Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 619
Filter
1.
Talanta ; 279: 126606, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39089080

ABSTRACT

Due to the pathogen-specific targeting, neutralization capabilities, and enduring efficacy, neutralizing antibodies (NAs) have received widespread attentions as a critical immunotherapeutic strategy against infectious viruses. However, because of the high variability and complexity of pathogens, rapid determination of neutralization activity of antiviral antibodies remains a challenge. Here, we report a new method, named as out-of-plane polarization imaging based single-particle rotational sensing, for rapid analysis of neutralization activity of antiviral antibody against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Using the spike protein functionalized gold nanorods (AuNRs) and angiotensin-converting enzyme 2 (ACE2) coated gold nanoparticles (AuNPs) as the rotational sensors and chaperone probes, we demonstrated the single-particle rotational sensing strategy for the measurement of rotational diffusion coefficient of the chaperone-bound rotational sensors caused by the specific spike protein-ACE2 interactions. This enables us to measure the neutralizing activity of neutralizing antibody from the analysis of dose-dependent changes in rotational diffusion coefficient (Dr) of the rotational sensors upon the treatment of SARS-CoV-2 antibody. With this technique, we achieved the quantitative determination of neutralization activity of a commercially available SARS-CoV-2 antibody (IC50, 294.1 ng/mL) with satisfying accuracy and anti-interference ability. This simple and robust method holds the potential for rapid and accurate evaluation of neutralization activity against different pathogenic viruses.

2.
Mikrochim Acta ; 191(9): 511, 2024 08 05.
Article in English | MEDLINE | ID: mdl-39103612

ABSTRACT

A sequential dual-locked luminescent copper nanoclusters (CuNCs) probe was designed and synthesized for the specific imaging and selective killing of tumor cells. This nanoprobe was prepared by first forming a Fe3+-coupled tannic acid (TA)-stabilized CuNCs (CuNCs-FeIII), which is in quenching state due to the electron transfer between CuNCs and Fe3+, and then coating a protectable layer of hyaluronic acid (HA) on the surface of CuNCs-FeIII to form the final dual-locked nanoprobe (CuNCs-FeIII@HA). When the nanoprobe of CuNCs-FeIII@HA target enter the tumor cells through CD44-HA receptor, HAase will first digest the HA layer of the nanoprobes, and then, GSH over-expressed in tumor cells will reduce Fe3+ to Fe2+, thus restoring the fluorescence emission of CuNCs and at the same time killing the tumor cells with the hydroxyl free radicals (∙OH) produced by the Fenton reaction between Fe2+ and H2O2. This sequential dual-locked luminescent nanoprobe of CuNCs-FeIII@HA has been successfully used for the specific imaging and selective killing of tumor cells.


Subject(s)
Copper , Copper/chemistry , Humans , Metal Nanoparticles/chemistry , Hyaluronic Acid/chemistry , Tannins/chemistry , Optical Imaging , Fluorescent Dyes/chemistry , Cell Survival/drug effects , Luminescent Agents/chemistry , Luminescent Agents/chemical synthesis , Cell Line, Tumor , Hydroxyl Radical/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Hydrogen Peroxide/chemistry
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124834, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39032231

ABSTRACT

Iron ion (Fe3+) detection is crucial for human health since it plays a crucial role in many physiological activities. In this work, a novel Schiff-base functionalized cyanine derivative (CyPy) was synthesized, which was successfully assembled on the surface of upconversion nanoparticles (UCNPs) through an amphiphilic polymer encapsulation method. In the as-designed nanoprobe, CyPy, a recognizer of Fe3+, is served as energy donor and ß-NaYF4:Yb,Er upconversion nanoparticles are adopted as energy acceptor. As a result, a 93-fold enhancement of upconversion luminescence is achieved. The efficient energy transfer from CyPy to ß-NaYF4:Yb,Er endows the nanoprobe a high sensitivity for Fe3+ in water with a low detection limit of 0.21 µM. Moreover, the nanoprobe has been successfully applied for Fe3+ determination in human serum and tap water samples with recovery ranges of 95 %-105 % and 97 %-106 %, respectively. Moreover, their relative standard deviations are all below 3.72 %. This work provides a sensitive and efficient methodology for Fe3+ detection in clinical and environmental testing.

4.
J Fluoresc ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028448

ABSTRACT

Particle extraction via the liquid-liquid interface (PELLI) method has been utilized to produce Di-(2-ethylhexyl) phosphate (DEHP) coated MnO2 fluorescent nanoprobe denoted as MnO2@DEHP for the selective detection of Fe3+ ions. The synthesized MnO2@DEHP nanoprobe was characterized by various instrumental techniques such as FT-IR, PXRD, TEM, EDAX, HRTEM, DLS, and XPS. Since the high concentration of Fe3+ in waste water leads to water pollution, which in turn affects the ecosystem, and causes severe health hazards. Therefore, accurate detection of Fe3+ ions in the aqueous systems is essential as they are involved in various chemical and biological processes in living things. Here, the synthesized MnO2@DEHP nanoprobe selectively detects Fe3+ ions in the presence of various metal ions in an aqueous media by fluorescence quenching (turn-off) mechanism. The limit of detection (LOD) of MnO2@DEHP nanoprobe for Fe3+ was found to be 0.49 µM. The test-strip method and real water sample analysis were also used to demonstrate the viability of MnO2@DEHP as a fluorescent nanoprobe to detect Fe3+ ions visually and in environment monitoring applications.

5.
Talanta ; 279: 126599, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39084039

ABSTRACT

Drug-induced liver injury (DILI) poses a significant risk to human health. Increasing evidence indicates that the superoxide anion (O2•-), as the precursor of the other reactive oxygen species, is key in the pathological processes associated with DILI. Nonetheless, understanding of the mechanisms of DILI is difficult due to the lack of an imaging tool for monitoring the fluctuation of O2•- levels during the progression of DILI. Herein, we developed an upconversion nanoprobe (Rbh-UCNs) for in vivo ratiometric tracking of endogenous O2•- in DILI. In this design, the addition of O2•- triggers the luminescent resonance energy transfer between Rbh and UCNs, which significantly enhances absorption centered at 534 nm and translates into a distinct decrease of the UCL emission at 543 nm, while the UCL emission peak at 654 nm and 800 nm are not significantly affected, offering a ratiometric UCL signal for the quantitative detection of O2•-. In addition, Rbh-UCNs could effectively visualize endogenous O2•- in living cells, zebrafish, and liver tissues upon stimulation with PMA or cisplatin. More importantly, tissue imaging of the liver region of mice revealed that the fluctuation of O2•- levels is associated with DILI and the protective effect of L-carnitine against DILI. Altogether, this study provides an available method for a deeper comprehension of the mechanisms underlying DILI and accelerating the development process of hepatoprotective medicines.

6.
ACS Nano ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080511

ABSTRACT

Super-resolution fluorescence microscopy has emerged as a powerful tool for studying endoplasmic reticulum (ER) dynamics in living cells. However, the lack of high-brightness, high-photostability, and stable labeling probes makes long-term super-resolution imaging of the ER still challenging. Herein, we reported a surface-functionalized Halo-tag gold nanofluorescent probe (GNP-Atto565-fR8-CA) that exhibits excellent brightness, photostability, and biocompatibility. GNP-Atto565-fR8-CA can simultaneously load multiple Atto565 dye molecules, significantly improving its brightness. Modifying the cell-penetrating peptide fR8 enables GNP-Atto565-fR8-CA to be efficiently delivered into the cytoplasm, overcoming the challenge of their easy entrapment in vesicles. Fluorescent labeling of ER proteins via Halo tags enables high specificity and stable labeling of GNP-Atto565-fR8-CA to the ER. The SIM super-resolution imaging results showed that GNP-Atto565-fR8-CA can track and observe the long-term dynamic process of the ER, and can also be used for long-term super-resolution imaging of the dynamic interactions between the ER and other organelles. This work offers a practical tool to study live-cell ER ultrastructure and dynamics.

7.
Small Methods ; : e2400598, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075823

ABSTRACT

Lattice strain in crystals can be exploited to effectively tune their physical properties. In microscopic structures, experimental access to the full strain tensor with spatial resolution at the (sub-)micrometer scale is at the same time very interesting and challenging. In this work, how scanning X-ray diffraction microscopy, an emerging model-free method based on synchrotron radiation, can shed light on the complex, anisotropic deformation landscape within three dimensional (3D) microstructures is shown. This technique allows the reconstruction of all lattice parameters within any type of crystal with submicron spatial resolution and requires no sample preparation. Consequently, the local state of deformation can be fully quantified. Exploiting this capability, all components of the strain tensor in a suspended, strained Ge1 - xSnx /Ge microdisk are mapped. Subtle elastic deformations are unambiguously correlated with structural defects, 3D microstructure geometry, and chemical variations, as verified by comparison with complementary electron microscopy and finite element simulations. The methodology described here is applicable to a wide range of fields, from bioengineering to metallurgy and semiconductor research.

8.
ACS Appl Bio Mater ; 7(7): 4417-4426, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38875229

ABSTRACT

In the present study, we have engineered a molecular logic gate system employing both Fe2+ ions and cholesterol as bioanalytes for innovative detection strategies. We utilized a green-synthesis method employing the mango leaves extract to create fluorescent graphene quantum dots termed "mGQDs". Through techniques like HR-TEM, i.e., high-resolution transmission electron microscopy, Raman spectroscopy, and XPS, i.e., X-ray photoelectron spectroscopy, the successful formation of mGQDs was confirmed. The photoluminescence (PL) characteristics of mGQDs were investigated for potential applications in metal ion detection, specifically Fe2+ traces in water, by using fluorescence techniques. Under 425 nm excitation, mGQDs exhibited emission bands at 495 and 677 nm in their PL spectrum. Fe2+-induced notable quenching of mGQDs' PL intensity decreased by 97% with 2.5 µM Fe2+ ions; however, adding 20 mM cholesterol resulted in a 92% recovery. Detection limits were established through a linear Stern-Volmer (S-V) plot at room temperature, yielding values of 4.07 µM for Fe2+ ions and 1.8 mM for cholesterol. Moreover, mGQDs demonstrated biocompatibility, aqueous solubility, and nontoxicity, facilitating the creation of a rapid nonenzymatic cholesterol detection method. Selectivity and detection studies underscored mGQDs' reliability in cholesterol level monitoring. Additionally, a molecular logic gate system employing Fe2+ metal ions and cholesterol as a bioanalyte was established for detection purposes. Overall, this research introduces an ecofriendly approach to craft mGQDs and highlights their effectiveness in detecting metal ions and cholesterol, suggesting their potential as versatile nanomaterials for diverse analytical and biomedical applications.


Subject(s)
Biocompatible Materials , Cholesterol , Graphite , Iron , Mangifera , Materials Testing , Particle Size , Plant Leaves , Quantum Dots , Quantum Dots/chemistry , Graphite/chemistry , Cholesterol/analysis , Cholesterol/chemistry , Plant Leaves/chemistry , Mangifera/chemistry , Iron/chemistry , Iron/analysis , Biocompatible Materials/chemistry , Ions/chemistry , Ions/analysis , Humans
9.
Food Chem ; 455: 139706, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38824723

ABSTRACT

An organic-inorganic hybrid nanoprobe, namely LML-D-SBA@Eu3+-Gd3+, was constructed, with SBA-15 acting as the carrier material, and luminol and Eu3+ acting as fluorescence channels to achieve ratiometric signals that eliminate external interference (accurate detection). Gd3+ was used as a sensitizer to amplify the red emission of Eu3+ (ultrasensitive detection). In TCs detection, the luminol emission at 428 nm was quenched due to the photoinduced electron transfer mechanism, and the Eu3+ emission at 617 nm was sensitized due to the synergistic energy transfer from TCs and Gd3+ to Eu3+. The fluorescence intensity at 617 and 428 nm showed ratiometric changes as indicated by notable color changes from blue to red. The detection limits for TC and OTC were 0.21 and 0.08 ng/mL, respectively. To realize a facile, rapid, and cost-effective detection, we constructed a portable intelligent sensing platform based on smartphones, and it demonstrated great potential for on-site detection of TCs.


Subject(s)
Anti-Bacterial Agents , Europium , Luminol , Silicon Dioxide , Smartphone , Tetracycline , Luminol/chemistry , Silicon Dioxide/chemistry , Europium/chemistry , Anti-Bacterial Agents/analysis , Tetracycline/analysis , Tetracycline/chemistry , Gadolinium/chemistry , Food Contamination/analysis , Limit of Detection , Spectrometry, Fluorescence/methods , Porosity
10.
Small ; : e2400883, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38881331

ABSTRACT

Hypochlorous acid (HOCl), as an indispensable signaling molecule in organisms, is one of the key members of reactive oxygen species (ROS). However, in vivo, real-time dynamic near-infrared fluorescence imaging of HOCl levels in the 1400-1700 nm sub-window (NIR-IIb) remains a major challenge due to the lack of suitable detection methods. Herein, a general design of HOCl-responsive NIR-IIb fluorescence nanoprobe is proposed by integrating NaLuF4Yb/Er@NaLuF4 downshift nanoparticles (DSNPs) and HOCl recognition/NIR-IIb emissive modulation unit of M2-xS (M = Cu, Co, Pb) nanodots for real-time monitoring of HOCl levels. The fluorescence modulation unit of M2-xS nanodots presents remarkably enhanced absorption than Yb sensitizer at 980 nm and greatly inhibits the NIR-IIb fluorescence emission via competitive absorption mechanism. While, the M2-xS nanodots are easily degraded after triggering by HOCl, resulting in HOCl responsive turn-on (≈ten folds) NIR-IIb emission at 1532 nm. More importantly, in vivo highly precise and specific monitoring of inflammatory with abnormal HOCl expression is successfully achieved. Thus, the explored competitive absorption mediated quenching-activation mechanism provides a new general strategy of designing HOCl-responsive NIR-IIb fluorescence nanoprobe for highly specific and sensitive HOCl detection.

11.
Adv Mater ; : e2405275, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38897213

ABSTRACT

The development of minimally invasive surgery has greatly advanced precision tumor surgery, but sometime suffers from restricted visualization of the surgical field, especially during the removal of abdominal tumors. A 3-D inspection of tumors could be achieved by intravenously injecting tumor-selective fluorescent probes, whereas most of which are unable to instantly distinguish tumors via in situ spraying, which is urgently needed in the process of surgery in a convenient manner. In this study, this work has designed an injectable and sprayable fluorescent nanoprobe, termed Poly-g-BAT, to realize rapid tumor imaging in freshly dissected human colorectal tumors and animal models. Mechanistically, the incorporation of γ-glutamyl group facilitates the rapid internalization of Poly-g-BAT, and these internalized nanoprobes can be subsequently activated by intracellular NAD(P)H: quinone oxidoreductase-1 to release near-infrared fluorophores. As a result, Poly-g-BAT can achieve a superior tumor-to-normal ratio (TNR) up to 12.3 and enable a fast visualization (3 min after in situ spraying) of tumor boundaries in the xenograft tumor models, Apcmin/+ mice models and fresh human tumor tissues. In addition, Poly-g-BAT is capable of identifying minimal premalignant lesions via intravenous injection.

12.
J Nanobiotechnology ; 22(1): 311, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831332

ABSTRACT

Efficient thrombolysis in time is crucial for prognostic improvement of patients with acute arterial thromboembolic disease, while limitations and complications still exist in conventional thrombolytic treatment methods. Herein, our study sought to investigate a novel dual-mode strategy that integrated ultrasound (US) and near-infrared light (NIR) with establishment of hollow mesoporous silica nanoprobe (HMSN) which contains Arginine-glycine-aspartate (RGD) peptide (thrombus targeting), perfluoropentane (PFP) (thrombolysis with phase-change and stable cavitation) and indocyanine green (ICG) (thrombolysis with photothermal conversion). HMSN is used as the carrier, the surface is coupled with targeted RGD to achieve high targeting and permeability of thrombus, PFP and ICG are loaded to achieve the collaborative diagnosis and treatment of thrombus by US and NIR, so as to provide a new strategy for the integration of diagnosis and treatment of arterial thrombus. From the in vitro and in vivo evaluation, RGD/ICG/PFP@HMSN can aggregate and penetrate at the site of thrombus, and finally establish the dual-mode directional development and thrombolytic treatment under the synergistic effect of US and NIR, providing strong technical support for the accurate diagnosis and treatment of arterial thrombosis.


Subject(s)
Indocyanine Green , Infrared Rays , Oligopeptides , Thrombolytic Therapy , Thrombosis , Animals , Thrombolytic Therapy/methods , Oligopeptides/chemistry , Indocyanine Green/chemistry , Thrombosis/diagnostic imaging , Thrombosis/drug therapy , Nanoparticles/chemistry , Fluorocarbons/chemistry , Silicon Dioxide/chemistry , Humans , Mice , Male , Rabbits , Ultrasonography/methods , Pentanes
13.
Talanta ; 276: 126296, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38795648

ABSTRACT

Highly stable and multicolor photoluminescent (PL) quantum dots (QDs) have attracted widespread attention as ideal probe materials in the field of in vitro diagnostics (IVD), especially the fluorescence-linked immunosorbent assay (FLISA), due to their advantages of high-throughput, high stability, and high sensitivity. However, the size of QDs as fluorescent probes have significant effects on antigen-antibody performance. Therefore, it is critical to design suitable QDs for obtain excellent quantitative detection-based biosensors. In this paper, we prepared different sizes of aqueous QDs (30 nm, 116 nm, 219 nm, and 320 nm) as fluorescent probes to optimize the competitive FLISA platform. The SARS-CoV-2 neutralizing antibody (NTAB) assay was used as an example, and it was found that the size of the QDs has a significant impact on the antigen-antibody binding efficiency and detection sensitivity in competitive FLISA platform. The results showed that these QD nanobeads (QBs, ∼219 nm) could be used as a labeled probe for competitive FLISA, with half-maximal inhibitory concentration (IC50) of 1.34 ng/mL and limit of detection (LOD) of 0.21 pg/mL for NTAB detection. More importantly, the results showed good specificity and accuracy, and the QB219 probe was able to efficiently bind NTAB without interference from other substances in the serum. Given the above advantages, the nanoprobe material (∼200 nm) offers considerable potential as a competitive FLISA platform in the field of IVD.


Subject(s)
Quantum Dots , SARS-CoV-2 , Quantum Dots/chemistry , Humans , SARS-CoV-2/immunology , Limit of Detection , Fluorescent Dyes/chemistry , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Particle Size , COVID-19/diagnosis , COVID-19/blood , COVID-19/virology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Biosensing Techniques/methods , Fluorescence
14.
Nanotechnology ; 35(33)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38776878

ABSTRACT

One challenge of the structural design of a fluorescent probe is how to improve the detection performance on trace target analytes in complex samples. Herein a new polymer fluorescent nanoprobe (2DSP-C28) has been synthesized, by adopting a two-dimensional (2D), spiropyran (SP)-based nanosheet structure with hydrophobic long-chain alkanes (C28). Unlike a traditional SP-based small molecule probe, the 2DSP-C28probe can exhibit quantitative-fluorescent and photochromic properties. Under the detection of metal-ions, the nanoprobe in dimethyl sulfoxide aqueous solution is selectively fluorescent-quenched-responsive for Fe-ions (∼100µM), with a characteristic stoichiometric ratio of <10, a high sensitivity (limit of detection: ∼0.2µM). When the nanoprobe is incorporated into electrospun polyethylene oxide, it can be used for gas detection, and display a color-change with acid-base gas and identify the HF gas. It is expected that this new polymer fluorescent nanoprobe can be promisingly applied for rapidly environmental monitoring on the ion or gas pollution.

15.
Anal Chim Acta ; 1310: 342716, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38811135

ABSTRACT

BACKGROUND: Assembling framework nucleic acid (FNA) nanoarchitectures and tuning luminescent quantum dots (QDs) for fluorescence assays represent a versatile strategy in analytical territory. Rationally, FNA constructs could offer a preferential orientation to efficiently recognize the target and improve detection sensitivity, meanwhile, regulating size-dependent multicolor emissions of QDs in one analytical setting for ratiometric fluorescence assay would greatly simplify operation procedures. Nonetheless, such FNA/QDs-based ratiometric fluorescence nanoprobes remain rarely explored. RESULTS: We designed a sensitive and signal amplification-free fluorescence aptasensor for lead ions (Pb2+) that potentially cause extensive contamination to environment, cosmetic, food and pharmaceuticals. Red and green emission CdTe quantum dots (rQDs and gQDs) were facilely prepared. Moreover, silica nanosphere encapsulating rQDs served as quantitative internal reference and scaffold to anchor a predesigned FNA and DNA sandwich containing Pb2+ binding aptamer and gQD modified DNA signal reporter. On binding of Pb2+, the gQD-DNA signal reporter was set free, resulting in fluorescence quenching at graphene oxide (GO) interface. Owing to the rigid structure of FNA, the fluorescence signal reporter orderly arranged at the silica nanosphere could sensitively respond to Pb2+ stimulation. The dose-dependent fluorescence signal-off mode enabled ratiometric analysis of Pb2+ without cumbersome signal amplification. Linear relationship was established between fluorescence intensity ratio (I555/I720) and Pb2+ concentration from 10 nM to 2 µM, with detection limit of 1.7 nM (0.43 ppb), well addressing the need for Pb2+ routine monitoring. The designed nanoprobe was applied to detection of Pb2+ in soil, cosmetic, milk, drug, and serum samples, with the sensitivity comparable to conventional ICP-MS technique. SIGNIFICANCE: Given the programmable design of FNA and efficient recognition of target, flexible tuning of QDs emission, and signal amplification-free strategy, the present fluorescence nanoprobe could be a technical criterion for other heavy metal ions detection in a straightforward manner.


Subject(s)
DNA , Graphite , Lead , Nanospheres , Quantum Dots , Silicon Dioxide , Spectrometry, Fluorescence , Quantum Dots/chemistry , Lead/analysis , Lead/chemistry , Graphite/chemistry , Silicon Dioxide/chemistry , Nanospheres/chemistry , DNA/chemistry , Cadmium Compounds/chemistry , Limit of Detection , Tellurium/chemistry , Aptamers, Nucleotide/chemistry , Fluorescence , Biosensing Techniques/methods
16.
J Nanobiotechnology ; 22(1): 245, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38735921

ABSTRACT

BACKGROUND: The general sluggish clearance kinetics of functional inorganic nanoparticles tend to raise potential biosafety concerns for in vivo applications. Renal clearance is a possible elimination pathway for functional inorganic nanoparticles delivered through intravenous injection, but largely depending on the surface physical chemical properties of a given particle apart from its size and shape. RESULTS: In this study, three small-molecule ligands that bear a diphosphonate (DP) group, but different terminal groups on the other side, i.e., anionic, cationic, and zwitterionic groups, were synthesized and used to modify ultrasmall Fe3O4 nanoparticles for evaluating the surface structure-dependent renal clearance behaviors. Systematic studies suggested that the variation of the surface ligands did not significantly increase the hydrodynamic diameter of ultrasmall Fe3O4 nanoparticles, nor influence their magnetic resonance imaging (MRI) contrast enhancement effects. Among the three particle samples, Fe3O4 nanoparticle coated with zwitterionic ligands, i.e., Fe3O4@DMSA, exhibited optimal renal clearance efficiency and reduced reticuloendothelial uptake. Therefore, this sample was further labeled with 99mTc through the DP moieties to achieve a renal-clearable MRI/single-photon emission computed tomography (SPECT) dual-modality imaging nanoprobe. The resulting nanoprobe showed satisfactory imaging capacities in a 4T1 xenograft tumor mouse model. Furthermore, the biocompatibility of Fe3O4@DMSA was evaluated both in vitro and in vivo through safety assessment experiments. CONCLUSIONS: We believe that the current investigations offer a simple and effective strategy for constructing renal-clearable nanoparticles for precise disease diagnosis.


Subject(s)
Kidney , Magnetic Resonance Imaging , Tomography, Emission-Computed, Single-Photon , Animals , Magnetic Resonance Imaging/methods , Mice , Tomography, Emission-Computed, Single-Photon/methods , Ligands , Kidney/diagnostic imaging , Kidney/metabolism , Cell Line, Tumor , Contrast Media/chemistry , Female , Mice, Inbred BALB C , Humans , Tissue Distribution , Neoplasms/diagnostic imaging , Magnetite Nanoparticles/chemistry , Nanoparticles/chemistry
17.
Sci Bull (Beijing) ; 69(12): 1909-1919, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38644130

ABSTRACT

Colorectal cancer (CRC), a widespread malignancy, is closely associated with tumor microenvironmental hydrogen peroxide (H2O2) levels. Some clinical trials targeting H2O2 for cancer treatment have revealed its paradoxical role as a promoter of cancer progression. Investigating the dynamics of cancer cell H2O2 eustress at the single-cell level is crucial. In this study, non-contact hopping probe mode scanning ion conductance microscopy (HPICM) with high-sensitive Pt-functionalized nanoelectrodes was employed to measure dynamic extracellular to intracellular H2O2 gradients in individual colorectal cancer Caco-2 cells. We explored the relationship between cellular mechanical properties and H2O2 gradients. Exposure to 0.1 or 1 mmol/L H2O2 eustress increased the extracellular to intracellular H2O2 gradient from 0.3 to 1.91 or 3.04, respectively. Notably, cellular F-actin-dependent stiffness increased at 0.1 mmol/L but decreased at 1 mmol/L H2O2 eustress. This H2O2-induced stiffness modulated AKT activation positively and glutathione peroxidase 2 (GPX2) expression negatively. Our findings unveil the failure of some H2O2-targeted therapies due to their ineffectiveness in generating H2O2, which instead acts eustress to promote cancer cell survival. This research also reveals the complex interplay between physical properties and biochemical signaling in cancer cells' antioxidant defense, illuminating the exploitation of H2O2 eustress for survival at the single-cell level. Inhibiting GPX and/or catalase (CAT) enhances the cytotoxic activity of H2O2 eustress against CRC cells, which holds significant promise for developing innovative therapies targeting cancer and other H2O2-related inflammatory diseases.


Subject(s)
Colorectal Neoplasms , Hydrogen Peroxide , Humans , Hydrogen Peroxide/pharmacology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Caco-2 Cells , Glutathione Peroxidase/metabolism , Cell Survival/drug effects , Tumor Microenvironment/drug effects , Actins/metabolism , Proto-Oncogene Proteins c-akt/metabolism
18.
Angew Chem Int Ed Engl ; 63(25): e202404885, 2024 06 17.
Article in English | MEDLINE | ID: mdl-38622059

ABSTRACT

There is an urgent need to improve conventional cancer-treatments by preventing detrimental side effects, cancer recurrence and metastases. Recent studies have shown that presence of senescent cells in tissues treated with chemo- or radiotherapy can be used to predict the effectiveness of cancer treatment. However, although the accumulation of senescent cells is one of the hallmarks of cancer, surprisingly little progress has been made in development of strategies for their detection in vivo. To address a lack of detection tools, we developed a biocompatible, injectable organic nanoprobe (NanoJagg), which is selectively taken up by senescent cells and accumulates in the lysosomes. The NanoJagg probe is obtained by self-assembly of indocyanine green (ICG) dimers using a scalable manufacturing process and characterized by a unique spectral signature suitable for both photoacoustic tomography (PAT) and fluorescence imaging. In vitro, ex vivo and in vivo studies all indicate that NanoJaggs are a clinically translatable probe for detection of senescence and their PAT signal makes them suitable for longitudinal monitoring of the senescence burden in solid tumors after chemotherapy or radiotherapy.


Subject(s)
Cellular Senescence , Indocyanine Green , Indocyanine Green/chemistry , Cellular Senescence/drug effects , Humans , Animals , Optical Imaging , Mice , Nanoparticles/chemistry , Fluorescent Dyes/chemistry , Photoacoustic Techniques/methods
19.
Anal Chim Acta ; 1302: 342502, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38580409

ABSTRACT

BACKGROUNDS: Cancer is a highly fatal disease which is close relative of miRNA aberrant expression and apoptosis disorders. Elucidation of the therapeutic efficacy through investigating the changes in miRNA and apoptosis holds immense importance in advancing the development of miRNA-based precision therapy. However, it remains a challenge as how to visually evaluate the efficacy during protocol optimization of miRNA-based anticancer drugs at the cellular level. Therefore, exploring effective and noninvasive methods for real-time monitoring of therapeutic efficacy in living cells is of great significance. RESULTS: Herein, we reported a novel fluorescent nanoprobe COF-H1/H2-Peptide for visually evaluating drug efficacy in living cells through amplified imaging of low-abundant miRNA-221 with catalytic hairpin assembly (CHA) circle amplification, as well as simultaneous caspase-3 imaging. With strong stability and good biocompatibility, this newly fabricated amplified nanoprobe showed high sensitivity and specificity for the detection of miRNA-221 and caspase-3, and the limit of detection (LOD) of miRNA-221 was as low as 2.79 pM. The fluorescent imaging results showed that this amplified nanoprobe could not only detect caspase-3 in living cells, but also effectively detect low levels of miRNA-221 with increasing anticancer drug concentration and treatment time. The smart nanoprobe had effective performance for optimizing miRNA-based drug treatment schedules by dual-color fluorescence imaging. SIGNIFICANCE: This nanoprobe combined CHA amplified detection of intracellular miRNA-221 and synchronous apoptosis imaging, with excellent sensitivity for the detection of cellular low-level miRNA, enabling the realization of real-time assessment of the efficacy of miRNA-based therapy in living cells. This work presents a promising approach for revealing the regulatory mechanisms between miRNAs and apoptosis in cancer occurrence, development, and treatment.


Subject(s)
Biosensing Techniques , MicroRNAs , Humans , MicroRNAs/genetics , Caspase 3 , Apoptosis , HeLa Cells , Fluorescent Dyes , Biosensing Techniques/methods
20.
Chemosphere ; 357: 141966, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38614401

ABSTRACT

Chromium is widely recognized as a significant pollutant discharged into the environment by various industrial activities. The toxicity of this element is dependent on its oxidation state, making speciation analysis crucial for monitoring the quality of environmental water and assessing the potential risks associated with industrial waste. This study introduces a single-well fluorometric sensor that utilizes orange emissive thioglycolic acid stabilized CdTe quantum dots (TGA-QDs) and blue emissive carbon dots (CDs) to detect and differentiate between various chromium species, such as Cr (III) and Cr (VI) (i.e., CrO42- and Cr2O72-). The variations of fluorescence spectra of the proposed probe upon chromium species addition were analyzed using machine learning techniques such as linear discriminant analysis and partial least squares regression as a classification and multivariate calibration technique, respectively. Linear discriminant analysis (LDA) demonstrated exceptional accuracy in differentiating single-component and bicomponent samples. Additionally, the findings from the partial least squares regression (PLSR) showed that the sensor created has strong linearity within the 1.0-100.0, 1.0-100.0, and 0.1-15 µM range for Cr2O72-, CrO42-, and Cr3+, respectively. Furthermore, appropriate detection limits were successfully achieved, which were 2.6, 2.9, and 0.7 µM for Cr2O72-, CrO42-, and Cr3+, respectively. Ultimately, the successful capability of the sensing platform in the identification and quantification of chromium species in environmental water samples provides innovative insights into general speciation analytics.


Subject(s)
Chromium , Machine Learning , Quantum Dots , Water Pollutants, Chemical , Chromium/analysis , Chromium/chemistry , Quantum Dots/chemistry , Water Pollutants, Chemical/analysis , Least-Squares Analysis , Fluorescent Dyes/chemistry , Discriminant Analysis , Tellurium/chemistry , Environmental Monitoring/methods , Cadmium Compounds/chemistry , Spectrometry, Fluorescence/methods , Carbon/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...