Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
1.
Stem Cell Res Ther ; 15(1): 134, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715091

ABSTRACT

BACKGROUND: Hypoxic-Ischemic Encephalopathy (HIE) is a leading cause of mortality and morbidity in newborns. Recent research has shown promise in using intranasal mesenchymal stem cell (MSC) therapy if administered within 10 days after Hypoxia-Ischemia (HI) in neonatal mice. MSCs migrate from the nasal cavity to the cerebral lesion in response to chemotactic cues. Which exact chemokines are crucial for MSC guidance to the HI lesion is currently not fully understood. This study investigates the role of CXCL10 in MSC migration towards the HI-injured brain. METHODS: HI was induced in male and female 9-day-old C57BL/6 mice followed by intranasal MSC treatment at day 10 or 17 post-HI. CXCL10 protein levels, PKH26-labeled MSCs and lesion size were assessed by ELISA, immunofluorescent imaging and MAP2 staining respectively. At day 17 post-HI, when CXCL10 levels were reduced, intracranial CXCL10 injection and intranasal PKH26-labeled MSC administration were combined to assess CXCL10-guided MSC migration. MSC treatment efficacy was evaluated after 18 days, measuring lesion size, motor outcome (cylinder rearing task), glial scarring (GFAP staining) and neuronal density (NeuN staining) around the lesion. Expression of the receptor for CXCL10, i.e. CXCR3, on MSCs was confirmed by qPCR and Western Blot. Moreover, CXCL10-guided MSC migration was assessed through an in vitro transwell migration assay. RESULTS: Intranasal MSC treatment at day 17 post-HI did not reduce lesion size in contrast to earlier treatment timepoints. Cerebral CXCL10 levels were significantly decreased at 17 days versus 10 days post-HI and correlated with reduced MSC migration towards the brain. In vitro experiments demonstrated that CXCR3 receptor inhibition prevented CXCL10-guided migration of MSCs. Intracranial CXCL10 injection at day 17 post-HI significantly increased the number of MSCs reaching the lesion which was accompanied by repair of the HI lesion as measured by reduced lesion size and glial scarring, and an increased number of neurons around the lesion. CONCLUSIONS: This study underscores the crucial role of the chemoattractant CXCL10 in guiding MSCs to the HI lesion after intranasal administration. Strategies to enhance CXCR3-mediated migration of MSCs may improve the efficacy of MSC therapy or extend its regenerative therapeutic window.


Subject(s)
Administration, Intranasal , Chemokine CXCL10 , Hypoxia-Ischemia, Brain , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Mice, Inbred C57BL , Animals , Chemokine CXCL10/metabolism , Chemokine CXCL10/genetics , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Hypoxia-Ischemia, Brain/therapy , Hypoxia-Ischemia, Brain/metabolism , Hypoxia-Ischemia, Brain/pathology , Mice , Female , Male , Animals, Newborn , Cell Movement
2.
Front Pediatr ; 12: 1288853, 2024.
Article in English | MEDLINE | ID: mdl-38766393

ABSTRACT

Hypothermia has been widely used to treat moderate to severe neonatal hypoxic-ischemic encephalopathy (HIE), yet evaluating the effects of hypothermia relies on clinical neurology, neuroimaging, amplitude-integrated electroencephalography, and follow-up data on patient outcomes. Biomarkers of brain injury have been considered for estimating the effects of hypothermia. Proteins specific to the central nervous system (CNS) are components of nervous tissue, and once the CNS is damaged, these proteins are released into biofluids (cerebrospinal fluid, blood, urine, tears, saliva), and they can be used as markers of brain damage. Clinical reports have shown that CNS-specific marker proteins (CNSPs) were early expressed in biofluids after brain damage and formed unique biochemical profiles. As a result, these markers may serve as an indicator for screening brain injury in infants, monitoring disease progression, identifying damage region of brain, and assessing the efficacy of neuroprotective measures. In clinical work, we have found that there are few reports on using CNSPs as biological signals in hypothermia for neonatal HIE. The aim of this article is to review the classification, origin, biochemical composition, and physiological function of CNSPs with changes in their expression levels after hypothermia for neonatal HIE. Hopefully, this review will improve the awareness of CNSPs among pediatricians, and encourage future studies exploring the mechanisms behind the effects of hypothermia on these CNSPs, in order to reduce the adverse outcome of neonatal HIE.

3.
Bioengineering (Basel) ; 11(3)2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38534490

ABSTRACT

Brain maturity and many clinical treatments such as therapeutic hypothermia (TH) can significantly influence the morphology of neonatal EEG seizures after hypoxia-ischemia (HI), and so there is a need for generalized automatic seizure identification. This study validates efficacy of advanced deep-learning pattern classifiers based on a convolutional neural network (CNN) for seizure detection after HI in fetal sheep and determines the effects of maturation and brain cooling on their accuracy. The cohorts included HI-normothermia term (n = 7), HI-hypothermia term (n = 14), sham-normothermia term (n = 5), and HI-normothermia preterm (n = 14) groups, with a total of >17,300 h of recordings. Algorithms were trained and tested using leave-one-out cross-validation and k-fold cross-validation approaches. The accuracy of the term-trained seizure detectors was consistently excellent for HI-normothermia preterm data (accuracy = 99.5%, area under curve (AUC) = 99.2%). Conversely, when the HI-normothermia preterm data were used in training, the performance on HI-normothermia term and HI-hypothermia term data fell (accuracy = 98.6%, AUC = 96.5% and accuracy = 96.9%, AUC = 89.6%, respectively). Findings suggest that HI-normothermia preterm seizures do not contain all the spectral features seen at term. Nevertheless, an average 5-fold cross-validated accuracy of 99.7% (AUC = 99.4%) was achieved from all seizure detectors. This significant advancement highlights the reliability of the proposed deep-learning algorithms in identifying clinically translatable post-HI stereotypic seizures in 256Hz recordings, regardless of maturity and with minimal impact from hypothermia.

4.
Int J Neurosci ; : 1-12, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38512134

ABSTRACT

OBJECTIVE: To evaluate the variations in serum levels of microRNA-21 (miR-21) and S-100B protein in neonates with hypoxic-ischemic encephalopathy (HIE) after receiving hypothermia therapy and explore the correlation of these biomarkers with the neurodevelopmental prognosis of the infants. METHODS: This retrospective analysis included 90 neonatal HIE patients diagnosed and treated between January 2019 and December 2022. Real-time quantitative PCR and enzyme-linked immunosorbent assay (ELISA) methods were used to measure miR-21 and S-100B protein levels. Neurodevelopmental assessments were conducted at one year, and follow-up was performed using the Bayley Scales of Infant and Toddler Development third edition. Statistical analysis was carried out using SPSS software, with t-tests for continuous variables, chi-square tests for categorical data, Pearson correlation coefficient for correlation analysis, and multivariate regression analysis to adjust for confounding factors. RESULTS: After hypothermia therapy, the observation group showed a significant decrease in miR-21 and S-100B protein levels (P < 0.001), and neurodevelopmental scores were significantly higher than the control group (P < 0.05). Correlation analysis indicated a negative correlation between miR-21 and neurodevelopmental scores (r=-0.62, P < 0.001), as well as a negative correlation between S-100B protein levels (r=-0.76, P < 0.001). Multivariate regression analysis demonstrated that miR-21 levels and S-100B protein levels maintained independent negative correlations with neurodevelopmental scores (P < 0.001). CONCLUSION: Hypothermia therapy significantly reduces serum levels of miR-21 and S-100B protein in neonatal HIE patients and may be associated with better prognosis. miR-21 and S-100B serve as prognostic biomarkers, aiding in predicting and improving the treatment outcomes and long-term prognosis of neonatal HIE.

5.
BMC Pediatr ; 24(1): 178, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38481189

ABSTRACT

BACKGROUND: Amniotic fluid contamination (AFC) is a risk factor for neonatal hypoxic ischemic encephalopathy (HIE); however, the correlation between AFC level and the incidence and clinical grading of HIE, in addition to relevant biomarkers of brain damage, have not been assessed. METHODS: This single-center observational study included 75 neonates with moderate-to-severe HIE. The neonates with HIE were divided into four subgroups according to the AFC level: normal amniotic fluid with HIE group (NAF-HIE), I°AFC with HIE group (I°AFC-HIE), II°AFC with HIE group (II°AFC-HIE), and III°AFC with HIE group (III°AFC-HIE). The control groups consisted of 35 healthy neonates. The clinical grading of neonatal HIE was performed according to the criteria of Sarnat and Sarnat. Serum tau protein and S100B were detected by enzyme-linked immunosorbent assay kits. Correlations of serum tau protein and S100B were evaluated using the Pearson correlation analysis. RESULTS: (1) The incidence of neonatal HIE in the NAF-HIE group was 20 cases (26. 7%), I°AFC-HIE was 13 cases (17.3%), II°AFC-HIE was 10 cases (13.3%), and III°AFC-HIE was 32 cases (42. 7%). The incidence of moderate-to-severe HIE in the I°-III°AFC-HIE groups was 73.3% (55/75). (2) In 44 cases with severe HIE, 26 cases (59.1%) occurred in the III°AFC-HIE group, which had a significantly higher incidence of severe HIE than moderate HIE (p < 0.05). In NAF-HIE and I°AFC-HIE groups, the incidence of moderate HIE was 45.2% and 29.0%, respectively, which was higher than that of severe HIE (X2 = 9.2425, p < 0.05; X2 = 5.0472, p < 0.05, respectively). (3) Serum tau protein and S100B levels in the HIE groups were significantly higher than in the control group (all p < 0.05), and were significantly higher in the III°AFC-HIE group than in the NAF-HIE and I°AFC-HIE groups (all p < 0.05). (4) Serum tau protein and S100B levels in the severe HIE group were significantly higher in the moderate HIE group (all p < 0.05). (5) Serum tau protein and S100B levels were significantly positively correlated (r = 0.7703, p < 0.0001). CONCLUSION: Among children with severe HIE, the incidence of III°AFC was higher, and the levels of serum tau protein and S100B were increased. AFC level might be associated with HIE grading.


Subject(s)
Brain Injuries , Hypoxia-Ischemia, Brain , Infant, Newborn , Child , Humans , Hypoxia-Ischemia, Brain/etiology , tau Proteins , Amniotic Fluid , Biomarkers , Brain
6.
Int J Gynaecol Obstet ; 165(3): 1114-1121, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38193307

ABSTRACT

OBJECTIVE: To consider the classical use of "pH < 7.0 and/or a base deficiency ≥12 mmol/L" as markers of the risk of neonatal hypoxic-ischemic encephalopathy (HIE), recalling various criticisms of the use of these markers in favor of that of neonatal eucapnic pH, which appears to be a better marker of this risk. METHODS: Fifty-five cases of acidemia with pH < 7.00 were collected from a cohort from the Nice University Hospital with eight cases of HIE. We compared the receiver operating characteristics curves established from the positive likelihood ratio (+LR) for each case of: umbilical cord artery pH (pHa), neonatal eucapnic pH (pH euc-n) in isolation (not matched to pHa), and matched pHa to its own pH euc-n. RESULTS: The areas under the curve (AUC) are identical for pHa and pH euc-n, but AUC for the matched pair pHa-pH euc-n appears superior but non-significant because of the small number in our cohort. However, using the bootstrap method, the partial AUC for a sensitivity greater than 75% indicates the significant superiority (P < 0.01) of the matched pair pHa-pH euc-n approach. CONCLUSION: The originality of this study lies in the use of two methodologic approaches: (1) standardized partial analysis of the AUCs of the pHa curve and that of pHa matched to its own pH euc-n, and (2) bootstrap statistical technique, that allowed us to conclude (P < 0.01) that the combined use of pH measured at the cord coupled with its eucapnic correction is better for diagnosing metabolic acidosis and best predicting the risk of HIE.


Subject(s)
Fetal Blood , Hypoxia-Ischemia, Brain , Humans , Hydrogen-Ion Concentration , Infant, Newborn , Female , Fetal Blood/chemistry , ROC Curve , Acidosis , Male , Pregnancy , Area Under Curve , Umbilical Arteries , Predictive Value of Tests , Biomarkers/blood
7.
Mol Neurobiol ; 61(7): 4538-4564, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38102517

ABSTRACT

The aim of this study was to identify related scientific outputs and emerging topics of stem cells in neonatal hypoxic-ischemic encephalopathy (NHIE) and cerebral palsy (CP) through bibliometrics and literature review. All relevant publications on stem cell therapy for NHIE and CP were screened from websites and analyzed research trends. VOSviewer and CiteSpace were applied to visualize and quantitatively analyze the published literature to provide objective presentation and prediction. In addition, the clinical trials, published articles, and projects of the National Natural Science Foundation of China associated with stem cell therapy for NHIE and CP were summarized. A total of 294 publications were associated with stem cell therapy for NHIE and CP. Most publications and citations came from the USA and China. Monash University and University Medical Center Utrecht produced the most publications. Pediatric research published the most studies on stem cell therapy for NHIE and CP. Heijnen C and Kavelaars A published the most articles. Cluster analyses show that current research trend is more inclined toward the repair mechanism and clinical translation of stem cell therapy for NHIE and CP. By summarizing various studies of stem cells in NHIE and CP, it is indicated that this research direction is a hot topic at present. Furthermore, organoid transplantation, as an emerging and new therapeutic approach, brings new hope for the treatment of NHIE and CP. This study comprehensively summarized and analyzed the research trend of global stem cell therapy for NHIE and CP. It has shown a marked increase in stem cell therapy for NHIE and CP research. In the future, more efforts will be made on exploring stem cell or organoid therapy for NHIE and CP and more valuable related mechanisms of action to achieve clinical translation as soon as possible.


Subject(s)
Bibliometrics , Cerebral Palsy , Hypoxia-Ischemia, Brain , Stem Cell Transplantation , Humans , Hypoxia-Ischemia, Brain/therapy , Stem Cell Transplantation/methods , Stem Cell Transplantation/trends , Cerebral Palsy/therapy , Animals , Infant, Newborn
8.
Brain Res ; 1822: 148580, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37709160

ABSTRACT

BACKGROUND: This study aimed to observe changes of rats' brain infarction and blood vessels during neonatal hypoxic ischemic encephalopathy (NHIE) modeling by Transcranial Doppler Ultrasonography (TCD) so as to assess the feasibility of TCD in evaluating NHIE modeling. METHODS: Postnatal 7-days (d)-old Sprague Dawley (SD) rats were divided into the Sham group, hypoxic-ischemic (HI) group, and hypoxia (H) group. Rats in the HI group and H group were subjected to hypoxia-1 hour (h), 1.5 h and 2.5 h, respectively. Evaluation on brain lesion was made based on Zea-Longa scores, hematoxylin-eosin (HE) staining and Nissl staining. The brain infarction and blood vessels of rats were monitored and analyzed under TCD. Correlation analysis was applied to reveal the connection between hypoxic duration and infarct size detected by TCD or Nissl staining. RESULTS: In H and HI modeling, longer duration of hypoxia was associated with higher Zea-Longa scores and more severe nerve damage. On the 1 d after modeling, necrosis was found in SD rats' brain indicated by HE and Nissl staining, which was aggravated as hypoxic duration prolonged. Alteration of brain structures and blood vessels of SD rats was displayed in Sham, HI and H rats under TCD. TCD images for coronal section revealed that brain infarct was detected at the cortex and there was marked cerebrovascular back-flow of HI rats regardless of hypoxic duration. On the 7 d after modeling, similar infarct was detected under TCD at the cortex of HI rats in hypoxia-1 h, 1.5 h and 2.5 h groups, whereas the morphological changes were deteriorated with longer hypoxic time. Correlation analysis revealed positive correlation of hypoxic duration with infarct size detected by histological detection and TCD. CONCLUSIONS: TCD dynamically monitored cerebral infarction after NHIE modeling, which will be potentially served as a useful auxiliary method for future animal experimental modeling evaluation in the case of less animal sacrifice.


Subject(s)
Hypoxia-Ischemia, Brain , Rats , Animals , Hypoxia-Ischemia, Brain/diagnostic imaging , Hypoxia-Ischemia, Brain/pathology , Rats, Sprague-Dawley , Animals, Newborn , Ultrasonography, Doppler, Transcranial , Brain/pathology , Ischemia/pathology , Cerebral Infarction/diagnostic imaging , Cerebral Infarction/pathology , Brain Infarction/pathology
9.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1014532

ABSTRACT

Hypoxic-ischemic encephalopathy (HIE) is a major cause of newborn mortality and childhood disability. Despite hypothermia treatment being the current standard method, it has its limitations and often produces unsatisfactory outcomes. Additionally, due to time and equipment constraints, hypothermia treatment cannot be promptly administered, leading to high mortality rates or varying levels of neurological impairments even after treatment. Hence, the exploration of alternative and effective treatment methods for HIE has become a challenging and highly researched topic in the field of neonatology. Research has shown that HIE induces intricate changes in the neurological system at the physiological, cellular, and molecular levels. Circular RNA (circRNA) exhibits high expression in the central nervous system and plays a role in regulating physiological and pathophysiological processes. Therefore, circRNA holds promise as a potential therapeutic target for HIE. This article provides a comprehensive overview of the regulatory effects of circRNA on different types of neural cells in HIE, aiming to offer new theoretical foundations for the treatment of HIE.

10.
BMC Pediatr ; 23(1): 609, 2023 12 01.
Article in English | MEDLINE | ID: mdl-38037071

ABSTRACT

BACKGROUND: Altitude hypoxia and limited socioeconomic conditions may result in distinctive features of neonatal hypoxic-ischemic encephalopathy (HIE). Therapeutic hypothermia (TH) has not been used at altitude. We examined characteristics of HIE and early outcomes of TH in 3 centers at two high altitudes, 2 at 2,261 m and 1 at 3,650 m. METHODS: The incidence of HIE at NICUs was noted. TH was conducted when personnel and devices were available in 2019~2020. Standard inclusion criteria were used, with the addition of admission age >6 hours and mild HIE. Demographic and clinical data included gestational age, gender, weight, Apgar score, ethnics, age on admission, age at TH and clinical degree of HIE. EEG was monitored for 96 hours during hypothermia and rewarming. MRI was performed before discharge. RESULTS: There was significant difference in ethnics, HIE degree, age at TH across 3 centers. The overall NICU incidence of HIE was 4.0%. Among 566 HIE patients, 114 (20.1%) received TH. 63 (55.3%) patients had moderate/severe HIE. Age at TH >6 hours occurred in 34 (29.8%) patients. EEG discharges showed seizures in 7~11% of patients, whereas spikes/sharp waves in 94~100%, delta brushes in 50~100%. After TH, MRI showed moderate to severe brain injury in 77% of patients, and correlated with center, demographic and clinical variables (Ps≤0.0003). Mortality was 5% during hospitalization and 11% after discharge until 1 year. CONCLUSIONS: At altitude, the incidence of HIE was high and brain injury was severe. TH was limited and often late >6 hours. EEG showed distinct patterns attributable to altitude hypoxia. TH was relatively safe. TRIAL REGISTRATION: The study was registered on February 23, 2019 in Chinese Clinical Trial Register (ChiCTR1900021481).


Subject(s)
Altitude Sickness , Brain Injuries , Hypothermia, Induced , Hypoxia-Ischemia, Brain , Humans , Infant, Newborn , Altitude , Altitude Sickness/therapy , Hypothermia, Induced/methods , Hypoxia-Ischemia, Brain/therapy , Male , Female
11.
Int Med Case Rep J ; 16: 833-839, 2023.
Article in English | MEDLINE | ID: mdl-38116463

ABSTRACT

A newborn with giant faciocervical mass and presented with asphyxia during birth was admitted to the hospital. After stabilizing her vital sign, we provided the patient with image examinations and whole-exome sequencing, which revealed a heterozygous variation of neurofibromatosis type 1 (NF1). The final diagnosis of the patient was NF1 complicated with neonatal hypoxic-ischemic encephalopathy (NHIE). During hospitalization, the patient received comprehensive and systematic care. There was no reports of similar cases in the literature. So, this report aimed to elucidate the special clinical manifestations, diagnosis, treatment and prognosis of NF1 complicated with NHIE by analyzing the clinical data of the patient and her family and reviewing relevant literature.

12.
Ibrain ; 9(1): 3-12, 2023.
Article in English | MEDLINE | ID: mdl-37786523

ABSTRACT

This article aims to detect the effect of SAM domain, SH3 domain, and nuclear localization signal 1 (SAMSN1) in neonatal rats with neurological dysfunction induced by hypoxia and ischemia (HI). The HI model was created using 7-day postnatal rats. Zea-longa score was utilized to validate the neurological injury after HI. Then, the differentially expressed genes (DEGs) were detected by gene sequencing and bioinformatics analysis methods. The oxygen and glucose deprivation (OGD) models were established in the SY5Y cells and fetal human cortical neurons. In addition, SAMSN1-small interfering RNA, methyl thiazolyl tetrazolium assay, and cell growth curve were employed to evaluate the cell viability variation. Obviously, Zea-longa scores increased in rats with HI insult. Subsequently, SAMSN1 was screened out, and it was found that SAMSN1 was strikingly upregulated in SY5Y cells and fetal neurons post-OGD. Interestingly, we found that SAMSN1 silencing could markedly enhance cell viability and cell growth after OGD. These data suggested that downregulation of SAMSN1 may exert a neuroprotective effect on damaged neurons after HI by improving cell viability and cell survival, which provides a potential theoretical basis for clinical trials in the future to treat neonatal hypoxic-ischemic encephalopathy.

13.
Open Life Sci ; 18(1): 20220686, 2023.
Article in English | MEDLINE | ID: mdl-37671101

ABSTRACT

Neonatal hypoxic ischemic encephalopathy is a common disease, which is caused by fetal hypoxia, asphyxia, and other reasons. It may cause sequelae of the nervous system and even death in children. Computer tomography examination can clarify the scope and location of the disease and provide the basis for clinical treatment and prognosis. Relevant personnel analyzed the symptoms of ischemic hypoxia and found that ischemia and hypoxia were the main causes of encephalopathy. Neonatal ischemia and hypoxia are easy to cause serious damage. At present, with the development of medicine, the function of the human brain is the most important issue in natural science. The law of neural activity and the role of molecular cells, organs, and systems have fundamental construction significance for the prevention and treatment of nerve and mental diseases. By analyzing the value of the diagnosis of neonatal hypoxic-ischemic encephalopathy in the analysis of experimental data, by setting the newborns in the controlled group and the trial group as experimental subjects, this paper analyzed the situation of newborns in terms of body temperature, body weight, and respiratory rate, and used Apgar score to score these standards. It was found that the score of the controlled group was 7 and above, and the score of the trial group was below 7. It was found that the Apgar scoring method was more simple. Then, the newborns were analyzed by cord blood gas analysis. It was found that most of the data in the control group were between 7.8 and 8.4, and the data in the trial group were between 5.8 and 7.1. The umbilical blood gas analysis score of the experimental group was lower than that of the control group. By comparing the satisfaction of cord blood gas analysis and the Apgar score, it was found that the satisfaction of cord blood gas analysis was 24.06% higher than that of the Apgar score.

14.
Transl Pediatr ; 12(8): 1552-1571, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37692539

ABSTRACT

Background and Objective: Hypoxic-ischemic encephalopathy (HIE) is a leading cause of death and disability worldwide. Therapeutic hypothermia (TH) represents a significant achievement in the translation of scientific research to clinical application, but it is currently the only neuroprotective treatment for HIE. This review aims to revisit the use of TH for HIE and its longitudinal impact on patient outcomes to readers new to the field of HIE. We discuss how emerging therapies address the broader pathophysiology of injury progression in the neonatal brain days to years after HIE. Methods: We included full articles and book chapters published in English on PubMed with references to "hypoxic ischemic encephalopathy", "birth asphyxia", "therapeutic hypothermia", or "neonatal encephalopathy". We limited our review to outcomes on term infants and to new therapeutics that are in the second phase of clinical trials. Key Content and Findings: Despite the use of TH for HIE, mortality remains high. Analysis of longitudinal studies reveals a high incidence of ongoing disability even with the implementation of TH. New therapeutics addressing the secondary phase and the less understood tertiary phase of brain injury are in clinical trials as adjunctive treatments to TH to support additional neurological repair and regeneration. Conclusions: TH successfully improves outcomes after HIE, and it continues to be optimized. Larger studies are needed to understand its use in mild cases of HIE and if certain factors, such as sex, affect long term outcomes. TH primarily acts in the initial phases of injury, while new pharmaceutical therapies target additional injury pathways into the tertiary phases of injury. This may allow for more effective approaches to treatment and improvement of long-term functional outcomes after HIE.

15.
Exp Neurol ; 367: 114450, 2023 09.
Article in English | MEDLINE | ID: mdl-37268250

ABSTRACT

Neonatal hypoxic-ischemic encephalopathy (HIE) is the primary reason for neonatal mortality and prolonged disablement. Currently, hypothermia is the only approved clinical treatment available for HIE. However, hypothermia's limited therapeutic efficacy and adverse effects suggest an urgent need to advance our knowledge of its molecular pathogenesis and develop novel therapies. The leading cause of HIE is impaired cerebral blood flow and oxygen deprivation-initiated primary and secondary energy failure. Lactate was traditionally regarded as a marker of energy failure or a waste product of anaerobic glycolysis. Recently, the beneficial aspects of lactate as supplementary energy for neurons have been demonstrated. Under the conditions of HI, lactate supports various functions of neuronal cells, including learning and memory formation, motor coordination, and somatosensory. Furthermore, lactate contributes to the regeneration of blood vessels and has shown its beneficial effects on the immune system. This review first introduces the hypoxic or ischemic events-induced fundamental pathophysiological changes in HIE and then discusses the potential neuroprotective properties of lactate for the treatment and prevention of HIE. Finally, we discuss the possible protective mechanisms of lactate in the context of the pathological features of perinatal HIE. We conclude that exogenous and endogenous lactate exert neuroprotective effects in HIE. Lactate administration may be a potential approach to treating HIE injury.


Subject(s)
Hypothermia, Induced , Hypothermia , Hypoxia-Ischemia, Brain , Infant, Newborn , Humans , Lactic Acid/pharmacology , Hypothermia/complications , Hypothermia/therapy , Hypoxia-Ischemia, Brain/complications , Hypoxia/complications , Ischemia/complications , Ischemia/therapy
16.
Front Neurosci ; 17: 962001, 2023.
Article in English | MEDLINE | ID: mdl-37250420

ABSTRACT

Objective: This study aimed to investigate the feasibility of Transcranial Doppler Ultrasonography (TCD) in evaluating neonatal hypoxic-ischemic encephalopathy (NHIE) modeling through monitoring the alteration of cerebrovascular flow in neonatal hypoxic-ischemic (HI) rats. Methods: Postnatal 7-day-old Sprague Dawley (SD) rats were divided into the control group, HI group, and hypoxia (H) group. TCD was applied to assess the changes of cerebral blood vessels, cerebrovascular flow velocity, and heart rate (HR) in sagittal and coronal sections at 1, 2, 3, and 7 days after the operation. For accuracy, cerebral infarct of rats was examined by 2,3,5-Triphenyl tetrazolium chloride (TTC) staining and Nissl staining to simultaneously verify the establishment of NHIE modeling. Results: Coronal and sagittal TCD scans revealed obvious alteration of cerebrovascular flow in main cerebral vessels. Obvious cerebrovascular back-flow was observed in anterior cerebral artery (ACA), basilar artery (BA), middle cerebral artery (MCA) of HI rats, along with accelerated cerebrovascular flows in the left internal carotid artery (ICA-L) and BA, decreased flows in right internal carotid artery (ICA-R) relative to those in the H and control groups. The alterations of cerebral blood flows in neonatal HI rats indicated successful ligation of right common carotid artery. Besides, TTC staining further validated the cerebral infarct was indeed caused due to ligation-induced insufficient blood supply. Damage to nervous tissues was also revealed by Nissl staining. Conclusion: Cerebral blood flow assessment by TCD in neonatal HI rats contributed to cerebrovascular abnormalities observed in a real-time and non-invasive way. The present study elicits the potentials to utilize TCD as an effective means for monitoring the progression of injury as well as NHIE modeling. The abnormal appearance of cerebral blood flow is also beneficial to the early warning and effective detection in clinical practice.

17.
Brain Res Bull ; 194: 90-99, 2023 03.
Article in English | MEDLINE | ID: mdl-36720318

ABSTRACT

BACKGROUND: Neonatal hypoxic ischemic encephalopathy (HIE) is a main factor of neonatal death and permanent neurologic deficit. This study sought to investigate the functional role of hsa_circ_0007706 (circ_0007706) in modulating neonatal HIE. METHODS: In vitro HIE cell model was established in hBMVECs under the condition of oxygen­glucose deprivation/reperfusion (OGD/R) treatment. qRT-PCR analysis was utilized for detecting the level of circ_0007706, microRNA-579-3p (miR-579-3p) and TNF receptor-associated factor 6 (TRAF6). RNase R treatment and Oligo (dT) 18 primers were employed to verify the features of circ_0007706, and nucleocytoplasmic separation was conducted for determining the location of circ_0007706. CCK-8 assay, EdU assay, and flow cytometry were carried out to measure cell proliferation and apoptosis, respectively. The protein expression of Bax, Bcl-2 and TRAF6 was detected using western blot. Meanwhile, the levels of the pro-inflammatory factors were determined via ELISA. SOD activity and MDA level were assessed via the respective kits. Besides, dual-luciferase reporter assay and RNA pull-down were used to identify the association between miR-579-3p and circ_0007706 or TRAF6. RESULTS: Circ_0007706 was elevated in HIE newborns and OGD/R cell model. Knockdown of circ_0007706 greatly alleviated OGD/R-induced injury, inflammatory response and oxidative stress. We found that miR-579-3p was a direct target of circ_0007706, and miR-579-3p inhibitor could reverse the impact of circ_0007706 knockdown on OGD/R-caused cell damage in hBMVECs. In addition, miR-579-3p directly interacted with TRAF6, and the protective effects of miR-579-3p on OGD/R-induced injury in hBMVECs were harbored by TRAF6 overexpression. Our data indicated that circ_0007706 knockdown could downregulate the expression of TRAF6 by sponging miR-579-3p in OGD/R-treated hBMVECs. CONCLUSION: This study demonstrated that circ_0007706 knockdown assuaged HIE-induced injury by decreasing TRAF6 expression via targeting miR-579-3p.


Subject(s)
Hypoxia-Ischemia, Brain , MicroRNAs , Infant, Newborn , Humans , Down-Regulation , Hypoxia-Ischemia, Brain/genetics , TNF Receptor-Associated Factor 6/genetics , Apoptosis , Cell Proliferation/genetics , Glucose , MicroRNAs/genetics
18.
Biochem Pharmacol ; 207: 115356, 2023 01.
Article in English | MEDLINE | ID: mdl-36455671

ABSTRACT

Neonatal encephalopathy (NE) is a pathological condition that describes a neurocognitive malfunction in the newborn that arises from fetal, peripartum, or intrapartum events of multifactorial nature, having a poor prognosis and accounting for an incidence of 5-8 per 1000 live births. Neonatal hypoxic-ischemic encephalopathy (HIE) is one of the most studied paradigms of NE, caused by a scarce cerebral perfusion and oxygen supply during perinatal life. The cerebral hypoxic-ischemic insult promotes a loss of permeability of the blood-brain barrier (BBB), an essential structural intermediary of blood-brain communication. This permeability disruption is associated with an increase in inflammatory cytokines, an increase of adhesion molecules, and oxidative stress which disturb the tight junction (TJ) performance and enable transcytosis and paracellular leakage, ultimately leading to death from brain cells. In this context, TJs proteins are essential to preserving the barrier mechanical stability and signaling that modulates the brain-blood vessel multicellular domains, known as neurovascular units (NVU). Recent studies have proposed different strategies with neuroprotective effects that allow for maintaining or restoring the integrity and permeability of the BBB. This review identifies and discusses regulator mechanisms and novel aspects of TJs in the BBB disruption induced by cerebral hypoxic insults during the perinatal period, evaluating potential pharmacological strategies to safeguard BBB integrity.


Subject(s)
Blood-Brain Barrier , Hypoxia-Ischemia, Brain , Infant, Newborn , Pregnancy , Female , Humans , Blood-Brain Barrier/metabolism , Hypoxia-Ischemia, Brain/drug therapy , Tight Junctions/metabolism , Brain/metabolism , Hypoxia/metabolism , Permeability
19.
Curr Mol Med ; 23(10): 1007-1011, 2023.
Article in English | MEDLINE | ID: mdl-36284391

ABSTRACT

MicroRNAs (miRNAs) are a class of non-coding small RNAs with about 22 nucleotides in eukaryotes. They regulate gene expression at the post-transcriptional level and play a key role in physiological and pathological processes. As one of the most abundant miRNAs in the human brain, miRNA-9 (miR-9) has attracted extensive attention due to its important role in the maintenance of normal function of the nervous system and the occurrence and development of nervous system diseases. Hence, we reviewed the neuroprotective effect of miR-9 in neurological diseases. MiR-9 may be a potential target of nervous system diseases.


Subject(s)
MicroRNAs , Nervous System Diseases , Neuroprotective Agents , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Nervous System Diseases/genetics , Brain/metabolism
20.
Front Microbiol ; 13: 993146, 2022.
Article in English | MEDLINE | ID: mdl-36338029

ABSTRACT

Neonatal hypoxic-ischemic encephalopathy (HIE) refers to nervous system damage caused by perinatal hypoxia, which is the major cause of long-term neuro-developmental disorders in surviving infants. However, the mechanisms still require further investigation. In this study, we found that the butanoate metabolism pathway exhibited significantly decreased and short chain fatty acid (SCFAs)-producing bacteria, especially butyrate-producing bacteria, were significantly decreased in fecal of neonatal hypoxic-ischemic brain damage (HIBD) rats. Surprisingly, Sodium butyrate (SB) treatment could ameliorate pathological damage both in the cerebral cortex and hippocampus and facilitate recovery of SCFAs-producing bacteria related to metabolic pathways in neonatal HIBD rats. Moreover, we found that in samples from SB treatment neonatal HIBD rats cortex with high levels of butyrate acid along with aberrant key crotonyl-CoA-producing enzymes ACADS levels were observed compared HIBD rats. We also demonstrated that a decrease in histone 3-lysine 9-crotonylation (H3K9cr) downregulated expression of the HIE-related neurotrophic genes Bdnf, Gdnf, Cdnf, and Manf in HIBD rats. Furthermore, SB restored H3K9cr binding to HIE-related neurotrophic genes. Collectively, our results indicate that SB contributes to ameliorate pathology of HIBD by altering gut microbiota and brain SCFAs levels subsequently affecting histone crotonylation-mediated neurotrophic-related genes expression. This may be a novel microbiological approach for preventing and treating HIE.

SELECTION OF CITATIONS
SEARCH DETAIL
...