Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.224
Filter
1.
Microbiol Resour Announc ; 13(9): e0041724, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39150243

ABSTRACT

The panzootic caused by H5N1 avian influenza viruses is a high concern for wild birds' conservation and the study of spillover events into mammals. The near coding-complete genome of H5N1 clade 2.3.3.4b sequencing in the Miseq Illumina platform was performed from a bird located in Pantanos of Villa National Wildlife Refuge.

2.
Molecules ; 29(15)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39125026

ABSTRACT

Safety and effectiveness are the cornerstone objectives of nanomedicine in developing nanotherapies. It is crucial to understand the biological interactions between nanoparticles and immune cells. This study focuses on the manufacture by the microfluidic technique of N-trimethyl chitosan/protein nanocarriers and their interaction with J774 cells to elucidate the cellular processes involved in absorption and their impact on the immune system, mainly through endocytosis, activation of lysosomes and intracellular degradation. TEM of the manufactured nanoparticles showed spherical morphology with an average diameter ranging from 36 ± 16 nm to 179 ± 92 nm, depending on the concentration of the cargo protein (0, 12, 55 µg/mL). FTIR showed the crosslinking between N-trimethyl chitosan and the sodium tripolyphosphate and the α-helix binding loss of BSA. TGA revealed an increase in the thermal stability of N-trimethyl chitosan/protein nanoparticles compared with the powder. The encapsulation of the cargo protein used was demonstrated using XPS. Their potential to improve cell permeability and use as nanocarriers in future vaccine formulations was demonstrated. The toxicity of the nanoparticles in HaCaT and J774 cells was studied, as well as the importance of evaluating the differentiation status of J774 cells. Thus, possible endocytosis pathways and their impact on the immune response were discussed. This allowed us to conclude that N-trimethyl chitosan nanoparticles show potential as carriers for the immune system. Still, more studies are required to understand their effectiveness and possible use in therapies.


Subject(s)
Chitosan , Endocytosis , Lysosomes , Nanoparticles , Chitosan/chemistry , Lysosomes/metabolism , Endocytosis/drug effects , Nanoparticles/chemistry , Animals , Mice , Cell Line , Humans , Drug Carriers/chemistry , Particle Size , Serum Albumin, Bovine/chemistry , Cell Survival/drug effects
3.
Anal Bioanal Chem ; 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39126504

ABSTRACT

Water, renowned for its sustainability and minimal toxicity, is an ideal candidate for environmentally friendly solvent-based microextraction. However, its potential as an extractant solvent in miniaturized sample preparation remains largely unexplored. This paper pioneers using water as the extraction solvent in headspace single-drop microextraction (HS-SDME) for N-nitrosamines from losartan tablets. Autonomous HS-SDME is executed by an Arduino-controlled, lab-made Cartesian robot, using water for the online preconcentration of enriched extracts through direct injection into a column-switching system. Critical experimental parameters influencing HS-SDME performance are systematically explored through univariate and multivariate experiments. While most previously reported methods for determining N-nitrosamines in pharmaceutical formulations rely on highly selective mass spectrometry detection techniques to handle the strong matrix effects typical of pharmaceutical samples, the water-based HS-SDME method efficiently eliminates the interfering effects of a large amount of the pharmaceutical active ingredient and tablet excipients, allowing straightforward analysis using high-performance liquid chromatography with ultraviolet detection (HPLC-UV-Vis). Under optimized conditions, the developed method exhibits linear responses from 100 to 2400 ng g-1, demonstrating appropriate detectability, precision, and accuracy for the proposed application. Additionally, the environmental sustainability of the method is assessed using the AGREEprep methodology, positioning it as an outstanding green alternative for determining hazardous contaminants in pharmaceutical products.

4.
Future Microbiol ; 19(15): 1309-1320, 2024.
Article in English | MEDLINE | ID: mdl-39101446

ABSTRACT

Aim: Evaluate the anticandidal effect of Croton heliotropiifolius Kunth essential oil and its interaction with azoles and N-acetylcysteine (NAC) against planktonic cells and biofilms.Materials & methods: Broth microdilution and checkerboard methods were used to evaluate the individual and combined activity with fluconazole and itraconazole (ITRA). The antibiofilm effect of the oil was assessed in 96-well plates alone and combined with ITRA and NAC, and cytotoxicity determined by MTT.Results: The oil inhibited all Candida species growth. The activity was enhanced when associated with ITRA and NAC for planktonic cells and biofilms in formation. The effective concentrations were lower than the toxic ones to V79 cells.Conclusion: C. heliotropiifolius Kunth essential oil is an anticandidal alternative, and can be associated with ITRA and NAC.


Candida is a type of fungus that can cause disease in people. In recent years, the number of available drugs to treat this disease have declined. It is important to search for new drugs. Plants are often used to improve health, so we tested the essential oil of a plant called Croton heliotropiifolius to see if it could kill the fungus. We found that the essential oil could kill the fungus, and could be used with other drugs to improve their effects.


Subject(s)
Acetylcysteine , Antifungal Agents , Biofilms , Candida , Croton , Itraconazole , Microbial Sensitivity Tests , Oils, Volatile , Croton/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Itraconazole/pharmacology , Antifungal Agents/pharmacology , Acetylcysteine/pharmacology , Biofilms/drug effects , Candida/drug effects , Drug Synergism , Animals , Cell Line , Fluconazole/pharmacology , Cricetinae
5.
Neurocrit Care ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138715

ABSTRACT

Traumatic brain injury leads to glutamate release, which overstimulates N-methyl-D-aspartate (NMDA) receptors, leading to neurotoxicity and cytotoxic edema. NMDA receptor antagonists may offer neuroprotection by blocking this pathway. The objective of this systematic review is to assess the efficacy of NMDA receptor antagonists for traumatic brain injury-induced brain edema in rodent models. This systematic review followed Cochrane Handbook guidelines and registered its protocol in PROSPERO (ID: CRD42023440934). Here, we included controlled rodent animal models comparing NMDA antagonist use with a placebo treatment. Outcome measures included the reduction of cerebral edema, Neurobehavioral Severity Scale, and adverse effects. The search strategy used Medical Subject Headings terms related to traumatic brain injury and NMDA receptor antagonists. The Collaborative Approach to Meta Analysis and Review of Animal Experimental Studies (CAMARADES) checklist and Systematic Review Centre for Laboratory Animal Experimentation's (SYRCLE's) tools were used to measure the quality and bias of included studies. The synthesis of results was presented in a meta-analysis of standard mean difference. Sixteen studies were included, with the predominant drugs being ifenprodil, MK-801, magnesium, and HU-211. The subjects consisted of Sprague-Dawley or Sabra rats. The analysis showed a significant reduction in brain edema with NMDA antagonist treatment (Standardized mean difference [SMD] - 1.17, 95% confidence interval [CI] - 1.59 to - 0.74, p < 0.01), despite high heterogeneity (I2 = 72%). Neurobehavioral Severity Scale also significantly improved (mean difference - 3.32, 95% CI - 4.36 to - 2.28, p < 0.01) in animals receiving NMDA antagonists. Administration within 1 h after injury showed a modest enhancement in reducing brain edema compared with the baseline (SMD - 1.23, 95% CI - 1.69 to - 0.77, p < 0.01). Studies met standards for animal welfare and model appropriateness. Although baseline comparability and selective reporting bias were generally addressed, key biases such as randomization, allocation concealment, and blinding were often unreported. Overall, NMDA antagonists exhibit promising efficacy in the treatment of traumatic brain injury. Notably, our systematic review consistently demonstrated a significant reduction in brain edema with compounds including HU-211 and NPS 150.

6.
Data Brief ; 55: 110644, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39100783

ABSTRACT

It is expected that CO2 concentration will increase in the air, thereby stimulating the photosynthesis process and, hence, plant biomass production. In the case of legumes, increased biomass due to higher CO2 concentration can stimulate atmospheric nitrogen (N2) fixation in the nodules. However, N2 fixation is inhibited by external N supply. Thus, biomass production and N2 fixation were analysed in two legumes (Pisum sativum L. and Vicia faba L.) grown at two levels of CO2 and three N levels. P. sativum reduces fixation with high soil N (facultative), while V. faba maintains high fixation regardless of soil N levels (obligate). The N2 fixation and plant and nodule biomass of the two species were evaluated in a pot experiment under controlled conditions using growth chambers with artificial CO2 supply and N addition. The proportion of N derived from the air (%Ndfa) present in the plants' biomass was calculated from the natural abundance of 15N and the N concentration of plant tissues using nonlegumes reference plants. Additionally, N content data are presented for both species growing at two levels of air CO2. The data may be useful for plant physiologists, especially those working on biological N2 fixation with non-model legumes at elevated CO2.

7.
Clin Pharmacol Drug Dev ; 13(9): 1051-1060, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38973337

ABSTRACT

Myocardial reperfusion injury (MRI) accounts for up to 50% of the final size in acute myocardial infarction and other conditions associated with ischemia-reperfusion. Currently, there is still no therapy to prevent MRI, but it is well known that oxidative stress has a key role in its mechanism. We previously reduced MRI in rats through a combined antioxidant therapy (CAT) of ascorbic acid, N-acetylcysteine, and deferoxamine. This study determines the safety and pharmacokinetics of CAT in a Phase I clinical trial. Healthy subjects (n = 18) were randomized 2:1 to CAT or placebo (NaCl 0.9% i.v.). Two different doses/infusion rates of CATs were tested in a single 90-minute intravenous infusion. Blood samples were collected at specific times for 180 minutes to measure plasma drug concentrations (ascorbic acid, N-acetylcysteine, and deferoxamine) and oxidative stress biomarkers. Adverse events were registered during infusion and followed for 30 days. Both CAT1 and CAT2 significantly increased the CAT drug concentrations compared to placebo (P < .05). Most of the pharmacokinetic parameters were similar between CAT1 and CAT2. In total, 6 adverse events were reported, all nonserious and observed in CAT1. The ferric-reducing ability of plasma (an antioxidant biomarker) increased in both CAT groups compared to placebo (P < .001). The CAT is safe in humans and a potential treatment for patients with acute myocardial infarction undergoing reperfusion therapy.


Subject(s)
Acetylcysteine , Antioxidants , Ascorbic Acid , Deferoxamine , Myocardial Reperfusion Injury , Oxidative Stress , Humans , Antioxidants/pharmacokinetics , Antioxidants/administration & dosage , Antioxidants/adverse effects , Antioxidants/pharmacology , Male , Acetylcysteine/administration & dosage , Acetylcysteine/pharmacokinetics , Acetylcysteine/adverse effects , Ascorbic Acid/administration & dosage , Ascorbic Acid/pharmacokinetics , Ascorbic Acid/adverse effects , Adult , Oxidative Stress/drug effects , Female , Deferoxamine/pharmacokinetics , Deferoxamine/administration & dosage , Deferoxamine/adverse effects , Healthy Volunteers , Young Adult , Infusions, Intravenous , Middle Aged , Double-Blind Method , Drug Therapy, Combination , Biomarkers/blood
8.
Parasitol Int ; 103: 102939, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39074632

ABSTRACT

The mapará (Hypophthalmus marginatus) is a commercially important fish in the Brazilian Amazon and has been described as a host for numerous myxosporid species. The integrated taxonomy of a new species, Myxobolus mickeyii n. sp., discovered in the urinary bladder of H. marginatus, is undertaken in this study. In 105 specimens of H. marginatus, plasmodia and myxospores were observed in the urinary bladder fluid, the myxospores measuring 20.5 (19.6-21.3) µm in length and 14.0 (13.2-14.9) µm in width. The posterior valves of the spore body were thick, with valvulogenic nuclei, endoplasmic reticulum, and the presence of secretory vesicles. Two elliptical, rounded appendages attached to the valve, containing tubular filaments. The two polar capsules, symmetry, measuring 6.1 (5.9-6.3) µm in length and 4.4 (3.6-6.2) µm in width, with polar tubules of 3 to 5 turns. Phylogenetic analyses of the small subunit ribosomal RNA gene (SSU rDNA) sequencing revealed that M. mickeyii n. sp. is part of a Myxobolidae family clade with freshwater fish of the Siluriformes order, with a genetic distance of 19% to the nearest species. This work contributes to the wide diversity of myxozoans in this host, as other taxa have previously been reported infecting different tissues.


Subject(s)
Catfishes , Fish Diseases , Myxobolus , Parasitic Diseases, Animal , Phylogeny , Animals , Brazil , Catfishes/parasitology , Fish Diseases/parasitology , Myxobolus/classification , Myxobolus/genetics , Myxobolus/isolation & purification , Myxobolus/anatomy & histology , Parasitic Diseases, Animal/parasitology , Parasitic Diseases, Animal/epidemiology , Urinary Bladder/parasitology , DNA, Ribosomal/analysis
9.
Mar Environ Res ; 199: 106627, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38968803

ABSTRACT

DNA metabarcoding and stable isotope analysis have significantly advanced our understanding of marine trophic ecology, aiding systematic research on foraging habits and species conservation. In this study, we employed these methods to analyse faecal and blood samples, respectively, to compare the trophic ecology of two Red-billed Tropicbird (Phaethonaethereus; Linnaeus, 1758) colonies on Mexican islands in the Pacific. Trophic patterns among different breeding stages were also examined at both colonies. Dietary analysis reveals a preference for epipelagic fish, cephalopods, and small crustaceans, with variations between colonies and breeding stages. Isotopic values (δ15N and δ13C) align with DNA metabarcoding results, with wider niches during incubation stages. Differences in diet are linked to environmental conditions and trophic plasticity among breeding stages, influenced by changing physiological requirements and prey availability. Variations in dietary profiles reflect contrasting environmental conditions affecting local prey availability.


Subject(s)
DNA Barcoding, Taxonomic , Food Chain , Animals , Carbon Isotopes/analysis , Diet , Nitrogen Isotopes/analysis , Birds/physiology , Mexico
10.
Int J Mol Sci ; 25(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38999960

ABSTRACT

The initial adoption of penicillin as an antibiotic marked the start of exploring other compounds essential for pharmaceuticals, yet resistance to penicillins and their side effects has compromised their efficacy. The N-terminal nucleophile (Ntn) amide-hydrolases S45 family plays a key role in catalyzing amide bond hydrolysis in various compounds, including antibiotics like penicillin and cephalosporin. This study comprehensively analyzes the structural and functional traits of the bacterial N-terminal nucleophile (Ntn) amide-hydrolases S45 family, covering penicillin G acylases, cephalosporin acylases, and D-succinylase. Utilizing structural bioinformatics tools and sequence analysis, the investigation delineates structurally conserved regions (SCRs) and substrate binding site variations among these enzymes. Notably, sixteen SCRs crucial for substrate interaction are identified solely through sequence analysis, emphasizing the significance of sequence data in characterizing functionally relevant regions. These findings introduce a novel approach for identifying targets to enhance the biocatalytic properties of N-terminal nucleophile (Ntn) amide-hydrolases, while facilitating the development of more accurate three-dimensional models, particularly for enzymes lacking structural data. Overall, this research advances our understanding of structure-function relationships in bacterial N-terminal nucleophile (Ntn) amide-hydrolases, providing insights into strategies for optimizing their enzymatic capabilities.


Subject(s)
Amidohydrolases , Amidohydrolases/chemistry , Amidohydrolases/metabolism , Amidohydrolases/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Binding Sites , Structure-Activity Relationship , Conserved Sequence , Bacteria/enzymology , Amino Acid Sequence , Models, Molecular , Substrate Specificity
11.
Carbohydr Polym ; 342: 122356, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39048219

ABSTRACT

In this study, we report the synthesis and characterization of pH-responsive nanoconjugates for targeted drug delivery. Galactomannan extracted from D. regia seeds was oxidized to form aldehyde groups, achieving a percentage of oxidation of 25.6 %. The resulting oxidized galactomannan (GMOX) was then copolymerized with PINIPAm-NH2, yielding a copolymer. The copolymer exhibited signals from both GMOX and PNIPAm-NH2 in its NMR spectrum, confirming successful copolymerization. Critical association concentration (CAC) studies revealed the formation of nanostructures, with lower CAC values observed at higher temperatures. The copolymer and GMOX reacted with doxorubicin (DOX), resulting in nanoconjugates with controlled drug release profiles, especially under acidic conditions similar to tumor microenvironments. Cytotoxicity assays demonstrated significant efficacy of the nanoconjugates against melanoma cells with reduced toxicity towards healthy cells. These findings underscore the potential of the pH-responsive nanoconjugates as promising candidates for targeted cancer therapy, offering improved therapeutic efficacy and reduced systemic side effects.


Subject(s)
Doxorubicin , Galactose , Mannans , Nanoconjugates , Doxorubicin/pharmacology , Doxorubicin/chemistry , Mannans/chemistry , Mannans/pharmacology , Galactose/chemistry , Galactose/analogs & derivatives , Humans , Nanoconjugates/chemistry , Hydrogen-Ion Concentration , Drug Liberation , Cell Line, Tumor , Drug Carriers/chemistry , Cell Survival/drug effects , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology
12.
Heliyon ; 10(12): e32555, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38952373

ABSTRACT

Mucopolysaccharidosis IVA (MPS IVA) is a lysosomal storage disease caused by mutations in the gene encoding the lysosomal enzyme N-acetylgalactosamine-6-sulfate sulfatase (GALNS), resulting in the accumulation of keratan sulfate (KS) and chondroitin-6-sulfate (C6S). Previously, it was reported the production of an active human recombinant GALNS (rGALNS) in E. coli BL21(DE3). However, this recombinant enzyme was not taken up by HEK293 cells or MPS IVA skin fibroblasts. Here, we leveraged a glyco-engineered E. coli strain to produce a recombinant human GALNS bearing the eukaryotic trimannosyl core N-glycan, Man3GlcNAc2 (rGALNSoptGly). The N-glycosylated GALNS was produced at 100 mL and 1.65 L scales, purified and characterized with respect to pH stability, enzyme kinetic parameters, cell uptake, and KS clearance. The results showed that the addition of trimannosyl core N-glycans enhanced both protein stability and substrate affinity. rGALNSoptGly was capture through a mannose receptor-mediated process. This enzyme was delivered to the lysosome, where it reduced KS storage in human MPS IVA fibroblasts. This study demonstrates the potential of a glyco-engineered E. coli for producing a fully functional GALNS enzyme. It may offer an economic approach for the biosynthesis of a therapeutic glycoprotein that could prove useful for MPS IVA treatment. This strategy could be extended to other lysosomal enzymes that rely on the presence of mannose N-glycans for cell uptake.

13.
One Health ; 19: 100766, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39021558

ABSTRACT

Introduction: During the outbreak of avian influenza, A (H5N1) (IA) in wild and domestic birds recorded in January 2023, the epidemiological alert has been extended due to its potential contagion to humans, particularly in those exposed occupational groups. Objective: to identify the primary occupational risk groups, as well as the preventive, safety, and control measures against IA intended or implemented in these positions. Material and methods: A systematic search was conducted in Pubmed, Scopus, Web of science, Scielo and literature databases. Scientific articles, normative documents, and technical reports identifying vulnerable occupational groups and preventive measures against IA were included. Two authors conducted a full-text review, extracting information independently, and findings were summarized narratively. Results: A total of 5518 documents were identified, and 30 reports were included. 20% of the reports were published in 2023, 13/30 were affiliated to a university institution. Occupationally exposed groups were identified both directly and indirectly. 63.3% of reports identified breeders, poultry farmers and sellers as the most concerning occupational group, while 60% identified biosecurity practices (use of PPE, handwashing) as the primary measure against IA, followed by strategies such as education (training and capacity-building). Conclusion: Occupational groups of interest were identified, primarily those involved in sales, commerce, and the handling of bird waste with potential exposure to IA. Furthermore, the maintenance of biosecurity measures, cleaning-disinfection practices, and educational strategies in workplace settings are recommended.

14.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39065712

ABSTRACT

This study investigated the effects of fish oil (FO) treatment, particularly enriched with eicosapentaenoic acid (EPA), on obesity induced by a high-fat diet (HFD) in mice. The investigation focused on elucidating the impact of FO on epigenetic modifications in white adipose tissue (WAT) and the involvement of adipose-derived stem cells (ASCs). C57BL/6j mice were divided into two groups: control diet and HFD for 16 weeks. In the last 8 weeks, the HFD group was subdivided into HFD and HFD + FO (treated with FO). WAT was removed for RNA and protein extraction, while ASCs were isolated, cultured, and treated with leptin. All samples were analyzed using functional genomics tools, including PCR-array, RT-PCR, and Western Blot assays. Mice receiving an HFD displayed increased body mass, fat accumulation, and altered gene expression associated with WAT inflammation and dysfunction. FO supplementation attenuated these effects, a potential protective role against HFD-induced obesity. Analysis of H3K27 revealed HFD-induced changes in histone, which were partially reversed by FO treatment. This study further explored leptin signaling in ASCs, suggesting a potential mechanism for ASC dysfunction in the obesity-rich leptin environment of WAT. Overall, FO supplementation demonstrated efficacy in mitigating HFD-induced obesity, influencing epigenetic and molecular pathways, and shedding light on the role of ASCs and leptin signaling in WAT dysfunction associated with obesity.

15.
mBio ; 15(8): e0142324, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39012152

ABSTRACT

In terrestrial forested ecosystems, fungi may interact with trees in at least three distinct ways: (i) associated with roots as symbionts; (ii) as pathogens in roots, trunks, leaves, flowers, and fruits; or (iii) decomposing dead tree tissues on soil or even on dead tissues in living trees. Distinguishing the latter two nutrition modes is rather difficult in Hymenochaetaceae (Basidiomycota) species. Herein, we have used an integrative approach of comparative genomics, stable isotopes, host tree association, and bioclimatic data to investigate the lifestyle ecology of the scarcely known neotropical genus Phellinotus, focusing on the unique species Phellinotus piptadeniae. This species is strongly associated with living Piptadenia gonoacantha (Fabaceae) trees in the Atlantic Forest domain on a relatively high precipitation gradient. Phylogenomics resolved P. piptadeniae in a clade that also includes both plant pathogens and typical wood saprotrophs. Furthermore, both genome-predicted Carbohydrate-Active Enzymes (CAZy) and stable isotopes (δ13C and δ15N) revealed a rather flexible lifestyle for the species. Altogether, our findings suggest that P. piptadeniae has been undergoing a pathotrophic specialization in a particular tree species while maintaining all the metabolic repertoire of a wood saprothroph. IMPORTANCE: This is the first genomic description for Phellinotus piptadeniae. This basidiomycete is found across a broad range of climates and ecosystems in South America, including regions threatened by extensive agriculture. This fungus is also relevant considering its pathotrophic-saprotrophic association with Piptadenia goanocantha, which we began to understand with these new results that locate this species among biotrophic and necrotrophic fungi.


Subject(s)
Genomics , Phylogeny , Basidiomycota/genetics , Basidiomycota/classification , Fabaceae/microbiology , Trees/microbiology , Plant Diseases/microbiology , Carbon Isotopes/analysis , Genome, Fungal , Nitrogen Isotopes/analysis , Forests
16.
Infect Med (Beijing) ; 3(2): 100108, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38966059

ABSTRACT

Background: An epizootic of highly pathogenic avian influenza A (H5N1) has spread worldwide since 2022. Even though this virus has been extensively studied for many decades, little is known about its evolution in South America. Methods: Here, we describe the sequencing and characterization of 13 H5N1 genomes collected from wild birds, poultry, and wild mammals in Peru during the genomic surveillance of this outbreak. Results: The samples belonged to the highly pathogenic avian influenza (H5N1) 2.3.4.4b clade. Chilean and Peruvian samples clustered in the same group and therefore share a common ancestor. An analysis of the hemagglutinin and neuraminidase genes detected new mutations, some dependent upon the host type. Conclusions: The genomic surveillance of highly pathogenic avian influenza is necessary to promote the One Health policy and to overcome the new problems entailed by climate change, which may alter the habitats of resident and migratory birds.

17.
Chem Biodivers ; 21(9): e202401247, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38896778

ABSTRACT

As part of our continuous research for the discovery of bioactive compounds against Trypanosoma cruzi and Leishmania infantum, the alkaloid (6aS)-dicentrine (1) was oxidized to afford (6aS,6S)- (2) and (6aS,6R)- (3) dicentrine-N-oxides. Evaluation of the cytotoxicity against NCTC cells indicated that 2 and 3 are non-toxic (CC50>200 µM) whereas 1 demonstrated CC50 of 52.0 µM. Concerning T. cruzi activity against amastigotes, derivatives 2 and 3 exhibited EC50 values of 9.9 µM (SI>20.2) and 27.5 µM (SI>7.3), respectively, but 1 is inactive (EC50>100 µM). Otherwise, when tested against L. infantum amastigotes, 1 and 3 exhibited EC50 values of 10.3 µM (SI=5.0) and 12.7 µM (SI>15.7), respectively, being 2 inactive (EC50>100 µM). Comparing the effects of positive controls benznidazol (EC50=6.5 µM and SI>30.7) and miltefosine (EC50=10.2 µM and SI=15.2), it was observed a selective antiparasitic activity to diastereomers 2 and 3 against T. cruzi and L. infantum. Considering stereochemical aspects, it was suggested that the configuration of the new stereocenter formed after oxidation of 1 played an important role in the bioactivity against amastigotes of both tested parasites.


Subject(s)
Leishmania infantum , Parasitic Sensitivity Tests , Trypanosoma cruzi , Leishmania infantum/drug effects , Trypanosoma cruzi/drug effects , Stereoisomerism , Structure-Activity Relationship , Animals , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/chemical synthesis , Dose-Response Relationship, Drug , Molecular Structure , Cell Line , Mice
18.
ChemMedChem ; 19(18): e202400305, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-38871654

ABSTRACT

Fasciola hepatica is a parasitic trematode that infects livestock animals and humans, causing significant health and economic burdens worldwide. The extensive use of anthelmintic drugs has led to the emergence of resistant parasite strains, posing a threat to treatment success. The complex life cycle of the liver fluke, coupled with limited funding and research interest, have hindered progress in drug discovery. Our group has been working in drug development against this parasite using cathepsin proteases as molecular targets, finding promising compound candidates with in vitro and in vivo efficacy. Here, we evaluated hybrid molecules that combine two chemotypes, chalcones and quinoxaline 1,4-di- N-oxides, previously found to inhibit F. hepatica cathepsin Ls and tested their in vitro activity with the isolated targets and the parasites in culture. These molecules proved to be good cathepsin inhibitors and to kill the juvenile parasites at micromolar concentrations. Also, we performed molecular docking studies to analyze the compounds-cathepsins interface, finding that the best inhibitors interact at the active site cleft and contact the catalytic dyad and residues belonging to the substrate binding pockets. We conclude that the hybrid compounds constitute promising scaffolds for the further development of new fasciolicidal compounds.


Subject(s)
Cathepsins , Fasciola hepatica , Molecular Docking Simulation , Quinoxalines , Quinoxalines/pharmacology , Quinoxalines/chemistry , Quinoxalines/chemical synthesis , Animals , Fasciola hepatica/drug effects , Fasciola hepatica/enzymology , Structure-Activity Relationship , Cathepsins/antagonists & inhibitors , Cathepsins/metabolism , Molecular Structure , Flavonoids/pharmacology , Flavonoids/chemistry , Flavonoids/chemical synthesis , Dose-Response Relationship, Drug , Fascioliasis/drug therapy , Parasitic Sensitivity Tests , Anthelmintics/pharmacology , Anthelmintics/chemical synthesis , Anthelmintics/chemistry , Humans
19.
Polymers (Basel) ; 16(11)2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38891521

ABSTRACT

N-alkyl-substituted polyacrylamides exhibit a thermal coil-to-globule transition in aqueous solution driven by an increase in hydrophobic interactions with rising temperature. With the aim of understanding the role of N-alkyl substituents in the thermal transition, this study focuses on the molecular interactions underlying the phase transition of poly(N,N-diethylacrylamide-co-N-ethylacrylamide) random copolymers. Poly(N,N-diethylacrylamide) (PDEAm), poly(N-ethylacrylamide) (PNEAm), and their random copolymers were synthesized by free radical polymerization and their chemical structure characterized spectroscopically. It was found that the values of the cloud-point temperature increased with PNEAm content, and particle aggregation processes took place, increasing the negative charge density on their surface. The cloud-point temperature of each copolymer decreased with respect to the theoretical values calculated assuming an absence of interactions. It is attributed to the formation of intra- and interchain hydrogen bonding in aqueous solutions. These interactions favor the formation of more hydrophobic macromolecular segments, thereby promoting the cooperative nature of the transition. These results definitively reveal the dominant mechanism occurring during the phase transition in the aqueous solutions of these copolymers.

20.
Int J Mol Sci ; 25(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38892427

ABSTRACT

Neurotoxicity is a major obstacle in the effectiveness of Cisplatin in cancer chemotherapy. In this process, oxidative stress and inflammation are considered to be the main mechanisms involved in brain and lung toxicity. The aim of the present work was to study the influence of the amount of protein on some oxidative parameters in the brain and lungs of rats treated with Cisplatin (CP) and N-Acetylcysteine (NAC) as neuroprotectors. Four groups of Wistar rats, each containing six animals, were fed with a protein diet at 7% for 15 days. Thereafter, the groups were given either a unique dose of CP® 5 mg/kg or NAC® 5 mg/kg as follows: group 1 (control), NaCl 0.9% vehicle; group 2, CP; group 3, NAC; and group 4, NAC + CP. The animals were sacrificed immediately after the treatments. Blood samples were collected upon sacrifice and used to measure blood triglycerides and glucose. The brain and lungs of each animal were obtained and used to assay lipid peroxidation (TBARS), glutathione (GSH), serotonin metabolite (5-HIAA), catalase, and the activity of Ca+2, and Mg+2 ATPase using validated methods. TBARS, H2O2, and GSH were found to be significantly decreased in the cortex and cerebellum/medulla oblongata of the groups treated with CP and NAC. The total ATPase showed a significant increase in the lung and cerebellum/medulla oblongata, while 5-HIAA showed the same tendency in the cortex of the same group of animals. The increase in 5-HIAA and ATPase during NAC and CP administration resulted in brain protection. This effect could be even more powerful when membrane fluidity is increased, thus proving the efficacy of combined NAC and CP drug therapy, which appears to be a promising strategy for future chemotherapy in malnourished patients.


Subject(s)
Acetylcysteine , Cisplatin , Lung , Rats, Wistar , Animals , Cisplatin/adverse effects , Cisplatin/toxicity , Acetylcysteine/pharmacology , Rats , Lung/drug effects , Lung/metabolism , Lung/pathology , Lipid Peroxidation/drug effects , Oxidative Stress/drug effects , Male , Cerebrum/drug effects , Cerebrum/metabolism , Glutathione/metabolism , Neuroprotective Agents/pharmacology , Antineoplastic Agents/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL