Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 240
Filter
1.
Microbiol Resour Announc ; : e0119923, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39320091

ABSTRACT

1,8-Cineole has a potential in control crop pests and biofuels. The endophytic fungus, Annulohypoxylon sp. FPYF3050 (Neolitsea pulchella), can produce over 90% 1,8-cineole of relative area in its natural volatiles, possessed nematicide properties. The annotated genome of this strain will provide insights into potential application in biofumigation and terpene-based advanced biofuel.

2.
J Nematol ; 56(1): 20240030, 2024 Mar.
Article in English | MEDLINE | ID: mdl-39157452

ABSTRACT

Mexico is the 8th largest producer of tomatoes. Meloidogyne enterolobii is reported in Sinaloa, affecting tomato cultivars with genetic resistance to Meloidogyne spp. We aimed to evaluate field applications of fluopyram, fluensulfone, and fluazaindolizine treatments for managing M. enterolobii on tomatoes. Experiments were set on raised beds in a shade house. Nematicides were applied via drip irrigation. Under fluopyram treatment, M. enterolobii did not reduce the number of extra-large-size fruits. The number of large-size fruits with fluopyram and fluazaindolizine plus fluopyram treatments was also unaffected by M. enterolobii. Yield from the treatments fluopyram, fluazaindolizine plus fluopyram, and fluensulfone plus fluopyram was similar to the control treatment without M. enterolobii. Finally, fluazaindolizine plus fluopyram, fluopyram, and fluensulfone plus fluopyram treatments showed the highest reduction of root galling. We conclude that the fluopyram was more effective as an individual treatment. Pre-plant applications of fluensulfone and fluazaindolizine reduced the damage to the plant and the loss of yield; however, the complementary application of fluorinated nematicides improved the management of M. enterolobii in the tomato crop.

3.
Plants (Basel) ; 13(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39124164

ABSTRACT

The rice root-knot nematode (RRKN), Meloidogyne graminicola Golden and Birchfield 1965, is a dangerous crop pest that affects rice production on a global scale. The largest rice-producing countries struggle with the impacts of RRKN infestation, namely, underdeveloped plants and a reduction in rice grain that can reach up to 70% of crop yield. In addition, the shift to strategies of sustainable pest management is leading to a withdrawal of some of the most effective pesticides, given the dangers they pose to the environment and human health. Volatile metabolites produced by plants can offer safer alternatives. The present study characterized the nematicidal activity of volatile phytochemicals against the RRKN and compared the most active with commercial nematicides concerning their safety to the environment and human health. Rice plants were used to grow large numbers of RRKNs for direct-contact bioassays. Mortality induced by the volatiles was followed for four days on RRKN second-stage juveniles. Of the 18 volatiles tested, carvacrol, eugenol, geraniol, and methyl salicylate showed the highest mortalities (100%) and were compared to traditional nematicides using (eco)toxicological parameters reported on freely available databases. While methyl salicylate had a faster activity, carvacrol had more lasting effects. When compared to synthetic nematicides, these volatile phytochemicals were reported to have higher thresholds of toxicity and beneficial ecotoxicological parameters. Ultimately, finding safer alternatives to traditional pesticides can lower the use of damaging chemicals in farming and leverage the transition to agricultural practices with a lower impact on biodiversity.

4.
Plant Dis ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39082926

ABSTRACT

Cyclobutrifluram, a succinate dehydrogenase inhibitor fungicide, is being evaluated as a seed-applied nematicide in cotton and soybean to manage plant-parasitic nematodes. Currently, there is no information on the toxicity, ovicidal activity, nematode recovery, or effects on nematode infection for Meloidogyne incognita or Rotylenchulus reniformis after exposure to low concentrations of cyclobutrifluram. Nematode toxicity assays were performed in aqueous solutions of cyclobutrifluram, while root infection assays were conducted on tomato. Nematode paralysis was observed after 2 h of exposure to 0.5 µg/ml cyclobutrifluram for both nematode species. Based on an assay of nematode motility, the 2-hr EC50 value for M. incognita and R. reniformis was 0.48 and 1.07 µg/ml, respectively. In a comparable assay with a similar nematicide, continuous exposure to 0.5 µg/ml cyclobutrifluram for 24 h resulted in at least 45% more immotile nematodes for both species compared to those treated with 0.5 µg/ml fluopyram. Continuous exposure to concentrations >1.0 µg/ml suppressed hatching for both species compared to the water control. Nematode recovery from paralysis was greater than 80% for M. incognita and R. reniformis 24 h after nematodes were rinsed and removed from a 1-h treatment to their respective 2-hr EC50 concentrations. Nematode infection of tomato roots was reduced following a 1-h treatment with aqueous solutions of cyclobutrifluram, ranging from 0.12 to 0.48 µg/ml for M. incognita and 0.27 to 1.07 µg/ml for R. reniformis. Overall, the toxicity of cyclobutrifluram to these nematode species was greater than that of fluopyram and although the effects of cyclobutrifluram were reversible, low concentrations were effective at reducing the ability of both nematodes to infect tomato roots.

5.
Front Plant Sci ; 15: 1411825, 2024.
Article in English | MEDLINE | ID: mdl-39027668

ABSTRACT

Considering the stricter European regulations for chemical pesticides (e.g. abolishment of the use of chemical soil fumigation products, such as methyl bromide), the need for more sustainable plant protection products is strongly increasing. In this research, Product X, an innovative mixture of bio-nematicidal compounds was developed and evaluated for efficacy. Product X showed a direct nematicidal effect against the root-knot nematode Meloidogyne incognita. In pot trials with tomato plants infected with M. incognita, Product X treatment lead to a significant reduction in nematode-induced gall formation. mRNA-sequencing indicated alterations in phytohormone levels and ROS-metabolism in tomato roots upon treatment with Product X, which was subsequently biochemically validated. Increased levels of abscisic acid and peroxidase activity seem to be the main factors in the response of tomato plants to Product X. Long-term administration of Product X did not yield negative effects on tomato growth or yield. In conclusion, Product X provides a new interesting mix of bio-active compounds in the combat against root-knot nematodes.

6.
Sci Total Environ ; 945: 173817, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38880139

ABSTRACT

Tioxazafen (TXF) is the first 1,2,4-oxadiazole nematicide. In the present study, the aqueous degradation of TXF was investigated in terms of hydrolysis and photolysis. Under the irradiation of simulated sunlight, TXF degraded very fast in ultrapure water and buffers with half-lives (t1/2s) <8.3 min. A sole photoproduct (PP) PP228a was isolated, and identified by spectroscopic means (UV, IR, HRMS, and 1H NMR) to be the thiophen-3-yl isomer converted from its thiophen-2-yl parent. Comparing with TXF, PP228a had quite extended t1/2s ranging from 6.9 to 7.9 d. The photolysis kinetics of TXF and PP228a showed no pH-dependence, and varied for each individual compound as affected by nitrate, fulvic acid, and humic acid. Besides, both compounds were hydrolytically stable. 6 PPs of PP228a were identified, with two of them being its isomers. The mechanisms involved in the process included the biradical photosensitization, photoinduced electron transfer, and ring contraction-ring expansion reactions. The 48 h-EC50 to Daphnia magna was 0.808 mg/L for PP228a comparing to >1.12 mg/L for TXF, while the results of Vibrio fischeri assays indicated that one or more PPs of PP228a might have higher toxicity.


Subject(s)
Photolysis , Water Pollutants, Chemical , Kinetics , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/chemistry , Oxadiazoles/chemistry , Oxadiazoles/toxicity , Daphnia/drug effects , Animals
7.
Int J Biol Macromol ; 269(Pt 2): 132131, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38719017

ABSTRACT

Chitosan oligosaccharide (COS) modification is a feasible way to develop novel green nematicides. This study involved the synthesis of various COS sulfonamide derivatives via hydroxylated protection and deprotection, which were then characterized using NMR, FTIR, MS, elemental analysis, XRD, and TG/DTG. In vitro experiments found that COS-alkyl sulfonamide derivatives (S6 and S11-S13) exhibited high mortality (>98 % at 1 mg/mL) against Meloidogyne incognita second-instar larvaes (J2s) among the derivatives. S6 can cause vacuole-like structures in the middle and tail regions of the nematode body and effectively inhibit egg hatching. In vivo tests have found that S6 has well control effects and low plant toxicity. Additionally, the structure-activity studies revealed that S6 with a high degree of substitution, a low molecular weight, and a sulfonyl bond on the amino group of the COS backbone exhibited increased nematicidal activity. The sulfonamide group is a potential active group for developing COS-based nematicides.


Subject(s)
Antinematodal Agents , Chitosan , Oligosaccharides , Sulfonamides , Tylenchoidea , Chitosan/chemistry , Chitosan/pharmacology , Animals , Tylenchoidea/drug effects , Antinematodal Agents/pharmacology , Antinematodal Agents/chemistry , Oligosaccharides/chemistry , Oligosaccharides/pharmacology , Sulfonamides/chemistry , Sulfonamides/pharmacology , Structure-Activity Relationship , Larva/drug effects
8.
EFSA J ; 22(4): e8671, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38585212

ABSTRACT

The conclusions of the EFSA following the peer review of the initial risk assessments carried out by the competent authority of the rapporteur Member State, Malta, for the pesticide active substance clove oil are reported. The context of the peer review was that required by Regulation (EC) No 1107/2009 of the European Parliament and of the Council. The conclusions for the amendment of approval were reached on the basis of the evaluation of the representative use of clove oil as a preharvest nematicide on tomatoes and cucumbers (permanent greenhouse use). The representative use evaluated for the renewal of approval of clove oil was as post-harvest fungicide and bactericide on apples, pears and peaches (indoor uses). The reliable endpoints appropriate for use in regulatory risk assessment are presented. Endpoints not relevant to the scope of the proposed amendment of approval conditions will be addressed in the context of the renewal of approval procedure of clove oil running in parallel (AIR IV, EFSA Q-2016-00809). Missing information identified as being required by the regulatory framework is listed. Concerns are reported where identified.

9.
J Agric Food Chem ; 72(11): 5585-5594, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38442026

ABSTRACT

To find novel nematicides, we screened the nematicidal activity of compounds in our laboratory compound library. Interestingly, the compound N-((1R,2R)-2-(2-fluoro-4-(trifluoromethyl)phenyl)cyclopropyl)-2-(trifluoromethyl)benzamide (W3) showed a broad spectrum and excellent nematicidal activity. The LC50 values of compound W3 against second-stage juveniles of Bursaphelenchus xylophilus (B. xylophilus), Aphelenchoides besseyi, and Ditylenchus destructor are 1.30, 1.63, and 0.72 mg/L, respectively. Nematicidal activities of compound W3 against second-stage juveniles of Meloidogyne incognita were 87.66% at 100 mg/L. Meanwhile, compound W3 can not only observably inhibit the feeding, reproduction, and egg hatching of B. xylophilus but can also effectively promote the oxidative stress adverse reactions of nematodes and cause intestinal damage. Compound W3 can promote the production of MDA and inhibit the activities of defense enzymes SOD and GST in B. xylophilus. Compound W3 can affect the transcription of genes involved in regulating the tricarboxylic acid cycle in nematodes, resulting in weakened nematode respiration and reduced nematode activity and even death. In addition, compound W3 had good inhibitory activity against five pathogenic fungi. Among them, the EC50 of compound W3 against Fusarium graminearum was 8.4 mg/L. In the future, we will devote ourselves to the toxicological and structural optimization research of the candidate nematicide W3.


Subject(s)
Tylenchida , Tylenchoidea , Animals , Amides/pharmacology , Antinematodal Agents/pharmacology , Antinematodal Agents/chemistry , Reproduction
10.
J Nematol ; 56(1): 20240006, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38510970

ABSTRACT

Control of plant-parasitic nematodes (PPNs) on golf putting greens with nematicides is dependent on the seasonal occurrence and depth distribution of target PPN populations. This study aimed to determine if plant-parasitic nematode populations on golf course putting greens in Missouri and Indiana peaked at a targetable depth at a specific time in the year, focusing primarily on lance (Hoplolaimus spp.) and root-knot (Meloidogyne spp.) nematodes. To elucidate species diversity in the region, rDNA from a subset of lance and root-knot nematodes was sequenced and analyzed, with additional micromorphology of a lance nematode assessed in scanning electron micrographs (SEM). Soil samples were taken to a depth of 25 cm and stratified into 5 cm increments during April, June, August and October at seven sites across Missouri, three in the Kansas City metro of Kansas in 2021 and in ten sites across Indiana in 2022. Samples were stratified in five-centimeter increments and aggregated for a total of 100 cm3 of soil at each depth for each sampling. Samples were processed using a semi-automatic elutriator followed by the sucrose-flotation method, and populations were counted using a hemocytometer and recorded. For molecular characterization, rDNA was extracted and analyzed from 31 individual lance nematodes from one site in Missouri and eight sites in Indiana, and 13 root-knot nematodes from nine sites across Indiana. A significant interaction occurred between sampling month and depth for lance and ring nematodes Missouri/KS, with both PPN populations peaking at the 0-5 cm depth during October, which is well after most targeted nematicide applications are applied. Ring nematodes in Indiana did not follow this trend and were most abundant in August at a depth of 0-5 cm. No significant interaction between depth and month occurred for lance or root-knot nematodes in Indiana, or root-knot nematodes in Missouri/KS. Hoplolaimus stephanus and H. magnistylus were the lance species identified on golf greens, and Meloidogyne naasi, M. graminicola and M. marylandi were the root-knot species identified. Scanning-electron micrographs confirmed morphological characteristics unique to H. stephanus.

11.
Plant Dis ; 108(7): 2162-2169, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38499976

ABSTRACT

Meloidogyne enterolobii is an emerging global threat and is damaging to sweetpotato (Ipomoea batatas) production in the southeast United States. Nematicide application is one of the few management strategies currently available against this nematode, and field testing is urgently needed. The objective of this study was to assess common nematicides for management of M. enterolobii and nontarget effects on free-living nematodes in sweetpotato field production. Treatments were (i) untreated control, (ii) fumigation using 1,3-dichloropropene, or at-transplant drench of fluorinated nematicides (iii) fluazaindolizine, (iv) fluopyram, or (v, vi) fluensulfone at 2 or 4 kg a.i./ha. In 2022, a field trial was conducted under severe M. enterolobii pressure and was repeated in 2023 in the same location without treatment rerandomization. Fumigation using 1,3-dichloropropene (1,3-D) was the only consistently effective nematicide at improving marketable yield relative to control and also consistently reduced most storage root galling measurements and midseason Meloidogyne soil abundances. Fluensulfone at 4 kg a.i./ha consistently improved total yield but not marketable yield, whereas fluensulfone at 2 kg a.i./ha, fluazaindolizine, and fluopyram did not improve yield. Each fluorinated nematicide treatment reduced at least one nematode symptom or nematode soil abundances relative to control, but none provided consistent benefits across years. Even with 1,3-D fumigation, yield was poor, and none of the nematicide treatments provided a significant return on investment relative to forgoing nematicide application. There were minimal effects on free-living nematodes. In summary, 1,3-D is an effective nematicide for M. enterolobii management, but additional management will be needed under severe M. enterolobii pressure.


Subject(s)
Allyl Compounds , Antinematodal Agents , Fumigation , Hydrocarbons, Chlorinated , Ipomoea batatas , Plant Diseases , Tylenchoidea , Tylenchoidea/drug effects , Animals , Antinematodal Agents/pharmacology , Allyl Compounds/pharmacology , Ipomoea batatas/parasitology , Plant Diseases/parasitology , Plant Diseases/prevention & control , Hydrocarbons, Chlorinated/pharmacology , Sulfones/pharmacology , Pyridines/pharmacology , Benzamides , Thiazoles
12.
J Agric Food Chem ; 72(5): 2482-2491, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38264997

ABSTRACT

In a previously published study, the authors devised a molecular topology QSAR (quantitative structure-activity relationship) approach to detect novel fungicides acting as inhibitors of chitin deacetylase (CDA). Several of the chosen compounds exhibited noteworthy activity. Due to the close relationship between chitin-related proteins present in fungi and other chitin-containing plant-parasitic species, the authors decided to test these molecules against nematodes, based on their negative impact on agriculture. From an overall of 20 fungal CDA inhibitors, six showed to be active against Caenorhabditis elegans. These experimental results made it possible to develop two new molecular topology-based QSAR algorithms for the rational design of potential nematicides with CDA inhibitor activity for crop protection. Linear discriminant analysis was employed to create the two algorithms, one for identifying the chemo-mathematical pattern of commercial nematicides and the other for identifying nematicides with activity on CDA. After creating and validating the QSAR models, the authors screened several natural and synthetic compound databases, searching for alternatives to current nematicides. Finally one compound, the N2-(dimethylsulfamoyl)-N-{2-[(2-methyl-2-propanyl)sulfanyl]ethyl}-N2-phenylglycinamide or nematode chitin deacetylase inhibitor, was selected as the best candidate and was further investigated both in silico, through molecular docking and molecular dynamic simulations, and in vitro, through specific experimental assays. The molecule shows favorable binding behavior on the catalytic pocket of C. elegans CDA and the experimental assays confirm potential nematicide activity.


Subject(s)
Amidohydrolases , Caenorhabditis elegans , Nematoda , Animals , Caenorhabditis elegans/metabolism , Molecular Docking Simulation , Antinematodal Agents/chemistry , Chitin/metabolism
13.
Plants (Basel) ; 13(2)2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38276776

ABSTRACT

Soybeans, one of the most valuable crops worldwide, are annually decimated by the soybean cyst nematode (SCN), Heterodera glycines, resulting in massive losses in soybean yields and economic revenue. Conventional agricultural pesticides are generally effective in the short term; however, they pose growing threats to human and environmental health; therefore, alternative SCN management strategies are urgently needed. Preliminary findings show that phenolic acids are significantly induced during SCN infection and exhibit effective nematocidal activities in vitro. However, it is unclear whether these effects occur in planta or elicit any negative effects on plant growth traits. Here, we employed a phytochemical-based seed coating application on soybean seeds using phenolic acid derivatives (4HBD; 2,3DHBA) at variable concentrations and examined SCN inhibition against two SCN types. Moreover, we also examined plant growth traits under non-infected or SCN infected conditions. Notably, 2,3DHBA significantly inhibited SCN abundance in Race 2-infected plants with increasingly higher chemical doses. Interestingly, neither compound negatively affected soybean growth traits in control or SCN-infected plants. Our findings suggest that a phytochemical-based approach could offer an effective, more environmentally friendly solution to facilitate current SCN management strategies and fast-track the development of biopesticides to sustainably manage devastating pests such as SCN.

14.
Plant Dis ; 108(7): 2000-2005, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38213118

ABSTRACT

The reniform nematode (Rotylenchulus reniformis Linford and Oliveira) adversely impacts the quality and quantity of sweetpotato storage roots. Management of R. reniformis in sweetpotato remains a challenge because host plant resistance is not available, fumigants are detrimental to the environment and health, and crop rotation is not effective. We screened a core set of 24 sweetpotato plant introductions (PIs) against R. reniformis. Four PIs were resistant, and 10 were moderately resistant to R. reniformis, suggesting these PIs can serve as sources of resistance for sweetpotato resistance breeding programs. PI 595869, PI 153907, and PI 599386 suppressed 83 to 89% egg production relative to the susceptible control 'Beauregard', and these PIs were employed in subsequent experiments to determine if their efficacy against R. reniformis can be further increased by applying nonfumigant nematicides oxamyl, fluopyram, and fluensulfone. A 34 to 93% suppression of nematode reproduction was achieved by the application of nonfumigant nematicides, with oxamyl providing the best suppression followed by fluopyram and fluensulfone. Although sweetpotato cultivars resistant to R. reniformis are currently not available and there is a need for the development of safer yet highly effective nonfumigant nematicides, results from the current study suggest that complementing host plant resistance with nonfumigant nematicides can serve as an important tool for effective and sustainable nematode management.


Subject(s)
Antinematodal Agents , Ipomoea batatas , Plant Diseases , Ipomoea batatas/parasitology , Animals , Antinematodal Agents/pharmacology , Plant Diseases/parasitology , Plant Diseases/prevention & control , Disease Resistance , Tylenchoidea/drug effects , Tylenchoidea/physiology , Host-Parasite Interactions/drug effects
15.
J Agric Food Chem ; 72(1): 128-139, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38154095

ABSTRACT

To discover new nematicides, a series of novel amide derivatives containing 1,2,4-oxadiazole were designed and synthesized. Several compounds showed excellent nematicidal activity. The LC50 values of compounds A7, A18, and A20-A22 against pine wood nematode (Bursaphelenchus xylophilus), rice stem nematode (Aphelenchoides besseyi), and sweet potato stem nematode (Ditylenchus destructor) were 1.39-3.09 mg/L, which were significantly better than the control nematicide tioxazafen (106, 49.0, and 75.0 mg/L, respectively). Compound A7 had an outstanding inhibitory effect on nematode feeding, reproductive ability, and egg hatching. Compound A7 effectively promoted the oxidative stress of nematodes and caused intestinal damage to nematodes. Compound A7 significantly inhibited the activity of succinate dehydrogenase (SDH) in nematodes, leading to blockage of electron transfer in the respiratory chain and thereby hindering the synthesis of adenosine triphosphate (ATP), which consequently affects the entire oxidative phosphorylation process to finally cause nematode death. Therefore, compound A7 can be used as a potential SDH inhibitor in nematicide applications.


Subject(s)
Nematoda , Tylenchida , Animals , Oxadiazoles/pharmacology , Antinematodal Agents/pharmacology , Reproduction
16.
Plants (Basel) ; 12(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38068672

ABSTRACT

Bacillus thuringiensis Berliner (Bt) and B. cereus sensu stricto Frankland and Frankland are closely related species of aerobic, spore-forming bacteria included in the B. cereus sensu lato group. This group is one of the most studied, but it remains also the most mysterious species of bacteria. Despite more than a century of research on the features of these ubiquitous bacteria, there are a lot of questionable issues related to their taxonomy, resistance to external influences, endophytic existence, their place in multidimensional relationships in the ecosystem, and many others. The review summarizes current data on the mutualistic relationships of Bt and B. cereus bacteria with plants, the structure of the phytomicrobiomes including Bt and B. cereus, and the abilities of plant-associated and endophytic strains to improve plant resistance to various environmental factors and its productivity. Key findings on the possibility of the use of Cry gene promoter for transcription of the target dsRNA and simultaneous release of pore-forming proteins and provocation of RNA-interference in pest organisms allow us to consider this group of microorganisms as unique tools of genetic engineering and biological control. This will open the prospects for the development and direct change of plant microbiomes, and possibly serve as the basis for the regulation of the entire agroecosystem.

17.
Front Plant Sci ; 14: 1257744, 2023.
Article in English | MEDLINE | ID: mdl-38023855

ABSTRACT

Introduction: Pine wilt disease (PWD) is responsible for extensive economic and ecological damage to Pinus spp. forests and plantations worldwide. PWD is caused by the pine wood nematode (PWN, Bursaphelenchus xylophilus) and transmitted into pine trees by a vector insect, the Japanese pine sawyer (JPS, Monochamus alternatus). Host infection by PWN will attract JPS to spawn, which leads to the co-existence of PWN and JPS within the host tree, an essential precondition for PWD outbreaks. Through the action of their metabolites, microbes can manipulate the co-existence of PWN and JPS, but our understanding on how key microorganisms engage in this process remains limited, which severely hinders the exploration and utilization of promising microbial resources in the prevention and control of PWD. Methods: In this study we investigated how the PWN-associated fungus Aspergillus promotes the co-existence of PWN and JPS in the host trees (Pinus massoniana) via its secondary metabolite, sterigmatocystin (ST), by taking a multi-omics approach (phenomics, transcriptomics, microbiome, and metabolomics). Results: We found that Aspergillus was able to promote PWN invasion and pathogenicity by increasing ST biosynthesis in the host plant, mainly by suppressing the accumulation of ROS (reactive oxygen species) in plant tissues that could counter PWN. Further, ST accumulation triggered the biosynthesis of VOC (volatile organic compounds) that attracts JPS and drives the coexistence of PWN and JPS in the host plant, thereby encouraging the local transmission of PWD. Meanwhile, we show that application of an Aspergillus inhibitor (chiricanine A treatment) results in the absence of Aspergillus and decreases the in vivo ST amount, thereby sharply restricting the PWN development in host. This further proved that Aspergillus is vital and sufficient for promoting PWD transmission. Discussion: Altogether, these results document, for the first time, how the function of Aspergillus and its metabolite ST is involved in the entire PWD transmission chain, in addition to providing a novel and long-term effective nematicide for better PWD control in the field.

18.
J Nematol ; 55(1): 20230048, 2023 Feb.
Article in English | MEDLINE | ID: mdl-38026550

ABSTRACT

In recent years, some golf course superintendents in Florida have reported that the turf health is no longer as great, and nematode responses to fluopyram have decreased. The objective of this research was to determine if the mechanism of the reported reduced efficacy was attributable to either: i) enhanced degradation accelerating its breakdown in the soil, or ii) reduced sensitivity to the nematicide in the nematode populations. In a field experiment, soil and nematodes were collected from small plots that had been treated multiple times over four years, for only one year, or never treated. Soil and nematodes were additionally collected from commercial turf sites where either multiple applications of fluopyram had been made for numerous years, or it had never been used. Bioassay experiments found no evidence of enhanced degradation. However, M. graminis collected from small field plots and commercial sites with long-term use of fluopyram were less sensitive to fluopyram in-vitro than those from small plots and commercial sites where fluopyram had not been used. These results indicate that nematicide resistance is a likely cause of reduced fluopyram efficacy on golf-course turf in Florida.

19.
Plants (Basel) ; 12(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37836171

ABSTRACT

The increase in the populations of root-knot nematode Meloidogyne enterolobii in various vegetables such as tomatoes grown under greenhouse conditions as well as increasing restrictions on the use of certain chemical nematicides have led to the search for new, effective management strategies, preferably ones that are sustainable biological alternatives. In this work, two formulations of the nematophagous fungus Metarhizium carneum, one concentrated suspension and one wettable powder, were evaluated under greenhouse conditions to reduce the M. enterolobii infestation in tomato plants. In addition, the effectiveness of the liquid formulation of M. carneum was compared with two biological and three chemical commercial nematicides. The results show that the two M. carneum formulations reduced the M. enterolobii population density by 78 and 66% in relation to the control treatment. In comparison, the liquid formulation of M. carneum and Purpureocillium lilacinum treatments reduced nematode population density by 72 and 43%, respectively, while for metam sodium preplanting applications followed by M. carneum applications during the tomato growth stage, the reduction was 96%. The alternate use of some chemical compounds plus the application of M. carneum as a biocontrol is a good starting strategy for managing M. enterolobii populations. These results confirm that M. carneum is a serious candidate for the short-term commercialization of an environmentally friendly biological nematicide.

20.
ACS Nano ; 17(20): 20654-20665, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37800476

ABSTRACT

The highly water-soluble nematicide fosthiazate is anticipated to undergo microencapsulation in order to enhance its retention around plant roots and mitigate leaching into groundwater. However, the underlying mechanism governing the influence of hydrophilicity of the microcapsule (MC) core on the evolution of the microcapsule shell remains unclear, posing challenges for encapsulating water-soluble core materials. This study elucidates the microlevel formation mechanism of microcapsules by investigating the impact of interfacial mass transfer on shell formation and proposes a method for regulating the structure of shells. The study reveals that enhancing the hydrophilicity of the core enhances the shuttle effect between the oil and aqueous phase, expands the region of polymerization reactions, and forms a loose and thick shell. The thickness of the microcapsule shell prepared using solvent oil 150# (MCs-SOL) measures only 264 nm, while that of the microcapsules prepared using propylene glycol diacetate and solvent oil 150# at a ratio of 2:1 (MCs-P2S1) is 5.2 times greater. The enhanced compactness of the shell reduced the release rate of microcapsules and the leaching distance of fosthiazate in soil, thereby mitigating the risk of leaching loss and facilitating the distribution of active ingredients within crop roots. The MCs-SOL had a limited leaching distance measurement of 8 cm and exhibited a satisfactory efficacy of 87.3% in controlling root galling nematodes. The thickness and compactness of the MCs shell can be regulated by manipulating the interfacial shuttle effect, providing a promising approach to enhancing utilization efficiency while mitigating potential environmental risks.

SELECTION OF CITATIONS
SEARCH DETAIL