle.

2.
J Therm Biol ; 124: 103952, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39167907

ABSTRACT

Aging process is correlated with negative changes in muscles properties such as their thermal responsiveness and stiffness. At the same time masters athletes are often considered as an exemplars of successful aging. Taking this into account, the aim of the study was to establish thermal portrait of lower limbs in Masters Athletes in Track & Field competing in 200 m race as well as to find out the effect of exercise on muscle stiffness. Thermal images and myotonometry were applied at restin state and immediately after the race. Indoor sprint in Masters athletes did not cause significant skin temperature changes. Only assymetries were found for Biceps femoris muscle (left vs right before p = 0,0410; after p = 0,046). Gastrocnemius was the most responsive area for sprinting in terms of muscle stiffness. Some specific adaptations to sprint were found. Masters athlete's thermal profile of lower extremities was generally characterized by symmetry. Maximal exertion did not result in an increase in muscle stiffness among the athletes, suggesting the positive influence of sports training in aging athletes.

3.
Front Physiol ; 15: 1421676, 2024.
Article in English | MEDLINE | ID: mdl-39139480

ABSTRACT

Introduction: The pupil light reflex (photomotor reflex) has a duration of 3.5 s and is a highly reproducible measurement. Conventionally, the autonomic nervous system (ANS) activity evaluated by this reflex does not consider the viscoelasticity of the iris muscles. This study aims to detect differences in reflex autonomic activity in a supine position with parameters derived from the Kelvin-Voigt viscoelastic model in two distinct groups of elite athletes. Method: Groups formed using a dendrogram analysis based on basal autonomic activity assessed with heart rate variability. Heart rate variability was measured, and the photomotor reflex was modeled. Results: The model showed a high degree of adjustment to the photomotor reflex (r2 = 0.99 ± 0.01). The impulse 3, an indicator of reflex sympathetic activity, revealed a significantly higher activity (ρ ≤ 0.05) in the [sympa/para]+ group compared to the [sympa/para]⁻ group. This result was further supported by a greater relative total redilation amplitude (ρ ≤ 0.05) and a shorter duration of 75% redilation (ρ ≤ 0.01). Finally, the relative total redilation amplitude exhibited a significant correlation with the linear stiffness constant (ρ ≤ 0.001) and the maximum redilation speed with restoring force (ρ ≤ 0.001). Discussion: These results indicate that (i) the photomotor reflex can detect an alteration of the reflex autonomic activity specific to each of the two branches of the ANS (ii) the viscoelastic properties of the iris muscles play a significant role in the energy storage-restitution mechanisms during the photomotor reflex. This approach could allow athletes to benefit from reduced time spent in the analysis of ANS activity, potentially making it an almost daily and automated process.

4.
Life (Basel) ; 14(8)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39202698

ABSTRACT

Propulsive power is one of the factors that determine the performance of sprint cycling. Pedaling rate is related to power output, and stiffness is associated with improving performance in athletic tasks. PURPOSE: to investigate the relationship between musculoarticular stiffness and pedaling rate. METHODS: twenty-two healthy, untrained male volunteers (19 ± 2 years, 175 ± 6 cm, 74 ± 16 kg) were divided into two groups after their musculoarticular (MA) stiffness was tested, and these groups were the stiffness group (SG) and compliant group (CG). A 6-s maximal cycling test was conducted in four cycling modes, which were levels 5 and 10 air-resistance, and levels 3 and 7 magnetic-resistance. Peak and average cadence, peak power output (POpeak), crank force (CFpeak), peak rate of crank force development (RCFD), and the angle of peak crank force were collected. The significance of differences between the two groups for these variables was assessed using an independent samples t-test. Pearson product-moment correlations were calculated to analyze the relationship between MA stiffness and each performance variable. RESULTS: the SG had significantly higher peak cadence and average cadence at level 3 magnetic-resistance, peak crank force, and peak power output at level 10 air-resistance, peak rate of crank force development at levels 5 air-resistance, 10 air-resistance, and 3 magnetic-resistance (p < 0.05). MA stiffness was significantly correlated with average cadence at levels 5 and 10 air-resistance, peak crank force in all 4 modes, and RCFD and peak power output at level 10 air-resistance. There were no significant relationships between MA stiffness and the angle of peak crank force in each cycling mode. CONCLUSION: results indicate that participants with relatively higher MA stiffness seemed to have a higher pedaling rate during a 6-s sprint cycling in these conditions. They also performed a superior crank force and rate of crank force development, producing greater power output when sprint cycling. Optimizing cycling resistance or gear ratio to enhance both RCFD and musculotendinous stiffness may be crucial for improving sprint cycling performance.

5.
Cureus ; 16(8): e67887, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39193054

ABSTRACT

Stiff person syndrome (SPS) is a progressive autoimmune disorder characterized by muscle rigidity, frequent falls, and spasms, affecting primarily women. Recent advances have linked SPS to specific antibodies, such as anti-glutamic acid decarboxylase (GAD)-65, but effective treatments remain elusive. We report the case of a 53-year-old female who developed chronic lower back pain, tingling paresthesias, and progressive rigidity in the lower limbs. Electromyographic examination revealed muscle spasms and co-contractions, along with severe rigidity and reactive spasms upon touch. Imaging studies showed a polymyomatous uterus and no hypermetabolic lesions. She was diagnosed with stiff person syndrome with positive anti-GAD65 autoantibodies. Patient was treated with methylprednisolone, oral corticosteroids, gabapentin, baclofen, alprazolam, immunoglobulins, and rituximab, leading to moderate improvement in her condition. This case report aims to highlight the association between SPS and anti-GAD65 autoantibodies, emphasizing the importance of early diagnosis and comprehensive management.

6.
J Biomech ; 174: 112267, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39141960

ABSTRACT

The objective of this study is to compare shear modulus of lower limb muscles between children with hypotonia versus typical development (TD) or developmental disorders associated with altered tone. Nineteen children with mild hypotonia (mean age 9.4 ± 2.3y, 13 male) completed assessment of resting shear modulus of rectus femoris, biceps femoris (BF), tibialis anterior (TA) and gastrocnemius lateralis (GL) at short and long lengths using shear wave elastography. Data was compared with previous data from TD children and a scoping review for children with developmental disorders. Data were collated according to Net-Longitudinal Tension Angle (Net-LTA), which is the muscle length expressed as the net proximal and distal joint angles. Effects of Net-LTA (e.g., short, neutral, long) were examined according to sex, age and body mass index (BMI). In children with hypotonia, shear modulus was: higher at longer versus shorter lengths for four muscles (p < 0.01); correlated with age for BF-short (r = 0.60, p < 0.03) and GL-short (r = -0.54, p < 0.03), with BMI for BF-short (r = 0.71, p < 0.05); and not different between sexes (p > 0.05). The shear modulus values for lower limb muscles for children with mild hypotonia were lower than those for children with Duchenne Muscular Dystrophy (TA-neutral), or Cerebral Palsy (GL-neutral), but not TD children (all four muscles). In conclusion, shear modulus increases with longer muscle length (i.e. higher Net-LTA) in mildly hypotonic children. Children with mild hypotonia have lower shear modulus than children with cerebral palsy and Duchenne muscular dystrophy.


Subject(s)
Elasticity Imaging Techniques , Lower Extremity , Muscle Hypotonia , Muscle, Skeletal , Humans , Male , Child , Female , Muscle Hypotonia/physiopathology , Muscle, Skeletal/physiopathology , Elasticity Imaging Techniques/methods , Lower Extremity/physiopathology , Adolescent , Elastic Modulus
7.
Brain Sci ; 14(8)2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39199515

ABSTRACT

OBJECTIVES: Hypersensitive acupoints in specific body areas are associated with corresponding internal or visceral disorders. Back-shu points are clinically significant for the diagnosis of visceral organ disease, according to the biomechanical characteristics of the acupoints. In this study, we assessed the biomechanical characteristics and pain sensitivities of five back-shu points linked to five visceral organs in healthy participants. METHODS: The study included 48 volunteer participants. A myotonometry was used to assess muscle tone and muscle stiffness at five back-shu points associated with visceral organs. Pressure was monitored using a microcontroller and a force sensor. Pain sensitivity was assessed in response to deep pressure pain produced by a constant force. RESULTS: Substantial differences in muscle tone and stiffness were observed at the five back-shu points; muscle tone was highest at BL15, whereas muscle tone and muscle stiffness were lowest at BL23. Moreover, pain sensitivity was significantly different among the acupoints; pain sensitivity was highest at BL23. There was a significant negative correlation between muscle tone and pain sensitivity. CONCLUSIONS: We found significant differences in muscle tone, muscle stiffness, and pain sensitivity among five back-shu points associated with visceral organs, which may be attributable to anatomical variations at each point. Our findings suggest that differences at back-shu points should be considered to ensure the accurate diagnosis of visceral disease.

8.
Eur J Appl Physiol ; 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39066912

ABSTRACT

PURPOSE: Muscle, tendon, and muscle-tendon unit (MTU) stiffness as well as passive peak torque (PPT) or delayed stretching pain sensation are typical explanatory approaches for stretching adaptations. However, in literature, differences in the study inclusion, as well as applying meta-analytical models without accounting for intrastudy dependency of multiple and heteroscedasticity of data bias the current evidence. Furthermore, most of the recent analyses neglected to investigate PPT adaptations and further moderators. METHODS: The presented review used the recommended meta-analytical calculation method to investigate the effects of stretching on stiffness as well as on passive torque parameters using subgroup analyses for stretching types, stretching duration, and supervision. RESULTS: Chronic stretching reduced muscle stiffness ( - 0.38, p = 0.01) overall, and also for the supervised ( - 0.49, p = 0.004) and long static stretching interventions ( - 0.61, p < 0.001), while the unsupervised and short duration subgroups did not reach the level of significance (p = 0.21, 0.29). No effects were observed for tendon stiffness or for subgroups (e.g., long-stretching durations). Chronic PPT (0.55, p = 0.005) in end ROM increased. Only long-stretching durations sufficiently decreased muscle stiffness acutely. No effects could be observed for acute PPT. CONCLUSION: While partially in accordance with previous literature, the results underline the relevance of long-stretching durations when inducing changes in passive properties. Only four acute PPT in end ROM studies were eligible, while a large number were excluded as they provided mathematical models and/or lacked control conditions, calling for further randomized controlled trials on acute PPT effects.

9.
Front Vet Sci ; 11: 1425917, 2024.
Article in English | MEDLINE | ID: mdl-39081821

ABSTRACT

Tetanus is a toxigenic illness caused by the action of Clostridium tetani neurotoxin (TeNT), which results in partial or generalized muscle stiffness in infected mammals and birds. The disease is rarely reported in cats due to their innate resistance to the toxin. This multicentric retrospective study aimed to describe a significant population of cats with a diagnosis of tetanus and report their signalment, clinical and neurological signs, diagnostic findings, treatment, and outcome. A retrospective search through medical records from 11 referral centers in Europe resulted in the identification of 27 cases of feline tetanus from July 2005 to April 2023. These cases were further compared with previously reported cases in the veterinary literature. Young cats were more commonly represented than older cats, with a median age of 4 years. Clinical signs were initially characterized by a lame and/or stiff limb, near the primary injury site, in 17/26 (65%) cats. Signs were focal or multifocal in 21/27 (78%) cats of this study and one typical sign was the inability to flex the most severely affected limbs. Electrodiagnostic studies revealed characteristic changes, such as continuous spontaneous motor unit discharges in both agonist and antagonist muscles. Such studies are particularly useful in focal and multifocal cases and should be performed to further support the diagnosis. The toxin was successfully identified in one case using the mouse bioassay. Treatment included antibiotherapy (metronidazole) in most cases, muscle relaxants, appropriate nursing cares and handling of potential complications. Overall, the outcome appeared to be positive, with only 1/27 (3.7%) cats being euthanized due to financial restrains. 23/25 (92%) cats returned to an independent ambulatory capacity on all limbs within a median delay of 25 days. Mild to moderate long-term sequelae were reported in eight (30%) cats. This multicentric study is the first to bring together such a large number of cats affected with tetanus. Presentation of the disease in cats differs from that observed in humans and dogs, with most cats being locally affected. Compared to previous reports of tetanus, this series of cats had a better outcome overall, especially for cats affected with generalized tetanus.

10.
Article in English | MEDLINE | ID: mdl-38923326

ABSTRACT

BACKGROUND: We investigated the potential of magnetic resonance elastography (MRE) stiffness measurements in skeletal muscles as an outcome measure, by determining its test-retest reliability, as well as its sensitivity to change in a longitudinal follow-up study. METHODS: We assessed test-retest reliability of muscle MRE in 20 subjects with (n = 5) and without (n = 15) muscle diseases and compared this to Dixon proton density fat fraction (PDFF) and volume measurements. Next, we measured MRE muscle stiffness in 21 adults with Becker muscular dystrophy (BMD) and 21 age-matched healthy controls at baseline, and after 9 and 18 months. We compared two different methods of analysing MRE data in this study: 'Method A' used the stiffness maps generated by the Philips MRE software, and 'Method B' applied a custom-made procedure based on wavelength measurements on the MRE images. RESULTS: Intraclass correlation coefficients (ICC) of muscle stiffness ranged from good (0.83 for left vastus medialis, P < 0.001) to poor (0.19 for right rectus femoris, P = 0.212) for the examined thigh muscles with Method A, but we did not find a significant test-retest reliability with Method B (P > 0.050 for all). The ICC of muscle PDFF and volume measurements was excellent (>0.90; P < 0.001) for all muscles. At baseline, the average stiffness of all thigh muscles was significantly lower in adults with BMD than in controls for both Method A (-0.2 kPa, P = 0.025) and Method B (-0.6 kPa, P < 0.001). Regardless of which method was used, there was no significant difference in the evolution of muscle stiffness in patients and controls over 18 months. CONCLUSIONS: Test-retest reliability of muscle MRE using a simple 2D technique was suboptimal, and did not reliably measure muscle stiffness changes in adults with BMD as compared with controls over 18 months. While the results provide motivation for testing more advanced 3D MRE methods, we conclude that the simple 2D MRE implementation used in this study is not suitable as an outcome measure for characterizing thigh muscle in clinical trials.

11.
J Bodyw Mov Ther ; 39: 525-530, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38876679

ABSTRACT

The Askling's H-test is considered a useful return to play criterion after a hamstring muscle injury (HMI). However, it assesses only the active and passive flexibility of posterior thigh muscles. This may lead the practitioner to underestimate a compensation or abnormal movement pattern. The aim of this study was to analyze these kinematic aspects and their reliability, and evaluate the hamstring (HM) and gluteus maximus (GM) muscles' activities. Twelve healthy male volunteers were tested during two session of three trials for passive and active tests. Dynamic flexibility (97.2 ± 6.0°) was significantly greater than the passive one (70.5 ± 14.7°) (p < 0.001), and good intra-individual reproductibility for most kinematic characteristics was observed. Biceps Femoris long head, semitendinosus and GM mean activities (20.1 ± 11.2%; 14.3 ± 7.3% and 25.2 ± 22.1%, respectively) were found to be low to moderate, indicating that only a moderate level of activity occurred during the active H-test, in comparison to other movements such as sprinting itself. In addition, the activity of the posterior thigh muscles during the active H-test appeared to be variable among the volunteers. These findings suggest that the H-test should be interpreted on an individual basis rather than relying on general characteristics, and be considered as an intermediate tool before more strenuous activities such as returning to sprint. With this comprehensive approach, clinicians can gain a more accurate understanding of their patients' progress and make more informed decisions about their readiness to return to play.


Subject(s)
Electromyography , Hamstring Muscles , Thigh , Humans , Male , Electromyography/methods , Biomechanical Phenomena/physiology , Hamstring Muscles/physiology , Adult , Thigh/physiology , Young Adult , Range of Motion, Articular/physiology , Muscle, Skeletal/physiology , Reproducibility of Results
12.
Sports Biomech ; : 1-19, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888360

ABSTRACT

This study aimed to investigate posterior chain muscle function and the influence of pointe shoes in ballet dancers with and without low back pain (LBP) in the Arabesque. Twenty-nine young professional ballet dancers (17 with LBP and 12 healthy controls) were recruited. Muscle strength and mechanical properties of the erector spinae and hamstrings were assessed. The displacement of centre of mass (COM) during Arabesque under different shoe conditions (R-class, Chacott, and own shoes) was measured with a motion capture system. The LBP group exhibited greater dynamic stiffness and decreased mechanical stress relaxation time in the lateral hamstring compared to the control group. During Arabesque, the LBP group demonstrated significantly greater anterior-posterior displacement of the COM and a larger percentage of time to achieve maximal trunk extension angle. The COM displacement in vertical and medial-lateral directions was smaller in the R-class than in their own shoes. LBP impacts muscle mechanical properties, particularly in the lateral hamstring. The compromised muscle function resulted in a longer time to spinal extension during Arabesque, signifying that reduced trunk control contributed to greater COM displacement. Hence, it is essential to emphasise that evaluating muscle properties and dynamic postural control is imperative for dancers experiencing LBP.

13.
Scand J Med Sci Sports ; 34(6): e14670, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38856021

ABSTRACT

Passive hamstring stiffness varies proximo-distally, resulting in inhomogeneous tissue strain during stretching that may affect localized adaptations and risk of muscle injuries. The purpose of the present study was to determine the acute and chronic effects of static stretching (SS) on intramuscular hamstring stiffness. Thirty healthy active participants had acute changes in passive biceps femoris (BF), semimembranosus (SM), and semitendinosus (ST) stiffness measured at 25% (proximal), 50% (middle), and 75% (distal) muscle length, using shear-wave elastography, immediately after SS. Participants then completed 4 weeks of either a SS intervention (n = 15) or no intervention (CON, n = 15) with stiffness measured before and after the interventions. The acute and chronic effects of SS were compared between anatomical regions and between regions on the basis of their relative stiffness pre-intervention. Acutely, SS decreased stiffness throughout the BF and SM (p ≤ 0.05) but not the ST (p = 0.326). However, a regional effect of stretching was observed for SM and ST with greater reduction in stiffness occurring in stiffer muscular regions (p = 0.001-0.013). Chronically, SS increased BF and ST (p < 0.05), but not SM (p = 0.422) stiffness compared with CON, but no regional effect of stretching was observed in any muscle (p = 0.361-0.833). SS resulted in contrasting acute and chronic effects, acutely decreasing stiffness in stiffer regions while chronically increasing stiffness. These results indicate that the acute effects of SS vary along the muscle's length on the basis of the relative stiffness of the muscle and that acute changes in stiffness from SS are unrelated to chronic adaptations.


Subject(s)
Elasticity Imaging Techniques , Hamstring Muscles , Muscle Stretching Exercises , Humans , Hamstring Muscles/physiology , Hamstring Muscles/diagnostic imaging , Male , Young Adult , Adult , Female
14.
Physiol Rep ; 12(9): e16042, 2024 May.
Article in English | MEDLINE | ID: mdl-38705872

ABSTRACT

Myosteatosis, or the infiltration of fatty deposits into skeletal muscle, occurs with advancing age and contributes to the health and functional decline of older adults. Myosteatosis and its inflammatory milieu play a larger role in adipose tissue dysfunction, muscle tissue dysfunction, and increased passive muscle stiffness. Combined with the age-related decline of sex hormones and development of anabolic resistance, myosteatosis also contributes to insulin resistance, impaired muscle mechanics, loss of force production from the muscle, and increased risk of chronic disease. Due to its highly inflammatory secretome and the downstream negative effects on muscle metabolism and mechanics, myosteatosis has become an area of interest for aging researchers and clinicians. Thus far, myosteatosis treatments have had limited success, as many lack the potency to completely rescue the metabolic and physical consequences of myosteatosis. Future research is encouraged for the development of reliable assessment methods for myosteatosis, as well as the continued exploration of pharmacological, nutritional, and exercise-related interventions that may lead to the success in attenuating myosteatosis and its clinical consequences within the aging population.


Subject(s)
Aging , Muscle, Skeletal , Humans , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiopathology , Aging/physiology , Aged , Adipose Tissue/metabolism , Adipose Tissue/physiopathology
15.
Magn Reson Imaging ; 111: 196-201, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38723783

ABSTRACT

PURPOSE: Development of a technique for measuring the mechanical properties of zygomaticus major (ZM) may aid advances in clinical treatments for correcting abnormal oral posture. The objective of this work was to demonstrate the feasibility of measuring the stiffness of ZM using an MR elastography technique that incorporates a custom local driver and a phase-gradient (PG) inversion. METHODS: 2D MRE investigations were performed for 3 healthy subjects using a vibration frequency of 90 Hz to test the prediction that the stiffness of ZM would be greater in the mouth-open compared to the mouth-closed position. MRE wave images were acquired along the long axis of ZM and processed using a 2D spatial-temporal directional filter applied in the direction of wave propagation along the long axis of the muscle. Stiffness measurements were obtained by applying the PG technique to a 1D-profile drawn in the phase image of the first harmonic of the wave images and a one-tailed paired t-test was used to compare the ZM stiffness between the two mouth postures (p < 0.05). RESULTS: The mean stiffness and standard deviation (SD) of ZM across the three participants in the mouth-closed and mouth-open postures was 6.75 kPa (SD 3.36 kPa) and 15.5 kPa (SD 5.15 kPa), respectively. Changes of ZM stiffness were significantly greater in the mouth-open than the mouth-closed posture (p = 0.038). CONCLUSION: The feasibility of using the PG MRE technique to measure stiffness changes in a small muscle such as ZM for different mouth postures has been demonstrated. Further investigations are required in a larger cohort of participants to investigate the sensitivity and reproducibility of the technique for potential clinical application as well as in health and beauty related studies.


Subject(s)
Elasticity Imaging Techniques , Feasibility Studies , Posture , Humans , Elasticity Imaging Techniques/methods , Posture/physiology , Male , Adult , Female , Mouth/diagnostic imaging , Magnetic Resonance Imaging/methods , Facial Muscles/diagnostic imaging , Facial Muscles/physiology , Reproducibility of Results , Young Adult
16.
Front Physiol ; 15: 1396361, 2024.
Article in English | MEDLINE | ID: mdl-38651043

ABSTRACT

Introduction: The aim of this study was to examine the effects of foam rolling (FR) on hamstring muscles stiffness in both non-damaged and exercise-induced muscle damage (EIMD) states, using shear wave ultrasound elastography to measure changes in shear modulus. Methods: Fourteen healthy adults (25.5 ± 4.7 years) participated in a within-participant repeated measures design, with a 2-minute FR intervention applied on one leg and contralateral leg serving as a control. The damaging protocol encompassed maximal eccentric knee extensions performed on an isokinetic dynamometer and the Nordic hamstring exercise, consisting of 3 sets of 10 and 6 repetitions, respectively. Measurement were taken at baseline and then 1 h, 24 h and 48 h after the damaging protocol. Results: The results indicated no significant time × leg interaction for shear modulus in biceps femoris, semimembranosus, and semitendinosus muscles in both non-damaged and damaged states. Notably, there was a significant increase in biceps femoris (p = 0.001; η2 = 0.36) and semitendinosus (p < 0.001; η2 = 0.44) shear modulus after EIMD, but no significant differences were found between the FR and control leg, which was also the case for muscle soreness, range of motion, and passive resistive torque (p = 0.239-0.999 for interactions). Discussion: The absence of significant changes post-FR intervention suggests a limited role of short-duration FR in altering muscle stiffness during recovery from EIMD. These findings contribute to the understanding of FR's role in muscle recovery. Although this was not directly investigated, our results suggest a predominance of central mechanisms rather than direct mechanical modifications in muscle properties. This research highlights the necessity for additional investigations to explore how FR interventions influence muscles in different states and to elucidate the mechanisms underlying these influences.

17.
J Ultrasound ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38546928

ABSTRACT

PURPOSE: Recent advancements in elastography techniques, specifically supersonic shearwave elastography (SWE), have enabled non-invasive assessment of muscle stiffness. However, there is limited research on the immediate and short-term effects of eccentric exercise-induced muscle damage (EIMD) in well-trained individuals. This study aimed to follow up on the effects of eccentric training on the biceps brachialis stiffness by supersonic shearwave imaging (SSI) as well as the soreness and elbow flexion maximal voluntary isometric contraction (MVIC), immediately post-intervention, at 10 min, 48 h, and 96 h in well-trained men. METHODS: Thirteen well-trained males participated in the study. Baseline measurements of elastography images, MVIC of the elbow flexors, and muscle soreness were obtained. The participants performed an eccentric exercise protocol (4 sets X 10 repetitions) on the dynamometer isokinetic and elastography measurements were repeated immediately post-exercise, at 10 min, 48 h, and 96 h. RESULTS: Significant reductions in stiffness (measured by shear modulus (µ)) were observed immediately and at 10 min post-exercise. MVIC exhibited significant reductions immediately after, 10 min, and 48 h compared to baseline measurements. Muscle soreness peaked at 48 h, persisting until 96 h. CONCLUSIONS: The BB stiffness and MVIC reduction immediately post-eccentric exercise in well-trained men, suggest the potential involvement of mechanical stress and sarcomere rupture. Trained individuals may exhibit a distinct response to EIMD compared to untrained individuals, highlighting the applicability of elastography in monitoring acute biomechanical changes following high-intensity exercise.

18.
Biol Sport ; 41(2): 115-121, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38524826

ABSTRACT

Previous training studies with comprehensive stretching durations have reported that an increase in range of motion (ROM) can be related to decreases in muscle stiffness. Therefore, the purpose of this study was to analyze the association between the passive muscle stiffness of three muscle groups (triceps surae, quadriceps, hamstrings) to the respective joint ROM. Thirty-six healthy male soccer players volunteered in this study. After a standardized warm-up, the muscle stiffness was tested via shear wave elastography in six muscles (gastrocnemius medialis and lateralis, rectus femoris, semitendinosus, semimembranosus, and biceps femoris long head). The hip extension, hip flexion, and ankle dorsiflexion ROM were also assessed with a modified Thomas test, a sit and reach test, and a standing wall push test, respectively. We found significant moderate to large correlations between hip flexion ROM and muscle stiffness for the semimembranosus (rP = -0.43; P = 0.01), biceps femoris long head (rP = -0.45; P = 0.01), and overall hamstring stiffness (rP = -0.50; P < 0.01). No significant correlations were found for triceps surae (rP = -0.12; P = 0.51 to 0.67) and rectus femoris muscle stiffness (rP = 0.25; P = 0.14) with ankle dorsiflexion and hip extension ROM, respectively. We conclude that muscle stiffness is an important contributor to hip flexion ROM, but less important for hip extension or ankle joint ROM. Additional contributors to ROM might be tendon stiffness or stretch/pain tolerance.

19.
Front Physiol ; 15: 1349426, 2024.
Article in English | MEDLINE | ID: mdl-38510941

ABSTRACT

This study aimed to investigate the correlation between the passive muscle stiffness of the pectoralis major muscle pars clavicularis (PMc) and shoulder extension range of motion (ROM) in both male and female participants. Thirty-nine (23 male/16 female) physically active and healthy participants volunteered in this study. After a standardized warm-up, the PMc stiffness was tested via shear wave elastography at a slightly stretched position (long muscle length) and in a non-stretched position (short muscle length). Additionally, a custom-made device and 3D motion capture assessed the active shoulder extension ROM. We found a significant moderate and negative relationship between shoulder extension ROM and PMc stiffness at long muscle length (rs = -0.33; p = 0.04) but not at short muscle length (r = -0.23; p = 0.17). Additionally, there was no significant difference between male and female participants in the correlation analyses at both elbow angles. The moderate correlation between PMc stiffness at a slightly stretched position and shoulder extension ROM suggests that additionally, other structures such as nerves/fascia stiffness or even stretch tolerance might be factors that can be related to shoulder extension ROM.

20.
Brain Sci ; 14(2)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38391694

ABSTRACT

BACKGROUND: The reduction of muscular hypertonia is important in the treatment of various diseases or rehabilitation. This study aims to test the efficacy of a 5 Hz mechanical muscle stimulation (tapotement massage) in comparison to a 5 Hz repetitive peripheral magnetic stimulation (rPMS) on the neuromuscular reflex response. METHODS: In a randomized control trial, 15 healthy volunteers were administered with either 5 Hz rPMS, tapotement massage, or rPMS sham stimulation. The posterior tibial nerve was stimulated with rPMS and sham stimulation. The Achilles tendon was exposed to a mechanically applied high-amplitude 5 Hz repetitive tendon tapotement massage (rTTM). The tendon reflex (TR) was measured for the spinal response of the soleus muscle. RESULTS: After rPMS, there was a reduction of the TR response (-9.8%, p ≤ 0.034) with no significant changes after sham stimulation. Likewise, TR decreased significantly (-17.4%, p ≤ 0.002) after Achilles tendon tapotement intervention. CONCLUSIONS: These findings support the hypothesis that both afferent 5 Hz sensory stimulations contributed to a modulation within the spinal and/or supraspinal circuits, which resulted in a reduction of the spinal reflex excitability. The effects could be beneficial for patients with muscle hypertonia and could improve the functional results of rehabilitation programs.

SELECTION OF CITATIONS
SEARCH DETAIL