Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Publication year range
1.
J Control Release ; 349: 940-953, 2022 09.
Article in English | MEDLINE | ID: mdl-35870569

ABSTRACT

Atherosclerotic cardiovascular diseases remain the leading causes of morbidity and mortality worldwide. Cholesterol crystals in atherosclerotic plaques play an essential role in atherosclerosis progression. However, no clinical drugs have been used for removing cholesterol crystals from plaque to counter atherosclerosis. Previous studies identified the hydrophobic domain of lipid bilayer in liposomes acted as sinks for solubilizing hydrophobic cholesterol. Moreover, adjusting the composition of the lipid bilayer in liposomes can enhance its hydrophobic molecule loading capacity. Therefore, in this study, ginsenosides Rb1 (Rb1), one of main active components of ginseng which has a similar structure to cholesterol, is anchored into soy phospholipids bilayer with its hydrophobic region to prepare nano-sponge-like liposomes (Rb1-LPs), aiming to amplify the solubilization of cholesterol in lipid bilayer. For targeting delivery to atherosclerotic plaques, Annexin V (AnxV), a protein that can specifically recognize phosphatidylserine upregulated in atherosclerotic plaques, is applied to decorate the surface of Rb1-LPs by click reaction to obtain the final preparation of AnxV-Rb1-LPs. The in vitro studies showed that incorporating Rb1 into lipid bilayer remarkably increased the affinity of the lipid bilayer to free cholesterol and the solubilization of cholesterol crystals. Additionally, nano-sponge-like liposomes could efficiently reduce the accumulation of cholesterol crystals and improve cholesterol efflux, finally inhibiting inflammation and apoptosis in cholesterol-laden cells. Furthermore, AnxV-Rb1-LPs could efficiently accumulate in atherosclerotic plaques after intravenous injection, exert nano-sponge-like functions to remove intra- and extracellular cholesterol crystals, ultimately alleviating inflammation and apoptosis in atherosclerotic plaques for antiatherosclerosis. Therefore, AnxV-Rb1-LPs provide a potential strategy for removing cholesterol crystals in atherosclerotic plaques and can be further utilized in other diseases with excessive cholesterol accumulation.


Subject(s)
Atherosclerosis , Ginsenosides , Plaque, Atherosclerotic , Annexin A5 , Atherosclerosis/drug therapy , Cholesterol/chemistry , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Humans , Inflammation , Lipid Bilayers , Lipopolysaccharides , Liposomes/therapeutic use , Phosphatidylserines , Plaque, Atherosclerotic/drug therapy
2.
Mikrochim Acta ; 187(2): 137, 2020 01 17.
Article in English | MEDLINE | ID: mdl-31953688

ABSTRACT

Fluorescent nanoparticles were prepared by encapsulating carbon dots (CDs) within silica spheres and then modifying these spheres with amino groups (CD@SiO2-NH2). On the basis of the silver mirror reaction, Ag+ assembled on the surface of CD@SiO2-NH2 is reduced to silver nanoparticles (AgNPs) by formaldehyde. The in-situ grown AgNPs cause a visually distinguishable fluorescence enhancement. This metal-enhanced effect was investigated by transmission electron microscopy and spectroscopic characterization, and the relevant conditions were optimized. CD@SiO2-NH2-Ag+ fluorescent probes were loaded onto nano-sponge pieces for the analysis of formaldehyde gas. The blue fluorescence emission (peaking at 466 nm) in response to formaldehyde is greatly enhanced (up to 5.2 times) over other species. There is a linear relationship between the fluorescence enhancement and formaldehyde gas concentration in the range of 10 ppb to 1 ppm, and the detection limit is 3 ppb. The fluorimetric assay needs 30 min for the reaction, and the fluorescent nano-sponge pieces are disposable. Graphical abstractSchematic representation of the metal-enhanced fluorescence (MEF) induced by in-situ grown silver nanoparticles on silica-encapsulated carbon dots, and its application in formaldehyde gas assays.

3.
Sci Total Environ ; 688: 1124-1136, 2019 Oct 20.
Article in English | MEDLINE | ID: mdl-31726543

ABSTRACT

Diesel fuel (DF)-contamination remediation has aroused increasing concern in environmental field. In our work, nano sponge was modified by silylation of amino silicon oil (ASO) and aminopropyltriethoxysilane (APTES) to obtain hydrophobic nano sponge (SPAA). SPAA possessed a micro/nano network structure and could efficiently adsorb DF through hydrophobic polysiloxane group. The results revealed that SPAA could effectively remove DF and control its migration in water and soil under various conditions. Importantly, SPAA could inhibit the harmful effect of DF on the growth of plants, earthworms, and fish. Therefore, this work provides a promising and low-cost approach for removal of DF from water and soil, which might have a potential application value.

4.
Zhongguo Zhong Yao Za Zhi ; 43(24): 4855-4861, 2018 Dec.
Article in Chinese | MEDLINE | ID: mdl-30717531

ABSTRACT

In this paper, nano-sponges of flavonoids from Glycyrrhizae Radix et Rhizoma (LF-NSP) were prepared by agitation-freeze drying method. Box-benhnken design and response surface method based on the single factor experiment was used to optimize the preparation process, with the stirring temperature as well as stirring time and speed as the independent variables, while with drug loading, particle size and the generalized "normalized value" as the response values. In addition, the nano-sponges were characterized by scanning electron microscope (SEM), infraredspectroscopy (FT-IR) and differential scanning calorimetry (DSC), and its release in vitro was also investigated. The results showed that the optimum preparation conditions for glycyrrhizin nano-sponges were as follows:The proportion of main drug and auxiliary drug was 1:2; the proportion of crosslinking agent DPC and ß-CD was 4:1; stirring temperature 45 °C for 4.8 h at 245 r·min⁻¹. The comprehensive score of LF-NSP prepared under these conditions was 94.78. FT-IR and DSC results indicated the formation of Glycyrrhiza flavonoids nano-sponges, and SEM showed that they were spherical particles in shape. In release experiment in vitro, the cumulative release of glycyrrhizin flavonoids nano-sponges for 240 min was 81.8%, while that of crude drug was only 31.5%. Nano-sponges can significantly improve the dissolution of flavonoids from Glycyrrhizae Radix et Rhizoma.


Subject(s)
Glycyrrhiza , Rhizome , Animals , Drugs, Chinese Herbal , Flavonoids , Spectroscopy, Fourier Transform Infrared
5.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-771560

ABSTRACT

In this paper, nano-sponges of flavonoids from Glycyrrhizae Radix et Rhizoma (LF-NSP) were prepared by agitation-freeze drying method. Box-benhnken design and response surface method based on the single factor experiment was used to optimize the preparation process, with the stirring temperature as well as stirring time and speed as the independent variables, while with drug loading, particle size and the generalized "normalized value" as the response values. In addition, the nano-sponges were characterized by scanning electron microscope (SEM), infraredspectroscopy (FT-IR) and differential scanning calorimetry (DSC), and its release in vitro was also investigated. The results showed that the optimum preparation conditions for glycyrrhizin nano-sponges were as follows:The proportion of main drug and auxiliary drug was 1:2; the proportion of crosslinking agent DPC and β-CD was 4:1; stirring temperature 45 °C for 4.8 h at 245 r·min⁻¹. The comprehensive score of LF-NSP prepared under these conditions was 94.78. FT-IR and DSC results indicated the formation of Glycyrrhiza flavonoids nano-sponges, and SEM showed that they were spherical particles in shape. In release experiment in vitro, the cumulative release of glycyrrhizin flavonoids nano-sponges for 240 min was 81.8%, while that of crude drug was only 31.5%. Nano-sponges can significantly improve the dissolution of flavonoids from Glycyrrhizae Radix et Rhizoma.


Subject(s)
Animals , Drugs, Chinese Herbal , Flavonoids , Glycyrrhiza , Rhizome , Spectroscopy, Fourier Transform Infrared
6.
Talanta ; 128: 31-7, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25059126

ABSTRACT

In this study, a nano sponge Mn2O3 adsorbent was synthesized and was used for the first time. Various parameters affecting the recovery values of Pd(II) and Rh(III) were examined. The tolerance limits (≥ 90 %) for both Pd(II) and Rh(III) ions were found to be 75,000 mg L(-1) Na(I), 75,000 mg L(-1) K(I), 50,000 mg L(-1) Mg(II) and 50,000 mg L(-1) Ca(II). A 30s contact time was enough for both adsorption and elution. A preconcentration factor of 100 was obtained by using 100mg of the nano sponge Mn2O3. The reusability of the adsorbent was 120 times. Adsorption capacities for Pd(II) and Rh(III) were found to be 42 and 6.2 mg g(-1), respectively. The detection limits were 1.0 µg L(-1) for Pd(II) and 0.37 µg L(-1) for Rh(III) and the relative standard deviations (RSD, %) were found to be ≤ 2.5%. The method was validated by analyzing the standard reference material, SRM 2556 (Used Auto Catalyst Pellets) and spiked real samples. The optimized method was applied for the preconcentration of Pd(II) and Rh(III) ions in water (sea water and wastewater), rock, street sediment and catalytic converter samples.


Subject(s)
Manganese Compounds/chemistry , Nanoparticles/chemistry , Oxides/chemistry , Palladium/analysis , Rhodium/analysis , Spectrophotometry, Atomic/methods , Adsorption , Catalysis , Geologic Sediments/chemistry , Hydrogen-Ion Concentration , Microscopy, Electron, Scanning , Nanoparticles/ultrastructure , Palladium/chemistry , Particle Size , Porosity , Reproducibility of Results , Rhodium/chemistry , Seawater/chemistry , Transducers , Wastewater/analysis , Wastewater/chemistry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...