Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Type of study
Publication year range
1.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 45(10): 1164-1171, 2020 Oct 28.
Article in English, Chinese | MEDLINE | ID: mdl-33268576

ABSTRACT

OBJECTIVES: Primary carnitine deficiency (PCD) is a rare fatty acid metabolism disorder that can cause neonatal death. This study aims to analyze carnitine levels and detect SLC22A5 gene in newborns with carnitine deficiency, to provide a basis for early diagnosis of PCD, and to explore the relationship between carnitine in blood and SLC22A5 genotype. METHODS: A total of 40 neonates with low free carnitine (C0<10 µmol/L) in blood were the subjects of the study. SLC22A5 gene was detected by Sanger sequencing to analyze the value of carnitine, the results of gene test and their relationship. RESULTS: A total of 15 variants of SLC22A5 gene were detected, including 11 pathogenic or likely pathogenic variants and 4 variants of uncertain significance. There were 5 new mutations: c.288delG (p.G96fsX33), c.744_745insTCG (p.M258_L259insS), c.752A>G (p.Y251C), c.495 C>A (p.R165E), and c.1298T>C (p.M433T). We found 14 PCD patients including 2 homozygous mutations and 12 heterozygous mutations, 14 with 1 mutation, and 12 with no mutation among 40 children. The C0 concentration of children with SLC22A5 gene homozygous or complex heterozygous mutations was (4.95±1.62) µmol/L in the initial screening, and (3.90±1.33) µmol/L in the second screening. The C0 concentration of children with no mutation was (7.04±2.05) µmol/L in the initial screening, and (8.02±2.87) µmol/L in the second screening. There were significant differences between children with homozygous or compound heterozygous mutations and with no mutation in C0 concentration of the initial and the second screening (both P<0.05), as well as between children with truncated mutation and with untruncated mutation in C0 concentration of the initial screening (P=0.022). CONCLUSIONS: There are 5 new mutations which enriched the mutation spectrum of SLC22A5 gene. C0<5 µmol/L is highly correlated with SLC22A5 gene homozygous or compound heterozygous mutations. Children with truncated mutation may have lower C0 concentration than that with untruncated mutation in the initial screening.


Subject(s)
Hyperammonemia , Muscular Diseases , Cardiomyopathies , Carnitine/deficiency , Child , Humans , Hyperammonemia/genetics , Infant, Newborn , Muscular Diseases/genetics , Mutation , Solute Carrier Family 22 Member 5/genetics
2.
Article in English | WPRIM (Western Pacific) | ID: wpr-880581

ABSTRACT

OBJECTIVES@#Primary carnitine deficiency (PCD) is a rare fatty acid metabolism disorder that can cause neonatal death. This study aims to analyze carnitine levels and detect SLC22A5 gene in newborns with carnitine deficiency, to provide a basis for early diagnosis of PCD, and to explore the relationship between carnitine in blood and SLC22A5 genotype.@*METHODS@#A total of 40 neonates with low free carnitine (C0G (p.Y251C), c.495 C>A (p.R165E), and c.1298T>C (p.M433T). We found 14 PCD patients including 2 homozygous mutations and 12 heterozygous mutations, 14 with 1 mutation, and 12 with no mutation among 40 children. The C0 concentration of children with SLC22A5 gene homozygous or complex heterozygous mutations was (4.95±1.62) μmol/L in the initial screening, and (3.90±1.33) μmol/L in the second screening. The C0 concentration of children with no mutation was (7.04±2.05) μmol/L in the initial screening, and (8.02±2.87) μmol/L in the second screening. There were significant differences between children with homozygous or compound heterozygous mutations and with no mutation in C0 concentration of the initial and the second screening (both @*CONCLUSIONS@#There are 5 new mutations which enriched the mutation spectrum of SLC22A5 gene. C0<5 μmol/L is highly correlated with SLC22A5 gene homozygous or compound heterozygous mutations. Children with truncated mutation may have lower C0 concentration than that with untruncated mutation in the initial screening.


Subject(s)
Child , Humans , Infant, Newborn , Cardiomyopathies , Carnitine/deficiency , Hyperammonemia/genetics , Muscular Diseases/genetics , Mutation , Solute Carrier Family 22 Member 5/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...