Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Language
Publication year range
1.
Pathogens ; 12(5)2023 Apr 23.
Article in English | MEDLINE | ID: mdl-37242306

ABSTRACT

The persistence of a high-risk Human papillomavirus (HPV-HR) infection of the cervix results in different manifestations of lesions depending on the immunologic capacity of the host. Variations in apolipoprotein B mRNA editing enzyme catalytic polypeptide (APOBEC)-like genes, such as the APOBEC3A/B deletion hybrid polymorphism (A3A/B), may contribute to cervical malignancy in the presence of HPV. The aim of this study was to investigate the association between the A3A/B polymorphism and HPV infection and the development of cervical intraepithelial lesions and cervical cancer in Brazilian women. The study enrolled 369 women, who were categorized according to the presence of infection and subdivided according to the degree of intraepithelial lesion and cervical cancer. APOBEC3A/B was genotyped by allele-specific polymerase chain reaction (PCR). As for the A3A/B polymorphism, the distribution of genotypes was similar between groups and among the analyzed subgroups. There were no significant differences in the presence of infection or development of lesions, even after exclusion of confounding factors. This is the first study to show that the A3A/B polymorphism is not associated with HPV infection and the development of intraepithelial lesions and cervical cancer in Brazilian women.

2.
Clinics ; Clinics;64(5): 451-457, 2009. ilus, graf
Article in English | LILACS | ID: lil-514747

ABSTRACT

INTRODUCTION: The discussion regarding the evolution of aging is almost as old as Darwinian Evolution Theory, but to date, it has remained one of biology's unresolved problems. One issue is how to reconcile natural selection, which is understood as a process that purges deleterious characteristics, with senescence, which seems to offer no advantages to the individual. METHOD: A computer simulation that illustrates an evolutionary mechanism for the development of senescence in populations is presented. DISCUSSION: In this article, we debate that two popular explanations for the existence of senescence, namely, (1) the removal of elders for the benefit of the species and (2) the progressive deterioration of the organic machine due to continuous use, are not correct. While human populations continue to age, it is important that the physician understands that senescence, here defined as the progressive impairment of an organism, does not necessarily accompany aging, which we here define as the mere passage of time. As such, we argue that certain processes that were originally assumed to be part of aging should have their status changed because they are actually diseases. Physicians often encounter situations that depend on a better understanding of what limitations senescence imposes on most living species. The concepts of aging (the unavoidable passage of time), senescence (progressive physiologic impairment), and senility (the pathological development of diseases), are discussed.


Subject(s)
Humans , Aging/physiology , Biological Evolution , Computer Simulation , Concept Formation , Models, Biological , Mutation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL