Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 206
Filter
1.
Chem Asian J ; : e202400994, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39344861

ABSTRACT

Nanoporous carbon-based composites with metal oxides have great potential for various applications including adsorption and sensing owing to their multiple properties. However, the fabrication of these nanocomposites without affecting these multiple properties is challenging. Herein, a series of nanoporous carbon-based nanocomposites with cerium nanoparticles are synthesized through a combination of high-temperature carbonization and ex-situ modification with cerium precursor. The prepared nanocomposites have appreciable surface areas, pore volumes, tunable pore sizes, and a controlled amount of surface nanoceria, all of which can be precisely controlled by varying the amount of KOH and cerium nitrate hexahydrate used for nanoceria generation. The porous carbon PC-3 was used for modification using nanoceria and the modified materials showed higher performance for all three applications. The CO2 adsorption per unit surface of PC-3 (2.4 µmol m-2) increased to 2.9 µmol m-2 in Ce-PC-3-0.5. Furthermore, the composite materials displayed higher heat of adsorption (Qst) than bare materials, indicating stronger interactions with CO2. Interestingly, the least amount of nanoceria (CePC-3-0.25) was effective in enhancing the superoxide dismutase (SOD) and catalase activity.

2.
Plant Physiol Biochem ; 216: 109111, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39255612

ABSTRACT

Nanomaterials as an emerging tool are being used to improve plant's net photosynthetic rate (AN) when suffering salt stress, but the underlying mechanisms remain unclear. To clarify this, a hydroponic experiment was conducted to study the effects of polyacrylic acid coated nanoceria (PNC) on the AN of salt-stressed cotton and related intrinsic mechanisms. Results showed that the PNC-induced AN enhancement of salt-stressed leaves was strongly facilitated by the mesophyll conductance to CO2 (gm). Further analysis showed that the PNC-induced improvement of gm was related to the increased chloroplast surface area exposed to intercellular airspaces, which was attribute to the increased mesophyll surface area exposed to intercellular airspaces and chloroplast number due to the increased K+ content and decreased reactive oxygen species level in salt-stressed leaves. Interestingly, our results also showed that PNC-induced variations in cell wall composition of salt-stressed cotton leaves strongly influenced gm, especially, hemicellulose and pectin. Moreover, the proportion of pectin in cell wall composition played a more important role in determining gm. Our study demonstrated for the first time that nanoceria, through alterations to anatomical traits and cell wall composition, drove gm enhancement, which ultimately increased AN of salt-stressed leaves.

3.
Neurotoxicology ; 105: 82-93, 2024 08 30.
Article in English | MEDLINE | ID: mdl-39216603

ABSTRACT

General anesthetics exposure, particularly prolonged or repeated exposure, is a crucial cause of neurological injuries. Notably, isoflurane (ISO), used in pediatric anesthesia practice, is toxic to the developing brain. The relatively weak antioxidant system at early ages needs antioxidant support to protect the brain against anesthesia. Cerium oxide nanoparticles (CeO2-NPs, nanoceria) are nano-antioxidants and stand out due to their unique surface chemistry, high stability, and biocompatibility. Although CeO2-NPs have been shown to exhibit neuroprotective and cognitive function-facilitating effects, there are no reports on their protective effects against anesthesia-induced neurotoxicity and cognitive impairments. Herein, Wistar albino rat pups were exposed to ISO (1.5 %, 3-h) at postnatal day (P)7+P9+P11, and the protective properties of CeO2-NP pretreatment (0.5 mg/kg, intraperitoneal route) were investigated for the first time. The control group at P7+9+11 received 50 % O2 (3-h) instead of ISO. Exposure to nanoceria one-hour before ISO protected hippocampal neurons of the developing rat brain against apoptosis [determined by hematoxylin-eosin (HE) staining, immunohistochemistry (IHC) analysis with caspase-3, and immunoblotting with Bax/Bcl2, cleaved caspase-3 and PARP1] oxidative stress, and inflammation [determined by immunoblotting with 4-hydroxynonenal (4HNE), nuclear factor kappa-B (NF-κB), and tumor necrosis factor-alpha (TNF-α)]. CeO2-NP pretreatment also reduced ISO-induced learning (at P28-32) and memory (at P33) deficits evaluated by Morris Water Maze. However, memory deficits and thigmotactic behaviors were detected in the agent-control group; elimination of these harmful effects will be possible with dose studies, thus providing evidence supporting safer use. Overall, our findings support pretreatment with nanoceria application as a simple strategy that might be used for pediatric anesthesia practice to protect infants and children from ISO-induced cell death and learning and memory deficits.

4.
Toxicol Res (Camb) ; 13(4): tfae095, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38966091

ABSTRACT

Background: Nanotechnology has shown a remarkable progress nevertheless, there is a growing concern about probable neurotoxic and neurodegenerative effects due to NPs exposure. Various toxicological and epidemiological studies reported that the brain is a main target for ultrafine particles. Brain inflammation is considered as a possible mechanism that can participate to neurotoxic and neurodegenerative effects. Whether nanoparticles (NPs) may produce neurotoxicity and promote neurodegenerative is largely unstudied. The present study was done to investigate whether intranasal and intra-peritoneal exposure to cerium oxide nanoparticles (CeO2NPs, nanoceria (NC)) could cause neurotoxicity and neurodegenerative changes in the brain tissue through conducting some behavioral tests, biochemical evaluation, histopathological examinations of brain hippocampus and gene expressions. Method: Fifteen mice were separated into 3 equal groups. In group (I) "control group", mice were received distilled water orally and kept as a control group. Mice in the group (II) "NC I/P group" were injected i.p with cerium oxide nanoparticles at a dose of 40 mg/kg b.wt, twice weekly for 3 weeks. In group (III) "NC I/N group" mice were received nanoceria intranasally (40 mg/kg b.wt), twice weekly for 3 weeks. Results: Exposure to nanceria resulted in oxidative damage in brain tissue, a significant increase in malondialdehyde (MDA) and acetylcholinestrase (AchE) levels, significant decrease in reduced glutathione (GSH) concentration, upregulation in the apoptosis-related genes (c-Jun: c-Jun N-terminal kinases (JNKs), c-Fos: Fos protooncogene, AP-1 transcription factor subunit, c-Myc: c-myelocytomatosis oncogene product or MYC protooncogene, bHLH transcription factor), locomotor and cognitive impairment in mice but the effect was more obvious when nanoceria adminstred intraperitoneally. Conculsion: Nanoceria cause oxidative damage in brain tissue of mice when adminstred nanoceria intraperitoneally more than those received nanoceria intranasal.

5.
Sci Rep ; 14(1): 17465, 2024 07 29.
Article in English | MEDLINE | ID: mdl-39075175

ABSTRACT

Cerium oxide nanoparticles possess unique properties that make them promising candidates in various fields, including cancer treatment. Among the proposed synthesis methods for CNPs, biosynthesis using natural extracts, offers an eco-friendly and convenient approach for producing CNPs, particularly for biomedical applications. In this study, a novel method of biosynthesis using the aqueous extract of Eucalyptus camaldulensis leaves was used to synthesize CNPs. Scanning electron microscopy and Transmission electron microscopy (TEM) techniques revealed that the synthesized CNPs exhibit a flower-like morphology. The particle size of CNPs obtained using Powder X-ray diffraction peaks and TEM as 13.43 and 39.25 nm. Energy-dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy confirmed the effect of biomolecules during the synthesis process and the formation of CNPs. The cytotoxicity of biosynthesized samples was evaluated using the MTT method demonstrating the potential of these samples to inhibit MCF-7 cancerous cells. The viability of the MCF-7 cell line conducted by live/dead imaging assay confirmed the MTT cytotoxicity method and indicated their potential to inhibit cancerous cells. Furthermore, the successful uptake of CNPs by MCF-7 cancer cells, as demonstrated by confocal microscopy, provides evidence that the intracellular pathway contributes to the anticancer activity of the CNPs. In general, results indicate that the biosynthesized CNPs exhibit significant cytotoxicity against the MCF-7 cancerous cell line, attributed to their high surface area.


Subject(s)
Cerium , Eucalyptus , Plant Extracts , Plant Leaves , Humans , Eucalyptus/chemistry , MCF-7 Cells , Plant Leaves/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cerium/chemistry , Cerium/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Cell Survival/drug effects , Female , Nanoparticles/chemistry , Spectroscopy, Fourier Transform Infrared , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Particle Size
6.
Nanomaterials (Basel) ; 14(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38727363

ABSTRACT

Their unique physicochemical properties and multi-enzymatic activity make CeO2 nanoparticles (CeO2 NPs) the most promising active component of the next generation of theranostic drugs. When doped with gadolinium ions, CeO2 NPs constitute a new type of contrast agent for magnetic resonance imaging, possessing improved biocatalytic properties and a high level of biocompatibility. The present study is focused on an in-depth analysis of the enzyme-like properties of gadolinium-doped CeO2 NPs (CeO2:Gd NPs) and their antioxidant activity against superoxide anion radicals, hydrogen peroxide, and alkylperoxyl radicals. Using an anion-exchange method, CeO2:Gd NPs (~5 nm) with various Gd-doping levels (10 mol.% or 20 mol.%) were synthesized. The radical-scavenging properties and biomimetic activities (namely SOD- and peroxidase-like activities) of CeO2:Gd NPs were assessed using a chemiluminescent method with selective chemical probes: luminol, lucigenin, and L-012 (a highly sensitive luminol analogue). In particular, gadolinium doping has been shown to enhance the radical-scavenging properties of CeO2 NPs. Unexpectedly, both bare CeO2 NPs and CeO2:Gd NPs did not exhibit SOD-like activity, acting as pro-oxidants and contributing to the generation of reactive oxygen species. Gadolinium doping caused an increase in the pro-oxidant properties of nanoscale CeO2. At the same time, CeO2:Gd NPs did not significantly inhibit the intrinsic activity of the natural enzyme superoxide dismutase, and CeO2:Gd NPs conjugated with SOD demonstrated SOD-like activity. In contrast to SOD-like properties, peroxidase-like activity was observed for both bare CeO2 NPs and CeO2:Gd NPs. This type of enzyme-like activity was found to be pH-dependent. In a neutral medium (pH = 7.4), nanoscale CeO2 acted as a prooxidant enzyme (peroxidase), while in an alkaline medium (pH = 8.6), it lost its catalytic properties; thus, it cannot be regarded as a nanozyme. Both gadolinium doping and conjugation with a natural enzyme were shown to modulate the interaction of CeO2 NPs with the key components of redox homeostasis.

7.
Int J Mol Sci ; 25(7)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38612829

ABSTRACT

With the pronounced increase in nanotechnology, it is likely that biological systems will be exposed to excess nanoparticles (NPs). Cerium oxide nanoparticles (CeO2 NPs) are among the most abundantly produced nanomaterials in the world. Their widespread use raises fundamental questions related to the accumulation in the environment and further interactions with living organisms, especially plants. NPs present in either soil or soilless environments are absorbed by the plant root systems and further transported to the aboveground parts. After entering the cytoplasm, NPs interact with chloroplast, nucleus, and other structures responsible for metabolic processes at the cellular level. In recent years, several studies have shown the impact of nanoceria on plant growth and metabolic processes. Research performed on different plants has shown a dual role for CeO2 NPs. The observed effects can be positive or negative and strongly depend on the plant species, characterization, and concentrations of NPs. This review describes the impact of root-applied CeO2 NPs on plant growth, photosynthesis, metal homeostasis, and parameters of induced oxidative stress.


Subject(s)
Cerium , Nanoparticles , Nanostructures , Biological Transport , Chloroplasts
8.
ACS Nano ; 18(17): 11084-11102, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38632691

ABSTRACT

Dry eye disease (DED) affects a substantial worldwide population with increasing frequency. Current single-targeting DED management is severely hindered by the existence of an oxidative stress-inflammation vicious cycle and complicated intercellular crosstalk within the ocular microenvironment. Here, a nanozyme-based eye drop, namely nanoceria loading cyclosporin A (Cs@P/CeO2), is developed, which possesses long-term antioxidative and anti-inflammatory capacities due to its regenerative antioxidative activity and sustained release of cyclosporin A (CsA). In vitro studies showed that the dual-functional Cs@P/CeO2 not only inhibits cellular reactive oxygen species production, sequentially maintaining mitochondrial integrity, but also downregulates inflammatory processes and repolarizes macrophages. Moreover, using flow cytometric and single-cell sequencing data, the in vivo therapeutic effect of Cs@P/CeO2 was systemically demonstrated, which rebalances the immune-epithelial communication in the corneal microenvironment with less inflammatory macrophage polarization, restrained oxidative stress, and enhanced epithelium regeneration. Collectively, our data proved that the antioxidative and anti-inflammatory Cs@P/CeO2 may provide therapeutic insights into DED management.


Subject(s)
Cerium , Cyclosporine , Dry Eye Syndromes , Cerium/chemistry , Cerium/pharmacology , Cyclosporine/pharmacology , Cyclosporine/administration & dosage , Dry Eye Syndromes/drug therapy , Dry Eye Syndromes/pathology , Animals , Mice , Humans , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects , Nanoparticles/chemistry , Macrophages/drug effects , Macrophages/metabolism , Macrophages/immunology , Mice, Inbred C57BL , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/administration & dosage , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/administration & dosage , Drug Delivery Systems
9.
Article in English | MEDLINE | ID: mdl-38446298

ABSTRACT

In this article, the multifunctional behavior of novel, efficient, and cost-effective humic acid-coated nanoceria (HA@CeO2 NPs) was utilized for the sorptive removal of U(VI), Cr(VI), and F- ions at different conditions. The production cost of HA@CeO2 was $19.28/kg and was well characterized by DLS, FESEM, HRTEM, FTIR, XRD, XPS, and TGA. Batch adsorption study for U(VI) (at pH ~ 8), Cr(VI) (at pH ~ 1), and F- (at pH ~ 2) revealed that the maximum percentage of sorption was > 80% for all the cases. From the contact time experiment, it was concluded that pseudo-second-order kinetics followed, and hence, the process should be a chemisorption. The adsorption study revealed that U(VI) and Cr(VI) followed the Freundlich isotherm, whereas F- followed the Langmuir isotherm. Maximum adsorption capacity for F- was 96 mg g-1. Experiments in real water suggest that adsorption is decreased in Kaljani River water (~ 12% for Cr(VI) and ~ 11% for F-) and Kochbihar Lake water (25.04% for Cr(VI) and 20.5% for F-) because of competing ion effect. Mechanism was well established by the kinetic study as well as XPS analysis. Because of high adsorption efficiency, HA@CeO2 NPs can be used for the removal of other harmful water contaminants to make healthy aquatic life as well as purified drinking water.

10.
ACS Appl Mater Interfaces ; 16(11): 13622-13639, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38466038

ABSTRACT

The design of implantable biomaterials involves precise tuning of surface features because the early cellular fate on such engineered surfaces is highly influenced by many physicochemical factors [roughness, hydrophilicity, reactive oxygen species (ROS) responsiveness, etc.]. Herein, to enhance soft tissue integration for successful implantation, Ti substrates decorated with uniform layers of nanoceria (Ce), called Ti@Ce, were optimally developed by a simple and cost-effective in situ immersion coating technique. The characterization of Ti@Ce shows a uniform Ce distribution with enhanced roughness (∼3-fold increase) and hydrophilicity (∼4-fold increase) and adopted ROS-scavenging capacity by nanoceria coating. When human gingival fibroblasts were seeded on Ti@Ce under oxidative stress conditions, Ti@Ce supported cellular adhesion, spreading, and survivability by its cellular ROS-scavenging capacity. Mechanistically, the unique nanocoating resulted in higher expression of amphiphysin (a nanotopology sensor), paxillin (a focal adhesion protein), and cell adhesive proteins (collagen-1 and fibronectin). Ti@Ce also led to global chromatin condensation by decreasing histone 3 acetylation as an early differentiation feature. Transcriptome analysis by RNA sequencing confirmed the chromatin remodeling, antiapoptosis, antioxidant, cell adhesion, and TGF-ß signaling-related gene signatures in Ti@Ce. As key fibroblast transcription (co)factors, Ti@Ce promotes serum response factor and MRTF-α nucleus localization. Considering all of this, it is proposed that the surface engineering approach using Ce could improve the biological properties of Ti implants, supporting their functioning at soft tissue interfaces and utilization as a bioactive implant for clinical conditions such as peri-implantitis.


Subject(s)
Cerium , Fibroblasts , Titanium , Humans , Reactive Oxygen Species/metabolism , Titanium/pharmacology , Titanium/chemistry , Cells, Cultured , Surface Properties , Cell Adhesion/physiology , Fibroblasts/metabolism
11.
Nanomaterials (Basel) ; 14(4)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38392727

ABSTRACT

The purpose of this study was to investigate the antimicrobial activity of citrate-stabilized sols of cerium oxide nanoparticles at different concentrations via different microbiological methods and to compare the effect with the peroxidase activity of nanoceria for the subsequent development of a regeneration-stimulating medical and/or veterinary wound-healing product providing new types of antimicrobial action. The object of this study was cerium oxide nanoparticles synthesized from aqueous solutions of cerium (III) nitrate hexahydrate and citric acid (the size of the nanoparticles was 3-5 nm, and their aggregates were 60-130 nm). Nanoceria oxide sols with a wide range of concentrations (10-1-10-6 M) as well as powder (the dry substance) were used. Both bacterial and fungal strains (Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Proteus vulgaris, Candida albicans, Aspergillus brasielensis) were used for the microbiological studies. The antimicrobial activity of nanoceria was investigated across a wide range of concentrations using three methods sequentially; the antimicrobial activity was studied by examining diffusion into agar, the serial dilution method was used to detect the minimum inhibitory and bactericidal concentrations, and, finally, gas chromatography with mass-selective detection was performed to study the inhibition of E. coli's growth. To study the redox activity of different concentrations of nanocerium, we studied the intensity of chemiluminescence in the oxidation reaction of luminol in the presence of hydrogen peroxide. As a result of this study's use of the agar diffusion and serial dilution methods followed by sowing, no significant evidence of antimicrobial activity was found. At the same time, in the current study of antimicrobial activity against E. coli strains using gas chromatography with mass spectrometry, the ability of nanoceria to significantly inhibit the growth and reproduction of microorganisms after 24 h and, in particular, after 48 h of incubation at a wide range of concentrations, 10-2-10-5 M (48-95% reduction in the number of microbes with a significant dose-dependent effect) was determined as the optimum concentration. A reliable redox activity of nanoceria coated with citrate was established, increasing in proportion to the concentration, confirming the oxidative mechanism of the action of nanoceria. Thus, nanoceria have a dose-dependent bacteriostatic effect, which is most pronounced at concentrations of 10-2-10-3 M. Unlike the effects of classical antiseptics, the effect was manifested from 2 days and increased during the observation. To study the antimicrobial activity of nanomaterials, it is advisable not to use classical qualitative and semi-quantitative methods; rather, the employment of more accurate quantitative methods is advised, in particular, gas chromatography-mass spectrometry, during several days of incubation.

12.
Int J Biol Macromol ; 260(Pt 1): 129374, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38242389

ABSTRACT

Recent developments in exploring the biological enzyme mimicking properties in nanozymes have opened a separate avenue, which provides a suitable alternative to the natural antioxidants and enzymes. Due to high and tunable catalytic activity, low cost of synthesis, easy surface modification, and good biocompatibility, nanozymes have garnered significant research interest globally. Several inorganic nanomaterials have been investigated to exhibit catalytic activities of some of the key natural enzymes, including superoxide dismutase (SOD), catalase, glutathione peroxidase, peroxidase, and oxidase, etc. These nanozymes are used for diverse biomedical applications including therapeutics, imaging, and biosensing in various cells/tissues and animal models. In particular, inflammation-related diseases are closely associated with reactive oxygen and reactive nitrogen species, and therefore effective antioxidants could be excellent therapeutics due to their free radical scavenging ability. Although biological enzymes and other artificial antioxidants could perform well in scavenging the reactive oxygen and nitrogen species, however, suffer from several drawbacks such as the requirement of strict physiological conditions for enzymatic activity, limited stability in the environment beyond their optimum pH and temperature, and high cost of synthesis, purification, and storage make then unattractive for broad-spectrum applications. Therefore, this review systematically and comprehensively presents the free radical-mediated evolution of various inflammatory diseases (inflammatory bowel disease, mammary gland fibrosis, and inflammation, acute injury of the liver and kidney, mammary fibrosis, and cerebral ischemic stroke reperfusion) and their mitigation by various antioxidant nanozymes in the biological system. The mechanism of free radical scavenging by antioxidant nanozymes under in vitro and in vivo experimental models and catalytic efficiency comparison with corresponding natural enzymes has also been presented.


Subject(s)
Antioxidants , Nanostructures , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/chemistry , Free Radicals , Nanostructures/chemistry , Catalysis , Inflammation/drug therapy , Oxygen , Fibrosis
13.
J Biomed Mater Res A ; 112(5): 754-769, 2024 05.
Article in English | MEDLINE | ID: mdl-38084898

ABSTRACT

The therapeutic effectiveness of anticancer drugs, including nanomedicines, can be enhanced with active receptor-targeting strategies. Epidermal growth factor receptor (EGFR) is an important cancer biomarker, constitutively expressed in sarcoma patients of different histological types. The present work reports materials and in vitro biomedical analyses of silanized (passive delivery) and/or EGF-functionalized (active delivery) ceria nanorods exhibiting highly defective catalytically active surfaces. The EGFR-targeting efficiency of nanoceria was confirmed by receptor-binding studies. Increased cytotoxicity and reactive oxygen species (ROS) production were observed for EGF-functionalized nanoceria owing to enhanced cellular uptake by HT-1080 fibrosarcoma cells. The uptake was confirmed by TEM and confocal microscopy. Silanized nanoceria demonstrated negligible/minimal cytotoxicity toward healthy MRC-5 cells at 24 and 48 h, whereas this was significant at 72 h owing to a nanoceria accumulation effect. In contrast, considerable cytotoxicity toward the cancer cells was exhibited at all three times points. The ROS generation and associated cytotoxicity were moderated by the equilibrium between catalysis by ceria, generation of cell debris, and blockage of active sites. EGFR-targeting is shown to enhance the uptake levels of nanoceria by cancer cells, subsequently enhancing the overall anticancer activity and therapeutic performance of ceria.


Subject(s)
Cerium , Nanoparticles , Humans , Reactive Oxygen Species/metabolism , Epidermal Growth Factor , Nanoparticles/chemistry , ErbB Receptors , Cerium/pharmacology , Cerium/chemistry
14.
Geriatr Gerontol Int ; 24 Suppl 1: 88-95, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38013169

ABSTRACT

AIM: Cerium oxide, particularly in nanoparticle form (nanoceria), has been investigated for biomedical applications as a promising new agent for treating several pathologies. The aim of the present study was to characterize the pharmacologic effects of nanoceria in an animal model of chronic kidney disease. METHODS: We created the chronic kidney disease animal model by feeding rats a 0.25% adenine diet. Male Wistar rats were divided into five groups: normal diet, 0.25% adenine diet, or adenine diet containing three different doses or durations of nanoceria treatment. Blood was collected weekly from the tail veins of each rat and analyzed for renal function markers. After 5 weeks, various biochemical markers in serum, plasma, and urine were also analyzed. RESULTS: In the adenine-treated group, body weight was significantly decreased, and the kidneys lost much of their healthy reddish color and became lumpy and white in appearance. In addition, levels of serum creatinine, blood urea nitrogen, and plasma uremic toxins were significantly increased in adenine-treated rats compared with controls. Renal functional and structural damage in adenine diet model rats tended to be ameliorated by nanoceria ingestion. The high-dose cerium-treated group maintained reddish areas in the kidneys, and the increases in biomarker levels of creatinine, blood urea nitrogen, and inorganic phosphorus were markedly reduced, regardless of treatment duration. CONCLUSIONS: Ingestion of nanoceria may be effective for improving or preventing renal damage caused by adenine. Geriatr Gerontol Int 2024; 24: 88-95.


Subject(s)
Cerium , Nanoparticles , Renal Insufficiency, Chronic , Rats , Male , Animals , Rats, Wistar , Adenine/adverse effects , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/drug therapy , Cerium/adverse effects , Biomarkers , Creatinine , Disease Models, Animal
15.
ACS Sens ; 8(12): 4442-4467, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38091479

ABSTRACT

In recent years, there has been a notable increase in interest surrounding nanozymes due to their ability to imitate the functions and address the limitations of natural enzymes. The scientific community has been greatly intrigued by the study of nanoceria, primarily because of their distinctive physicochemical characteristics, which include a variety of enzyme-like activities, affordability, exceptional stability, and the ability to easily modify their surfaces. Consequently, nanoceria have found extensive use in various biosensing applications. However, the impact of its redox activity on the enzymatic catalytic mechanism remains a subject of debate, as conflicting findings in the literature have presented both pro-oxidant and antioxidant effects. Herein, we creatively propose a seesaw model to clarify the regulatory mechanism on redox balance and survey possible mechanisms of multienzyme mimetic properties of nanoceria. In addition, this review aims to showcase the latest advancements in this field by systematically discussing over 180 research articles elucidating the significance of ceria-based nanozymes in enhancing, downsizing, and enhancing the efficacy of point-of-care (POC) diagnostics. These advancements align with the ASSURED criteria established by the World Health Organization (WHO). Furthermore, this review also examines potential constraints in order to offer readers a concise overview of the emerging role of nanoceria in the advancement of POC diagnostic systems for future biosensing applications.


Subject(s)
Cerium , Point-of-Care Systems , Oxidation-Reduction , Cerium/chemistry , Antioxidants
16.
ACS Biomater Sci Eng ; 9(12): 6759-6772, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37955421

ABSTRACT

The interaction of inorganic nanomaterials with biological fluids containing proteins can lead not only to the formation of a protein corona and thereby to a change in the biological activity of nanoparticles but also to a significant effect on the structural and functional properties of the biomolecules themselves. This work studied the interaction of nanoscale CeO2, the most versatile nanozyme, with human serum albumin (HSA). Fourier transform infrared spectroscopy, MALDI-TOF mass spectrometry, UV-vis spectroscopy, and fluorescence spectroscopy confirmed the formation of HSA-CeO2 nanoparticle conjugates. Changes in protein conformation, which depend on the concentration of both citrate-stabilized CeO2 nanoparticles and pristine CeO2 nanoparticles, did not affect albumin drug-binding sites and, accordingly, did not impair the HSA transport function. The results obtained shed light on the biological consequences of the CeO2 nanoparticles' entrance into the body, which should be taken into account when engineering nanobiomaterials to increase their efficiency and reduce the side effects.


Subject(s)
Cerium , Nanoparticles , Nanostructures , Humans , Nanoparticles/chemistry , Cerium/pharmacology , Cerium/chemistry , Cerium/metabolism , Serum Albumin, Human/metabolism
17.
Int J Mol Sci ; 24(21)2023 Oct 29.
Article in English | MEDLINE | ID: mdl-37958712

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) describes a spectrum of liver abnormalities, from benign steatosis to nonalcoholic steatohepatitis (NASH). Because of their antioxidant capabilities, CeNPs have sparked a lot of interest in biological applications. This review evaluated the effectiveness of CeNPs in NAFLD evolution through in vivo and in vitro studies. Databases such as MEDLINE, EMBASE, Scopus, and Web of Science were looked for studies published between 2012 and June 2023. Quality was evaluated using PRISMA guidelines. We looked at a total of nine primary studies in English carried out using healthy participants or HepG2 or LX2 cells. Quantitative data such as blood chemical markers, lipid peroxidation, and oxidative status were obtained from the studies. Our findings indicate that NPs are a possible option to make medications safer and more effective. In fact, CeNPs have been demonstrated to decrease total saturated fatty acids and foam cell production (steatosis), reactive oxygen species production and TNF-α (necrosis), and vacuolization in hepatic tissue when used to treat NAFLD. Thus, CeNP treatment may be considered promising for liver illnesses. However, limitations such as the variation in durations between studies and the utilization of diverse models to elucidate the etiology of NAFLD must be considered. Future studies must include standardized NAFLD models.


Subject(s)
Cerium , Nanoparticles , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Liver , Cerium/pharmacology , Cerium/therapeutic use
18.
Curr Radiopharm ; 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37990425

ABSTRACT

Cancer presents a significant medical challenge that requires effective management. Current cancer treatment options, such as chemotherapy, targeted therapy, radiotherapy, and immunotherapy, have limitations in terms of their efficacy and the potential harm they can cause to normal tissues. In response, researchers have been focusing on developing adjuvants that can enhance tumor responses while minimizing damage to healthy tissues. Among the promising options, nanoceria (NC), a type of nanoparticle composed of cerium oxide, has garnered attention for its potential to improve various cancer treatment regimens. Nanoceria has demonstrated its ability to exhibit toxicity towards cancer cells, inhibit invasion, and sensitize cancer cells to both radiation therapy and chemotherapy. The remarkable aspect is that nanoceria show minimal toxicity to normal tissues while protecting against various forms of reactive oxygen species generation. Its capability to enhance the sensitivity of cancer cells to chemotherapy and radiotherapy has also been observed. This paper thoroughly reviews the current literature on nanoceria's applications within different cancer treatment modalities, with a specific focus on radiotherapy. The emphasis is on nanoceria's unique role in enhancing tumor radiosensitization and safeguarding normal tissues from radiation damage.

19.
Int J Mol Sci ; 24(19)2023 Sep 24.
Article in English | MEDLINE | ID: mdl-37833949

ABSTRACT

In the ongoing search for practical uses of rare-earth metal nanoparticles, cerium dioxide nanoparticles (nanoceria) have received special attention. The purpose of this research was to study the biomedical effects of nanocrystalline forms of cerium oxide obtained by different synthesis schemes and to evaluate the effect of different concentrations of nanoceria (from 10-2 to 10-6 M) on cells involved in the regeneration of skin cell structures such as fibroblasts, mesenchymal stem cells, and keratinocytes. Two different methods of nanoceria preparation were investigated: (1) CeO-NPs-1 by precipitation from aqueous solutions of cerium (III) nitrate hexahydrate and citric acid and (2) CeO-NPs-2 by hydrolysis of ammonium hexanitratocerate (IV) under conditions of thermal autoclaving. According to the X-ray diffraction, transmission electron microscopy, and dynamic light scattering data, CeO2-1 consists of individual particles of cerium dioxide (3-5 nm) and their aggregates with diameters of 60-130 nm. CeO2-2 comprises small aggregates of 8-20 nm in diameter, which consist of particles of 2-3 nm in size. Cell cultures of human fibroblasts, human mesenchymal stem cells, and human keratinocytes were cocultured with different concentrations of nanoceria sols (10-2, 10-3, 10-4, 10-5, and 10-6 mol/L). The metabolic activity of all cell types was investigated by MTT test after 48 and 72 h, whereas proliferative activity and cytotoxicity were determined by quantitative cell culture counting and live/dead test. A dependence of biological effects on the method of nanoceria preparation and concentration was revealed. Data were obtained with respect to the optimal concentration of sol to achieve the highest metabolic effect in the used cell cultures. Hypotheses about the mechanisms of the obtained effects and the structure of a fundamentally new medical device for accelerated healing of skin wounds were formulated. The method of nanoceria synthesis and concentration fundamentally and significantly change the biological activity of cell cultures of different types-from suppression to pronounced stimulation. The best biological activity of cell cultures was determined through cocultivation with sols of citrate nanoceria (CeO-NPs-1) at a concentration of 10-3-10-4 M.


Subject(s)
Cerium , Nanoparticles , Humans , Cerium/pharmacology , Cerium/chemistry , Nanoparticles/chemistry
20.
Saudi Pharm J ; 31(10): 101761, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37705880

ABSTRACT

Oxidative stress induced reactive oxygen species has been implicated as the primary molecular mechanism in the pathogenesis of debilitating retinal diseases such as diabetic retinopathy, neovascularization and age-related macular degeneration. Nanoceria (cerium oxide nanoparticles) has recently received much attention, because of its superior and regenerative radical scavenging properties. This review focuses on retinal applications of nanoceria and functionalized nanoceria. Studies in animal models showed that nanoceria possess antioxidant, anti-inflammatory, anti-angiogenic, anti-apoptotic properties and preserves retinal morphology and prevents loss of retinal functions. Nanoceria have been tested in animal models of age-related macular degeneration and neovascularization and their efficacy have been shown to persist for a long time, without any collateral effects. To date, several pharmaceutical formulations of nanoceria have been developed for their prospective clinical ophthalmic applications such as chitosan coated nanoceria, nanoceria loaded into hydrogels, nanoceria embedded in wafers and contact lens and organosilane or polyethylene glycol functionalized nanoceria. Based on their nano size range, ocular permeation could be achieved to allow topical administration of nanoceria. PEGylation of nanoceria represents the key strategy to support eye drop formulation with enhanced corneal permeation, without altering chemical physical properties. Based on their excellent antioxidant properties, nano-size, safety and tolerability, PEGylated nanoceria represent a new potential therapeutic for the treatment.

SELECTION OF CITATIONS
SEARCH DETAIL