Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.190
Filter
1.
Front Immunol ; 15: 1415736, 2024.
Article in English | MEDLINE | ID: mdl-38962012

ABSTRACT

Background: Neuroblastoma (NB), characterized by its marked heterogeneity, is the most common extracranial solid tumor in children. The status and functionality of mitochondria are crucial in regulating NB cell behavior. While the significance of mitochondria-related genes (MRGs) in NB is still missing in key knowledge. Materials and methods: This study leverages consensus clustering and machine learning algorithms to construct and validate an MRGs-related signature in NB. Single-cell data analysis and experimental validation were employed to characterize the pivotal role of FEN1 within NB cells. Results: MRGs facilitated the classification of NB patients into 2 distinct clusters with considerable differences. The constructed MRGs-related signature and its quantitative indicators, mtScore and mtRisk, effectively characterize the MRGs-related patient clusters. Notably, the MRGs-related signature outperformed MYCN in predicting NB patient prognosis and was adept at representing the tumor microenvironment (TME), tumor cell stemness, and sensitivity to the chemotherapeutic agents Cisplatin, Topotecan, and Irinotecan. FEN1, identified as the most contributory gene within the MRGs-related signature, was found to play a crucial role in the communication between NB cells and the TME, and in the developmental trajectory of NB cells. Experimental validations confirmed FEN1's significant influence on NB cell proliferation, apoptosis, cell cycle, and invasiveness. Conclusion: The MRGs-related signature developed in this study offers a novel predictive tool for assessing NB patient prognosis, immune infiltration, stemness, and chemotherapeutic sensitivity. Our findings unveil the critical function of FEN1 in NB, suggesting its potential as a therapeutic target.


Subject(s)
Gene Expression Profiling , Neuroblastoma , Single-Cell Analysis , Transcriptome , Humans , Neuroblastoma/genetics , Neuroblastoma/pathology , Mitochondria/genetics , Gene Expression Regulation, Neoplastic , Tumor Microenvironment/genetics , Cell Line, Tumor , Biomarkers, Tumor/genetics , Prognosis
2.
Front Oncol ; 14: 1414063, 2024.
Article in English | MEDLINE | ID: mdl-38962276

ABSTRACT

Exosomes are a subclass of extracellular vesicles shown to promote the cancer growth and support metastatic progression. The proteomic analysis of neuroblastoma-derived exosomes has revealed proteins involved in cell migration, proliferation, metastasis, and in the modulation of tumor microenvironment - thus contributing to the tumor development and an aggressive metastatic phenotype. This review gives an overview of the current understanding of the exosomal proteins in neuroblastoma and of their potential as diagnostic/prognostic biomarker of disease and therapeutics.

3.
Biomed Pharmacother ; 177: 117040, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38959605

ABSTRACT

Invariant natural killer T cell (iNKT) cells produce large amounts of cytokines in response to α-Galactosylceramide (α-GalCer) stimulation. An analog containing two phenyl rings on the acyl chain, C34, was previously found to be more Th1-biased than α-GalCer and triggered greater anticancer activities against breast cancer, melanoma and lung cancer in mice. Since liver is enriched in iNKT cells, we investigated anticancer efficacy of C34 on neuroblastoma with hepatic metastasis. C34 induced Th1-biased cytokine secretions in the liver, significantly suppressed neuroblastoma growth/metastasis and prolonged mouse survival. The anti-tumor efficacy might be attributed to greater expansions of hepatic NKT, NK, CD4+ T, and CD8+ T cells as well as reduction of the number of SSCloGr1intCD11b+ subset of myeloid-derived suppressor cells (MDSCs) in the liver of tumor-bearing mice, as compared to DMSO control group. C34 also upregulated expression of CD1d and CD11c, especially in the SSCloGr1intCD11b+ subset of MDSCs, which might be killed by C34-activated NKT cells, attributing to their reduced number. In addition, C34 also induced expansion of CD4+ T, CD8+ T, and NK cells, which might eliminate neuroblastoma cells. These immune-modulating effects of C34 might act in concert in the local milieu of liver to suppress the tumor growth. Further analysis of database of neuroblastoma revealed that patients with high CD11c expression in the monocytic MDSCs in the tumor had longer survival, suggesting the potential clinical application of C34 for treatment of neuroblastoma.

4.
J Vet Med Sci ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38960628

ABSTRACT

In the present study, histopathological and immunohistochemical findings of olfactory ganglioneuroblastoma in a dog were compared to those of canine olfactory neuroepithelia and neuroblastomas. Olfactory ganglioneuroblastoma consists of ganglion cell-like tumor cells with Schwannian stroma and neuroblast-like tumor cells. Immunohistochemically, ganglion cell-like tumor cells were immunopositive for synaptophysin, ß3-tubulin, and tyrosine hydroxylase, Schwannian stroma was immunopositive for GFAP and SOX2, and neuroblast-like tumor cells were immunopositive for OLIG2, ß3-tubulin, SOX2, cytokeratin AE1/AE3, and p63. The immunohistochemical results of olfactory neuroepithelia and olfactory neuroblastomas were similar to those of neuroblast-like tumor cells. These results suggest that the ganglion cell-like tumor cells in the present case have a sympathetic neuron immunophenotype, whereas neuroblast-like tumor cells have an olfactory neuroepithelial immunophenotype.

5.
J Nucl Med ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38960713

ABSTRACT

Meta-[123I]iodobenzylguanidine ([123I]MIBG) scintigraphy with SPECT/CT is the standard of care for diagnosing and monitoring neuroblastoma. Replacing [123I]MIBG with the new PET tracer meta-[18F]fluorobenzylguanidine ([18F]MFBG) and further improving sensitivity and reducing noise in a new long-axial-field-of-view (LAFOV) PET/CT scanner enable increased image quality and a faster acquisition time, allowing examinations to be performed without sedation or general anesthesia (GA). Focusing on feasibility, we present our first experience with [18F]MFBG LAFOV PET/CT and compare it with [123I]MIBG scintigraphy plus SPECT/CT for imaging in neuroblastoma in children. Methods: A pilot of our prospective, single-center study recruited children with neuroblastoma who were referred for [123I]MIBG scintigraphy with SPECT/CT. Within 1 wk of [123I]MIBG scintigraphy and SPECT/low-dose CT, [18F]MFBG LAFOV PET/ultra-low-dose CT was performed 1 h after injection (1.5-3 MBq/kg) without sedation or GA, in contrast to the 24-h postinjection interval needed for scanning with [123I]MIBG, the 2- to 2.5-h acquisition time, and the GA often needed in children less than 6 y old. Based on the spirocyclic iodonium-ylide precursor, [18F]MFBG was produced in a fully automated good manufacturing practice-compliant procedure. We present the feasibility of the study. Results: In the first paired scans of the first 10 children included (5 at diagnosis, 2 during treatment, 2 during surveillance, and 1 at relapse), [18F]MFBG PET/CT scan showed a higher number of radiotracer-avid lesions in 80% of the cases and an equal number of lesions in 20% of the cases. The SIOPEN score was higher in 50% of the cases, and the Curie score was higher in 70% of the cases. In particular, intraspinal, retroperitoneal lymph node, and bone marrow involvement was diagnosed with much higher precision. None of the children (median age, 1.6 y; range, 0.1-7.9 y) had sedation or GA during the PET procedure, whereas 80% had GA during [123I]MIBG scintigraphy with SPECT/CT. A PET acquisition time of only 2 min without motion artifacts was the data requirement of the 10-min acquisition time for reconstruction to provide a clinically useful image. Conclusion: This pilot study demonstrates the feasibility of performing [18F]MFBG LAFOV PET/CT for imaging of neuroblastoma. Further, an increased number of radiotracer-avid lesions, an increased SIOPEN score, and an increased Curie score were seen on [18F]MFBG LAFOV PET/CT compared with [123I]MIBG scintigraphy with SPECT/CT, and GA and sedation was avoided in all patients. Thus, with a 1-d protocol, a significantly shorter scan time, a higher sensitivity, and the avoidance of GA and sedation, [18F]MFBG LAFOV PET/CT shows promise for future staging and response assessment and may also have a clinical impact on therapeutic decision-making for children with neuroblastoma.

6.
Pediatr Blood Cancer ; : e31175, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961591

ABSTRACT

Atypical hemolytic uremic syndrome (aHUS) is a complement-mediated thrombotic microangiopathy sometimes associated with germline variants in genes of the complement system. Clinical findings of microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury arise due to aberrant complement protein activation in the circulation. A 13-month-old boy with metastatic neuroblastoma (NB) developed aHUS during his first cycle of induction chemotherapy with germline testing revealing a complement factor H (CFH) gene mutation, currently classified as a variant of uncertain significance (VUS). Now he is in disease remission after successful complement blockade therapy, thus highlighting a unique presentation of aHUS in a patient with newly diagnosed NB.

7.
Med Oncol ; 41(8): 194, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958814

ABSTRACT

Neuroblastoma is a common nervous system tumor in childhood, and current treatments are not adequate. HSP90 is a molecular chaperone protein that plays a critical role in the regulation of cancer-related proteins. HSP90 inhibition may exert anticancer effects by targeting cancer-related processes such as tumor growth, cell proliferation, metastasis, and apoptosis. Therefore, HSP90 inhibition is a promising strategy in the treatment of various types of cancer, and the development of next-generation inhibitors could potentially lead to more effective and safer treatments. XL-888 and Debio0932 is a next-generation HSP90 inhibitor and can inhibit the correct folding and stabilization of client proteins that cancer-associated HSP90 helps to fold correctly. In this study, we aimed to investigate the comprehensive molecular pathways of the anticancer activity of XL-888 and Debio0932 in human neuroblastoma cells SH-SY5Y. The cytotoxic effects of XL-888 and Debio0932 on the neuroblastoma cell line SH-SY5Y cells were evaluated by MTT assay. Then, the effect of these HSP90 inhibitors on the expression of important genes in cancer was revealed by Quantitative Real Time Polymerase Chain Reaction (qRT-PCR) method. The qRT-PCR data were evaluated using Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) biological process tools. Finally, the effect of HSP90 inhibitors on HSP27, HSP70 and HSP90 protein expression was investigated by Western blotting analysis. The results revealed that XL-888 and Debio0932 had a role in regulating many cancer-related pathways such as migration, invasion, metastasis, angiogenesis, and apoptosis in SH-SY5Y cells. In conclusion, it shows that HSP90 inhibitors can be considered as a promising candidate in the treatment of neuroblastoma and resistance to chemotherapy.


Subject(s)
Antineoplastic Agents , HSP90 Heat-Shock Proteins , Neuroblastoma , Humans , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Neuroblastoma/drug therapy , Neuroblastoma/pathology , Neuroblastoma/metabolism , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Proliferation/drug effects
8.
Clinics (Sao Paulo) ; 79: 100434, 2024.
Article in English | MEDLINE | ID: mdl-38959634

ABSTRACT

OBJECTIVES: To retrospectively investigate the impact of pre-treatment Extracellular Volume Fraction (ECV) measured by Computed Tomography (CT) on the response of primary lesions to preoperative chemotherapy in abdominal neuroblastoma. METHODS: A total of seventy-five patients with abdominal neuroblastoma were retrospectively included in the study. The regions of interest for the primary lesion and aorta were determined on unenhanced and equilibrium phase CT images before treatment, and their average CT values were measured. Based on patient hematocrit and average CT values, the ECV was calculated. The correlation between ECV and the reduction in primary lesion volume was examined. A receiver operating characteristic curve was generated to assess the predictive performance of ECV for a very good partial response of the primary lesion. RESULTS: There was a negative correlation between primary lesion volume reduction and ECV (r = -0.351, p = 0.002), and primary lesions with very good partial response had lower ECV (p < 0.001). The area under the curve for ECV in predicting the very good partial response of primary lesion was 0.742 (p < 0.001), with a 95 % Confidence Interval of 0.628 to 0.836. The optimal cut-off value was 0.28, and the sensitivity and specificity were 62.07 % and 84.78 %, respectively. CONCLUSIONS: The measurement of pre-treatment ECV on CT images demonstrates a significant correlation with the response of the primary lesion to preoperative chemotherapy in abdominal neuroblastoma.


Subject(s)
Abdominal Neoplasms , Neuroblastoma , Tomography, X-Ray Computed , Humans , Neuroblastoma/diagnostic imaging , Neuroblastoma/drug therapy , Neuroblastoma/surgery , Neuroblastoma/pathology , Male , Female , Retrospective Studies , Tomography, X-Ray Computed/methods , Child, Preschool , Child , Infant , Abdominal Neoplasms/diagnostic imaging , Abdominal Neoplasms/drug therapy , Abdominal Neoplasms/pathology , Abdominal Neoplasms/surgery , Treatment Outcome , ROC Curve , Predictive Value of Tests , Adolescent , Tumor Burden/drug effects , Sensitivity and Specificity , Reference Values , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Reproducibility of Results
9.
Cancer Innov ; 3(2): e103, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38946930

ABSTRACT

Background: Neuroblastoma is one of the most common extracranial malignant solid tumors in children. AlkB homolog 5 (ALKBH5) is an RNA N6-methyladenosine (m6A) demethylase that plays a critical role in tumorigenesis and development. We assessed the association between single nucleotide polymorphisms (SNPs) in ALKBH5 and the risk of neuroblastoma in a case-control study including 402 patients and 473 non-cancer controls. Methods: Genotyping was determined by the TaqMan method. The association between ALKBH5 polymorphisms (rs1378602 and rs8400) and the risk of neuroblastoma was evaluated using the odds ratio (OR) and 95% confidence interval (CI). Results: We found no strong association of ALKBH5 rs1378602 and rs8400 with neuroblastoma risk. Further stratification analysis by age, sex, primary site, and clinical stage showed that the rs1378602 AG/AA genotype was associated with a lower risk of neuroblastoma in males (adjusted OR = 0.58, 95% CI = 0.35-0.97, p = 0.036) and children with retroperitoneal neuroblastoma (adjusted OR = 0.58, 95% CI = 0.34-0.98, p = 0.040). Conclusions: ALKBH5 SNPs do not seem to be associated with neuroblastoma risk. More studies are required to confirm this negative result and reveal the relationship between gene polymorphisms of the m6A modifier ALKBH5 and neuroblastoma.

10.
Am J Med Genet A ; : e63812, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990105

ABSTRACT

Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder caused by pathogenic variants in FBN1, with a hitherto unknown association with cancer. Here, we present two females with MFS who developed pediatric neuroblastoma. Patient 1 presented with neonatal MFS and developed an adrenal neuroblastoma with unfavorable tumor genetics at 10 months of age. Whole genome sequencing revealed a germline de novo missense FBN1 variant (NP_000129.3:p.(Asp1322Asn)), resulting in intron 32 inclusion and exon 32 retention. Patient 2 was diagnosed with classic MFS, caused by a germline de novo frameshift variant in FBN1 (NP_000129.3:p.(Cys805Ter)). At 18 years, she developed high-risk neuroblastoma with a somatic ALK pathogenic variant (NP_004295.2:p.(Arg1275Gln)). We identified 32 reported cases of MFS with cancer in PubMed, yet none with neuroblastoma. Among patients, we observed an early cancer onset and high frequency of MFS complications. We also queried cancer databases for somatic FBN1 variants, finding 49 alterations reported in PeCan, and variants in 2% of patients in cBioPortal. In conclusion, we report the first two patients with MFS and neuroblastoma and highlight an early age at cancer diagnosis in reported patients with MFS. Further epidemiological and functional studies are needed to clarify the growing evidence linking MFS and cancer.

11.
Cancer Innov ; 3(5): e135, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38948899

ABSTRACT

Background: Bone marrow is the leading site for metastasis from neuroblastoma and affects the prognosis of patients with neuroblastoma. However, the accurate diagnosis of bone marrow metastasis is limited by the high spatial and temporal heterogeneity of neuroblastoma. Radiomics analysis has been applied in various cancers to build accurate diagnostic models but has not yet been applied to bone marrow metastasis of neuroblastoma. Methods: We retrospectively collected information from 187 patients pathologically diagnosed with neuroblastoma and divided them into training and validation sets in a ratio of 7:3. A total of 2632 radiomics features were retrieved from venous and arterial phases of contrast-enhanced computed tomography (CT), and nine machine learning approaches were used to build radiomics models, including multilayer perceptron (MLP), extreme gradient boosting, and random forest. We also constructed radiomics-clinical models that combined radiomics features with clinical predictors such as age, gender, ascites, and lymph gland metastasis. The performance of the models was evaluated with receiver operating characteristics (ROC) curves, calibration curves, and risk decile plots. Results: The MLP radiomics model yielded an area under the ROC curve (AUC) of 0.97 (95% confidence interval [CI]: 0.95-0.99) on the training set and 0.90 (95% CI: 0.82-0.95) on the validation set. The radiomics-clinical model using an MLP yielded an AUC of 0.93 (95% CI: 0.89-0.96) on the training set and 0.91 (95% CI: 0.85-0.97) on the validation set. Conclusions: MLP-based radiomics and radiomics-clinical models can precisely predict bone marrow metastasis in patients with neuroblastoma.

12.
Theranostics ; 14(9): 3439-3469, 2024.
Article in English | MEDLINE | ID: mdl-38948053

ABSTRACT

Rationale: Synergic reprogramming of metabolic dominates neuroblastoma (NB) progression. It is of great clinical implications to develop an individualized risk prognostication approach with stratification-guided therapeutic options for NB based on elucidating molecular mechanisms of metabolic reprogramming. Methods: With a machine learning-based multi-step program, the synergic mechanisms of metabolic reprogramming-driven malignant progression of NB were elucidated at single-cell and metabolite flux dimensions. Subsequently, a promising metabolic reprogramming-associated prognostic signature (MPS) and individualized therapeutic approaches based on MPS-stratification were developed and further validated independently using pre-clinical models. Results: MPS-identified MPS-I NB showed significantly higher activity of metabolic reprogramming than MPS-II counterparts. MPS demonstrated improved accuracy compared to current clinical characteristics [AUC: 0.915 vs. 0.657 (MYCN), 0.713 (INSS-stage), and 0.808 (INRG-stratification)] in predicting prognosis. AZD7762 and etoposide were identified as potent therapeutics against MPS-I and II NB, respectively. Subsequent biological tests revealed AZD7762 substantially inhibited growth, migration, and invasion of MPS-I NB cells, more effectively than that of MPS-II cells. Conversely, etoposide had better therapeutic effects on MPS-II NB cells. More encouragingly, AZD7762 and etoposide significantly inhibited in-vivo subcutaneous tumorigenesis, proliferation, and pulmonary metastasis in MPS-I and MPS-II samples, respectively; thereby prolonging survival of tumor-bearing mice. Mechanistically, AZD7762 and etoposide-induced apoptosis of the MPS-I and MPS-II cells, respectively, through mitochondria-dependent pathways; and MPS-I NB resisted etoposide-induced apoptosis by addiction of glutamate metabolism and acetyl coenzyme A. MPS-I NB progression was fueled by multiple metabolic reprogramming-driven factors including multidrug resistance, immunosuppressive and tumor-promoting inflammatory microenvironments. Immunologically, MPS-I NB suppressed immune cells via MIF and THBS signaling pathways. Metabolically, the malignant proliferation of MPS-I NB cells was remarkably supported by reprogrammed glutamate metabolism, tricarboxylic acid cycle, urea cycle, etc. Furthermore, MPS-I NB cells manifested a distinct tumor-promoting developmental lineage and self-communication patterns, as evidenced by enhanced oncogenic signaling pathways activated with development and self-communications. Conclusions: This study provides deep insights into the molecular mechanisms underlying metabolic reprogramming-mediated malignant progression of NB. It also sheds light on developing targeted medications guided by the novel precise risk prognostication approaches, which could contribute to a significantly improved therapeutic strategy for NB.


Subject(s)
Disease Progression , Etoposide , Neuroblastoma , Tumor Microenvironment , Neuroblastoma/drug therapy , Neuroblastoma/metabolism , Neuroblastoma/pathology , Tumor Microenvironment/drug effects , Humans , Animals , Mice , Cell Line, Tumor , Etoposide/pharmacology , Etoposide/therapeutic use , Prognosis , Cellular Reprogramming/drug effects , Cell Proliferation/drug effects , Xenograft Model Antitumor Assays , Molecular Targeted Therapy/methods , Machine Learning , Apoptosis/drug effects , Metabolic Reprogramming
13.
Pediatr Blood Cancer ; : e31173, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965702

ABSTRACT

BACKGROUND: Tandem high-dose chemotherapy and autologous stem cell transplantation (HDCT/auto-SCT) and incorporation of 131I-metaiodobenzylguanidine (131I-MIBG) treatment have shown positive outcomes in high-risk neuroblastoma. However, more optimized treatment strategies are still needed. PROCEDURE: The NB-2014 study was a nonrandomized, prospective trial that examined survival outcomes in metastatic high-risk neuroblastoma patients using response-adapted consolidation therapy. We used post-induction residual 123I-MIBG status at metastatic sites as a treatment response marker. Patients achieving complete resolution of MIBG uptake at metastatic sites underwent a reduced first HDCT/auto-SCT with a 20% dose reduction in HDCT. After the first HDCT/auto-SCT, patients with remaining MIBG uptake received dose-escalated (18 mCi/kg) 131I-MIBG treatment. In contrast, those with complete resolution of MIBG at metastatic sites received a standard dose (12 mCi/kg) of 131I-MIBG. We compared survival and toxicity outcomes with a historical control group from the NB-2009. RESULTS: Of 65 patients treated, 63% achieved complete resolution of MIBG uptake at metastatic sites following induction chemotherapy, while 29% of patients still had MIBG uptake at metastatic sites after the first HDCT/auto-SCT. The 3-year event-free survival (EFS) and overall survival (OS) rates were 68.2% ± 6.0% and 86.5% ± 4.5%, respectively. Compared to NB-2009, EFS was similar (p = .855); however, NB-2014 had a higher OS (p = .031), a lower cumulative incidence of treatment-related mortality (p = .036), and fewer acute and late toxicities. CONCLUSIONS: Our results suggest that response-adaptive consolidation therapy based on chemotherapy response at metastatic sites facilitates better treatment tailoring, and appears promising for patients with metastatic high-risk neuroblastoma.

14.
Int J Biol Macromol ; : 133742, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986998

ABSTRACT

This study aims to investigate the molecular mechanisms and the neuroprotective effect of hyaluronic acid modified verapamil-loaded carbon quantum dots (VRH-loaded HA-CQDs) against an in-vitro Alzheimer's disease model induced by amyloid beta (Aß) in SH-SY5Y and Neuro 2a neuroblastoma cells. Briefly, different HA-CQDs were prepared using hydrothermal method and optimized by Box-Behnken design to maximize quantum yield and minimize particle size. Serum stable negatively charged VRH-loaded HA-CQDs was successfully prepared by admixing the optimized HA-CQDs and VRH with association efficiency and loading capacity of 81.25 ±â€¯3.65 % and 5.11 ±â€¯0.81 %, respectively. Cells were pretreated with VRH solution or loaded-HA-CQDs followed by exposure to Aß. Compared to the control group, amyloidosis led to reduction in cellular proliferation, mitochondrial membrane potential, expression of cytochrome P450, cytochrome c oxidase, CREB-regulated transcriptional coactivator 3, and mitotic index, along with marked increase in reactive oxygen species (ROS) and inflammatory cytokines. Pretreatment with VRH, either free or loaded HA-CQDs, enhanced cell survival, mitochondrial membrane potential, mitotic index, and gene expression. It also reduced inflammation and ROS. However, VRH-loaded HA-CQDs exhibited superior effectiveness in the measured parameters. These findings suggest that VRH-loaded HA-CQDs have enhanced therapeutic potential compared to free VRH in mitigating amyloidosis negative features.

15.
Biotechnol J ; 19(7): e2400068, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38987218

ABSTRACT

SH-SY5Y is a human neuroblastoma cell line that can be differentiated into several neuronal phenotypes, depending on culture conditions. For this reason, this cell line has been widely used as an in vitro model of neurodegenerative conditions, such as Parkinson's disease (PD). However, most studies published to date used fetal bovine serum (FBS) as culture medium supplement for SH-SY5Y cell differentiation. We report on the testing of human platelet lysate (hPL) as a culture medium supplement to support SH-SY5Y cell culture. Both standard hPL and a fibrinogen-depleted hPL (FD-hPL) formulation, which does not require the addition of anticoagulants to culture media, promoted an increase in SH-SY5Y cell proliferation in comparison to FBS, without compromising metabolic activity. SH-SY5Y cells cultured in hPL or FD-hPL also displayed a higher number of neurite extensions and stained positive for MAP2 and synaptophysin, in the absence of differentiation stimuli; reducing hPL or FD-hPL concentration to 1% v/v did not affect cell proliferation or metabolic activity. Furthermore, following treatment with retinoic acid (RA) and further stimulation with brain-derived neurotrophic factor (BDNF) and nerve growth factor beta (NGF-ß), the percentage of SH-SY5Y cells stained positive for dopaminergic neuronal differentiation markers (tyrosine hydroxylase [TH] and Dopamine Transporter [DAT]) was higher in hPL or FD-hPL than in FBS, and gene expression of dopaminergic markers TH, DAT, and DR2 was also detected. Overall, the data herein presented supports the use of hPL to differentiate SH-SY5Y cells into a neuronal phenotype with dopaminergic features, and the adoption of FD-hPL as a fully xenogeneic free alternative to FBS to support the use of SH-SY5Y cells as a neurodegeneration model.


Subject(s)
Blood Platelets , Cell Culture Techniques , Cell Differentiation , Cell Proliferation , Dopaminergic Neurons , Neuroblastoma , Humans , Cell Proliferation/drug effects , Cell Differentiation/drug effects , Neuroblastoma/metabolism , Neuroblastoma/pathology , Cell Line, Tumor , Blood Platelets/metabolism , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/cytology , Cell Culture Techniques/methods , Culture Media/chemistry , Culture Media/pharmacology , Tretinoin/pharmacology , Phenotype
16.
Pediatr Blood Cancer ; : e31161, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987989

ABSTRACT

BACKGROUND: The capacity of presurgical image-defined risk factors (IDRFs) to predict secondary surgical outcomes in patients with neuroblastoma is controversial. METHODS: The International Neuroblastoma Surgical Report Form (INSRF) was employed to retrospectively collect the clinical data of 53 patients diagnosed with neuroblastoma at our hospital from April 2014 to April 2020. IDRFs were identified at the time of diagnosis and reassessed during the course of neoadjuvant chemotherapy. Various statistical tests were used to evaluate the correlation between IDRFs and secondary surgical outcomes. RESULTS: A total of 195 IDRFs were identified. Notably, by two courses of neoadjuvant chemotherapy, the number of "two body compartments," "intraspinal tumor extension," and "trachea-compressing" IDRFs decreased significantly (p = .001). The primary tumor volumes and the number of IDRFs decreased significantly by four courses of neoadjuvant chemotherapy, especially in "intraspinal tumor extension" IDRFs (p = .034). The median number of IDRF per patient was four (interquartile range [IQR]: 1-5) at diagnosis, which diminished to one (IQR: 1-3) subsequent to neoadjuvant chemotherapy. The presence of preoperative IDRFs was not associated with surgical complications (p = .286) or the extent of surgery (p = .188). However, the number of preoperative IDRFs linked to the extent of surgery (p = .002), not to operative complications (p = .669). Specifically, presurgery "renal vessel contact" IDRFs were predictive of surgical complications, while presurgery "infiltration of vital structures" IDRFs were associated with the extent of surgery. CONCLUSION: The number of IDRFs decreased significantly by four courses of neoadjuvant chemotherapy. The number and type of presurgery IDRFs may predict secondary surgical outcomes, surpassing the mere consideration of their presence or absence.

17.
Pediatr Blood Cancer ; : e31162, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987997

ABSTRACT

The management of pediatric tumors is complex, with surgery, chemotherapy, and radiotherapy being cornerstones in their treatment. Tumor removal is increasingly performed by a minimally invasive approach, which allows for quicker postoperative recovery and less postoperative pain. The goal of this report is to give an overview of minimally invasive surgical approaches for common pediatric tumors, with a focus on technical considerations and postoperative outcomes.

18.
BMC Complement Med Ther ; 24(1): 257, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982456

ABSTRACT

BACKGROUND: Neuroblastoma, a prevalent solid tumor in children, often manifests with hidden onset sites, rapid growth, and high metastatic potential. The prognosis for children with high-risk neuroblastoma remains poor, highlighting the urgent need for novel prognostic models and therapeutic avenues. In recent years, puerarin, as a kind of small molecule drug extracted from Chinese medicine Pueraria lobata, has demonstrated significant anticancer effects on various cancer cell types. In this study, through bioinformatics analysis and in vitro experiments, the potential and mechanism of puerarin in the treatment of neuroblastoma were investigated, and a prognostic model was established. METHODS: A total of 9 drug-disease related targets were observed by constructing a database of drug targets and disease genes. Besides, GO and KEGG enrichment analysis was performed to explore the potential mechanism of its therapeutic effect. To construct the prognostic model, risk regression analysis and LASSO analysis were carried out for validation. Finally, the prognostic genes were identified. Parachute test and immunofluorescence staining were performed to verify the potential mechanism of puerarin in neuroblastoma treatment. RESULTS: Three prognostic genes, i.e., BIRC5, TIMP2 and CASP9, were identified. In vitro studies verified puerarin's impact on BIRC5, TIMP2, and CASP9 expression, inhibiting proliferation in neuroblastoma SH-SY5Y cells. Puerarin disrupts the cytoskeleton, boosts gap junctional communication, curtailing invasion and migration, and induces mitochondrial damage in SH-SY5Y cells. CONCLUSIONS: Based on network pharmacology and bioinformatics analysis, combined with in vitro experimental verification, puerarin was hereby observed to enhance GJIC in neuroblastoma, destroy cytoskeleton and thus inhibit cell invasion and migration, cause mitochondrial damage of tumor cells, and inhibit cell proliferation. Overall, puerarin, as a natural medicinal compound, does hold potential as a novel therapy for neuroblastoma.


Subject(s)
Computational Biology , Isoflavones , Neuroblastoma , Neuroblastoma/drug therapy , Isoflavones/pharmacology , Humans , Cell Line, Tumor , Cell Proliferation/drug effects
19.
Pediatr Blood Cancer ; : e31181, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967225

ABSTRACT

INTRODUCTION: Data on ovarian function in neuroblastoma survivors are limited. We sought to determine the prevalence of ovarian dysfunction in a cohort of high-risk neuroblastoma survivors and compare outcomes among survivors treated with and without autologous stem cell rescue (ASCR) preceded by myeloablative chemotherapy. METHODS: Retrospective review of female survivors of high-risk neuroblastoma ≥5 years from diagnosis, diagnosed between 1982 and 2014, and followed in a tertiary cancer center. Participants were divided into two groups: individuals treated with conventional chemotherapy ± radiation ("non-ASCR") (n = 32) or with chemotherapy ± radiation followed by myeloablative chemotherapy with ASCR ("ASCR") (n = 51). Ovarian dysfunction was defined as follicle-stimulating hormone ≥15 mU/mL, while premature ovarian insufficiency (POI) was defined as persistent ovarian dysfunction requiring hormone replacement therapy. Poisson models were used to determine prevalence ratios of ovarian dysfunction and POI. RESULTS: Among 83 females (median attained age: 19 years [range, 10-36]; median follow-up: 15 years [range, 7-36]), 49 (59%) had ovarian dysfunction, and 34 (41%) developed POI. Survivors treated with ASCR were 3.2-fold more likely to develop ovarian dysfunction (95% CI: 1.8-6.0; p < 0.001) and 4.5-fold more likely to develop POI (95% CI: 1.7-11.7; p = 0.002) when compared with those treated with conventional chemotherapy, after adjusting for attained age. Two participants in the non-ASCR group and six in the ASCR group achieved at least one spontaneous pregnancy. DISCUSSION: Ovarian dysfunction is prevalent in female high-risk neuroblastoma survivors, especially after ASCR. Longitudinal follow-up of larger cohorts is needed to inform counseling about the risk of impaired ovarian function after neuroblastoma therapy.

20.
Pediatr Blood Cancer ; : e31176, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967585

ABSTRACT

INTRODUCTION: Neuroblastoma is a pediatric malignancy with heterogeneous clinical outcomes. Our aim was to identify prognostic genetic markers for patients with neuroblastoma, who were treated with the Taiwan Pediatric Oncology Group (TPOG) neuroblastoma N2002 protocol, to improve risk stratification and inform treatment. METHODS: Our analysis was based on 53 primary neuroblastoma specimens, diagnosed pre-chemotherapy, and 11 paired tumor relapse specimens. Deep sequencing of 113 target genes was performed using a custom panel. Multiplex ligation-dependent probe amplification was performed to identify clinical outcomes related to copy-number variations. RESULTS: We identified 128 variations associated with survival, with the number of variations being higher in the relapse than that in the diagnostic specimen (p = .03). The risk of event and mortality was higher among patients with a tumor mutational burden ≥10 than that in patients with a lower burden (p < .0001). Multivariate analysis identified tumor mutational burden, MYCN amplification, and chromosome 3p deletion as significant prognostic factors, independent of age at diagnosis, sex, and tumor stage. The 5-year event-free survival and overall survival rate was lower among patients with high tumor burden than in patients with low tumor burden. Furthermore, there was no survival of patients with an ALK F1147L variation at 5 years after diagnosis. CONCLUSIONS: Genome sequencing to determine the tumor mutational burden and ALK variations can improve the risk classification of neuroblastoma and inform treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...