Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Publication year range
1.
J Control Release ; 337: 329-342, 2021 09 10.
Article in English | MEDLINE | ID: mdl-34311024

ABSTRACT

Lung cancer is still the main cause of cancer-related deaths worldwide. Its treatment generally includes surgical resection, immunotherapy, radiotherapy, and chemo-targeted therapies such as the application of tyrosine kinase inhibitors. Gefitinib (GEF) is one of them, but its poor solubility in gastric fluids weakens its bioavailability and therapeutic activity. In addition, like all other chemotherapy treatments, GEF administration can cause damage to healthy tissues. Therefore, the development of novel GEF delivery systems to increase its bioavailability and distribution in tumor site is highly demanded. Herein, an innovative strategy for GEF delivery, by functionalizing PLGA nanoparticles with p28 (p28-NPs), a cell-penetrating peptide derived from the bacterial protein azurin, was developed. Our data indicated that p28 potentiates the selective interaction of these nanosystems with A549 lung cancer cells (active targeting). Further p28-NPs delivering GEF (p28-NPs-GEF) were able to selectively reduce the metabolic activity of A549 cells, while no impact was observed in non-tumor cells (16HBE14o-). In vivo studies using A549 subcutaneous xenograft showed that p28-NPs-GEF reduced A549 primary tumor burden and lung metastases formation. Overall, the design of a p28-functionalized delivery nanosystem to effectively penetrate the membranes of cancer cells while deliver GEF could provide a new strategy to improve lung cancer therapy.


Subject(s)
Antineoplastic Agents , Lung Neoplasms , Nanoparticles , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Gefitinib , Humans , Lung Neoplasms/drug therapy , Tumor Burden
2.
Polymers (Basel) ; 13(1)2020 Dec 26.
Article in English | MEDLINE | ID: mdl-33375302

ABSTRACT

The conventional mono-chemotherapy still suffers from unsatisfied potency for cancer therapy due to tumor heterogeneity and the occurrence of drug resistance. Combination chemotherapy based on the nanosized drug delivery systems (nDDSs) has been developed as a promising platform to circumvent the limitations of mono-chemotherapy. In this work, starting from cisplatin and curcumin (Cur), we prepared a dual drug backboned shattering polymeric nDDS for synergistic chemotherapy. By in situ polymerization of the Cur, platinum (IV) complex-based prodrug monomer (DHP), L-lysine diisocyanate (LDI), and then conjugation with a hydrophilic poly (ethylene glycol) monomethyl ether (mPEG) derivative, a backbone-type platinum (IV) and Cur linkage containing mPEG-poly(platinum-co-Cur)-mPEG (PCPt) copolymer was synthesized. Notably, the platinum (IV) (Pt (IV)) and Cur were incorporated into the hydrophobic segment of PCPt with the fixed drugs loading ratio and high drugs loading content. The batch-to-batch variability could be decreased. The resulting prodrug copolymer then self-assembled into nanoparticles (PCPt NPs) with an average diameter around 100 nm, to formulate a synergetic nDDS. Importantly, PCPt NPs could greatly improve the solubility and stability of Cur. In vitro drug release profiles have demonstrated that PCPt NPs were stable in PBS 7.4, rapid burst release was greatly decreased, and the Pt and Cur release could be largely enhanced under reductive conditions due to the complete dissociation of the hydrophobic main chain of PCPt. In vitro cell viability test indicated that PCPt NPs were efficient synergistic chemotherapy units. Moreover, PCPt NPs were synergistic for cisplatin-resistant cell lines A549/DDP cells, and they exhibited excellent reversal ability of tumor resistance to cisplatin. This work provides a promising strategy for the design and synthesis of nDDS for combination chemotherapy.

3.
Int J Nanomedicine ; 15: 4825-4845, 2020.
Article in English | MEDLINE | ID: mdl-32753868

ABSTRACT

BACKGROUND: Nanosized drug delivery systems (NDDSs) have shown excellent prospects in tumor therapy. However, insufficient penetration of NDDSs has significantly impeded their development due to physiological instability and low passive penetration efficiency. METHODS: Herein, we prepared a core cross-linked pullulan-modified nanosized system, fabricated by visible-light-induced diselenide bond cross-linked method for transporting ß-Lapachone and doxorubicin prodrug (boronate-DOX, BDOX), to improve the physiological stability of the NDDSs for efficient passive accumulation in tumor blood vessels (ß-Lapachone/BDOX-CCS). Additionally, ultrasound (US) was utilized to transfer ß-Lapachone/BDOX-CCS around the tumor vessel in a relay style to penetrate the tumor interstitium. Subsequently, ß-Lapachone enhanced ROS levels by overexpressing NQO1, resulting in the transformation of BDOX into DOX. DOX, together with abundant levels of ROS, achieved synergistic tumor therapy. RESULTS: In vivo experiments demonstrated that ultrasound (US) + cross-linked nanosized drug delivery systems (ß-Lapachone/BDOX-CCS) group showed ten times higher DOX accumulation in the tumor interstitium than the non-cross-linked (ß-Lapachone/BDOX-NCS) group. CONCLUSION: Thus, this strategy could be a promising method to achieve deep penetration of NDDSs into the tumor.


Subject(s)
Doxorubicin/therapeutic use , Nanoparticles/chemistry , Naphthoquinones/therapeutic use , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Prodrugs/therapeutic use , Ultrasonography , Animals , Boronic Acids/chemistry , Capillary Permeability/drug effects , Cell Death/drug effects , Cross-Linking Reagents/chemistry , Doxorubicin/pharmacokinetics , Doxorubicin/pharmacology , Drug Delivery Systems , Endocytosis/drug effects , Female , Glucans/chemistry , Hep G2 Cells , Humans , Mice, Inbred BALB C , Mice, Nude , Naphthoquinones/pharmacokinetics , Particle Size , Prodrugs/pharmacokinetics , Reactive Oxygen Species/metabolism , Tissue Distribution/drug effects
4.
Acta Pharmaceutica Sinica ; (12): 1802-1809, 2019.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-780306

ABSTRACT

Immunotherapy has emerged as one of the major modalities for clinical cancer therapy, along with surgery, chemotherapy, radiotherapy and targeted therapy. However, tumor-targeted delivery of immune therapeutics is challenged by a series of barriers including non-specific release, poor tumor penetration capacity, and insufficient cellular uptake of the therapeutic regimens, which seriously restricted the efficiency and efficacy of immunotherapy. To address above challenges, nanosized drug delivery systems (NDDS) have been extensively exploited to achieve tumor-targeted delivery of immunotherapy drugs. It has been well investigated that solid tumors are of unique characteristics including acidic, hypoxic and enzymatic extracellular microenvironment. Meanwhile, the tumor cells are of acidic, reductant and reactive oxygen species intracellular microenvironment. In recent years, a large variety of tumor microenvironment-activatable NDDS have been exploited to respond specifically to the stimulus of extracellular or intracellular tumor microenvironment for enhancing the accumulation, retention and penetration in the tumor tissue. These NDDS were also employed to promote intracellular uptake and tunable drug release inside the tumor cells. In this review article, we summarized the recent progress of our laboratory using the tumor microenvironment-activatable NDDS for immune efficient therapeutics delivery, and improved cancer immunotherapy. We also briefly discussed the challenges and provided perspective of NDDS-based cancer immunotherapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...