Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 134
Filter
1.
Front Neuroergon ; 5: 1415089, 2024.
Article in English | MEDLINE | ID: mdl-39364437

ABSTRACT

The present study investigated whether trait self-control impacted operators' behavior and associated neural resource strategies during a temporally irregular vigilance task. Functional near-infrared spectroscopy (fNIRS) readings of oxygenated hemoglobin (HbO2) and deoxygenated hemoglobin (HbR) from 29 participants were recorded fromthe prefrontal and parietal cortices. Self-control was associated with better perceptual sensitivity (A') in the task with the irregular event schedule. A left-lateralized effect of HbO2 was found for temporal irregularity within the dorsomedial prefrontal cortex, in accordance with functional transcranial doppler (fTCD) studies. Self-control increased HbR (decreasing activation) at right superior parietal lobule (rSPL; supporting vigilance utilization) and right inferior parietal lobule (rIPL; supporting resource reallocation). However, only rSPL was associated with the vigilance decrement-where decreases in activation led to better perceptual sensitivity in the temporally irregular task. Additionally, short stress-state measures suggest decreases in task engagement in individuals with higher self-control in the irregular task. The authors suggest a trait-state-brain-behavior relationship for self-control during difficult vigilance tasks. Implications for the study include steps toward rectifying the resource utilization vs. allocation debate in vigilance-as well as validating HbO2 and HbR as effective constructs for predicting operators' mental resources through fNIRS.

5.
Sensors (Basel) ; 24(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38931563

ABSTRACT

The investigation of gait and its neuronal correlates under more ecologically valid conditions as well as real-time feedback visualization is becoming increasingly important in neuro-motor rehabilitation research. The Gait Real-time Analysis Interactive Lab (GRAIL) offers advanced opportunities for gait and gait-related research by creating more naturalistic yet controlled environments through immersive virtual reality. Investigating the neuronal aspects of gait requires parallel recording of brain activity, such as through mobile electroencephalography (EEG) and/or mobile functional near-infrared spectroscopy (fNIRS), which must be synchronized with the kinetic and /or kinematic data recorded while walking. This proof-of-concept study outlines the required setup by use of the lab streaming layer (LSL) ecosystem for real-time, simultaneous data collection of two independently operating multi-channel EEG and fNIRS measurement devices and gait kinetics. In this context, a customized approach using a photodiode to synchronize the systems is described. This study demonstrates the achievable temporal accuracy of synchronous data acquisition of neurophysiological and kinematic and kinetic data collection in the GRAIL. By using event-related cerebral hemodynamic activity and visually evoked potentials during a start-to-go task and a checkerboard test, we were able to confirm that our measurement system can replicate known physiological phenomena with latencies in the millisecond range and relate neurophysiological and kinetic data to each other with sufficient accuracy.


Subject(s)
Electroencephalography , Gait Analysis , Gait , Spectroscopy, Near-Infrared , Humans , Biomechanical Phenomena/physiology , Electroencephalography/methods , Spectroscopy, Near-Infrared/methods , Gait/physiology , Male , Gait Analysis/methods , Adult , Female , Virtual Reality , Walking/physiology , Brain/physiology , Proof of Concept Study , Young Adult
7.
Front Neuroergon ; 5: 1346794, 2024.
Article in English | MEDLINE | ID: mdl-38660590

ABSTRACT

This study addresses concerns about reproducibility in scientific research, focusing on the use of electroencephalography (EEG) and machine learning to estimate mental workload. We established guidelines for reproducible machine learning research using EEG and used these to assess the current state of reproducibility in mental workload modeling. We first started by summarizing the current state of reproducibility efforts in machine learning and in EEG. Next, we performed a systematic literature review on Scopus, Web of Science, ACM Digital Library, and Pubmed databases to find studies about reproducibility in mental workload prediction using EEG. All of this previous work was used to formulate guidelines, which we structured along the widely recognized Cross-Industry Standard Process for Data Mining (CRISP-DM) framework. By using these guidelines, researchers can ensure transparency and comprehensiveness of their methodologies, therewith enhancing collaboration and knowledge-sharing within the scientific community, and enhancing the reliability, usability and significance of EEG and machine learning techniques in general. A second systematic literature review extracted machine learning studies that used EEG to estimate mental workload. We evaluated the reproducibility status of these studies using our guidelines. We highlight areas studied and overlooked and identify current challenges for reproducibility. Our main findings include limitations on reporting performance on unseen test data, open sharing of data and code, and reporting of resources essential for training and inference processes.

8.
Front Neuroergon ; 5: 1345507, 2024.
Article in English | MEDLINE | ID: mdl-38533517

ABSTRACT

Introduction: The efficiency and safety of complex high precision human-machine systems such as in aerospace and robotic surgery are closely related to the cognitive readiness, ability to manage workload, and situational awareness of their operators. Accurate assessment of mental workload could help in preventing operator error and allow for pertinent intervention by predicting performance declines that can arise from either work overload or under stimulation. Neuroergonomic approaches based on measures of human body and brain activity collectively can provide sensitive and reliable assessment of human mental workload in complex training and work environments. Methods: In this study, we developed a new six-cognitive-domain task protocol, coupling it with six biomedical monitoring modalities to concurrently capture performance and cognitive workload correlates across a longitudinal multi-day investigation. Utilizing two distinct modalities for each aspect of cardiac activity (ECG and PPG), ocular activity (EOG and eye-tracking), and brain activity (EEG and fNIRS), 23 participants engaged in four sessions over 4 weeks, performing tasks associated with working memory, vigilance, risk assessment, shifting attention, situation awareness, and inhibitory control. Results: The results revealed varying levels of sensitivity to workload within each modality. While certain measures exhibited consistency across tasks, neuroimaging modalities, in particular, unveiled meaningful differences between task conditions and cognitive domains. Discussion: This is the first comprehensive comparison of these six brain-body measures across multiple days and cognitive domains. The findings underscore the potential of wearable brain and body sensing methods for evaluating mental workload. Such comprehensive neuroergonomic assessment can inform development of next generation neuroadaptive interfaces and training approaches for more efficient human-machine interaction and operator skill acquisition.

9.
Heliyon ; 10(5): e26582, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38455577

ABSTRACT

Online medical service robots (OMSRs) are becoming increasingly important in the medical industry, and their design has become a highly focused issue. This study investigated the neuroeconomics underlying the formation of usage intention, specifically evaluating the impact of anthropomorphic appearance and age on users' intentions to use OMSRs. Event-related potentials were used to analyze electroencephalography signals recorded from participants. This study found that OMSRs with a low anthropomorphic appearance induced larger P200 and P300 amplitudes, resulting in increased attentional resources compared to OMSRs with a moderate or high anthropomorphic appearance. OMSRs with moderate anthropomorphic appearances captured more attention and elicited larger P200 and P300 than those with high anthropomorphic appearances. Regarding age characteristics, OMSRs with senior features attracted more attention and induced larger P200 and P300 amplitudes. In terms of usage intention, compared to the others, users demonstrate a stronger usage intention towards the low anthropomorphism of OMSRs. Additionally, compared to the senior ones, users also exhibit a stronger usage intention toward a young appearance of OMSRs. These findings provide valuable insights for robot designers and practitioners to improve the appearance of OMSRs.

10.
Sensors (Basel) ; 24(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38339693

ABSTRACT

Spatial cognition plays a crucial role in academic achievement, particularly in science, technology, engineering, and mathematics (STEM) domains. Immersive virtual environments (VRs) have the growing potential to reduce cognitive load and improve spatial reasoning. However, traditional methods struggle to assess the mental effort required for visuospatial processes due to the difficulty in verbalizing actions and other limitations in self-reported evaluations. In this neuroergonomics study, we aimed to capture the neural activity associated with cognitive workload during visuospatial tasks and evaluate the impact of the visualization medium on visuospatial task performance. We utilized functional near-infrared spectroscopy (fNIRS) wearable neuroimaging to assess cognitive effort during spatial-reasoning-based problem-solving and compared a VR, a computer screen, and a physical real-world task presentation. Our results reveal a higher neural efficiency in the prefrontal cortex (PFC) during 3D geometry puzzles in VR settings compared to the settings in the physical world and on the computer screen. VR appears to reduce the visuospatial task load by facilitating spatial visualization and providing visual cues. This makes it a valuable tool for spatial cognition training, especially for beginners. Additionally, our multimodal approach allows for progressively increasing task complexity, maintaining a challenge throughout training. This study underscores the potential of VR in developing spatial skills and highlights the value of comparing brain data and human interaction across different training settings.


Subject(s)
Problem Solving , Virtual Reality , Humans , Prefrontal Cortex , Brain , Cognition
11.
Sensors (Basel) ; 24(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38400241

ABSTRACT

BACKGROUND: There is a significant need to monitor human cognitive performance in complex environments, with one example being pilot performance. However, existing assessments largely focus on subjective experiences (e.g., questionnaires) and the evaluation of behavior (e.g., aircraft handling) as surrogates for cognition or utilize brainwave measures which require artificial setups (e.g., simultaneous auditory stimuli) that intrude on the primary tasks. Blink-related oscillations (BROs) are a recently discovered neural phenomenon associated with spontaneous blinking that can be captured without artificial setups and are also modulated by cognitive loading and the external sensory environment-making them ideal for brain function assessment within complex operational settings. METHODS: Electroencephalography (EEG) data were recorded from eight adult participants (five F, M = 21.1 years) while they completed the Multi-Attribute Task Battery under three different cognitive loading conditions. BRO responses in time and frequency domains were derived from the EEG data, and comparisons of BRO responses across cognitive loading conditions were undertaken. Simultaneously, assessments of blink behavior were also undertaken. RESULTS: Blink behavior assessments revealed decreasing blink rate with increasing cognitive load (p < 0.001). Prototypical BRO responses were successfully captured in all participants (p < 0.001). BRO responses reflected differences in task-induced cognitive loading in both time and frequency domains (p < 0.05). Additionally, reduced pre-blink theta band desynchronization with increasing cognitive load was also observed (p < 0.05). CONCLUSION: This study confirms the ability of BRO responses to capture cognitive loading effects as well as preparatory pre-blink cognitive processes in anticipation of the upcoming blink during a complex multitasking situation. These successful results suggest that blink-related neural processing could be a potential avenue for cognitive state evaluation in operational settings-both specialized environments such as cockpits, space exploration, military units, etc. and everyday situations such as driving, athletics, human-machine interactions, etc.-where human cognition needs to be seamlessly monitored and optimized.


Subject(s)
Blinking , Brain Waves , Adult , Humans , Cognition/physiology , Electroencephalography/methods , Brain Waves/physiology , Brain/physiology
12.
Hum Factors ; 66(5): 1490-1503, 2024 May.
Article in English | MEDLINE | ID: mdl-36898850

ABSTRACT

BACKGROUND: Historical biases in ergonomics-related studies have been attributed to lack of participant diversity and sensitivity of measurements to capture variability between diverse groups. We posit that a neuroergonomics approach, that is, study of brain-behavior relationships during fatiguing work, allows for unique insights on sex differences in fatigue mechanisms that are not available via traditional "neck down" measurement approaches. OBJECTIVE: This study examined the supraspinal mechanisms of exercise performance under fatigue and determined if there were any sex differences in these mechanisms. METHODS: Fifty-nine older adults performed submaximal handgrip contractions until voluntary fatigue. Traditional ergonomics measures, namely, force variability, electromyography (EMG) of arm muscles, and strength and endurance times, and prefrontal and motor cortex hemodynamic responses were recorded. RESULTS: There were no significant differences observed between older males and females in fatigability outcomes (i.e., endurance times, strength loss, and EMG activity) and brain activation. Effective connectivity from prefrontal to motor areas was significant for both sexes throughout the task, but during fatigue, males had higher interregional connectivity than females. DISCUSSION: While traditional metrics of fatigue were comparable between the sexes, we observed distinct sex-specific neuromotor strategies (i.e., information flow between frontal-motor regions) that were adopted by older adults to maintain motor performance. APPLICATION: The findings from this study offer insights into the capabilities and adaptation strategies of older men and women under fatiguing conditions. This knowledge can facilitate in the development of effective and targeted ergonomic strategies that accommodate for the varying physical capacities of diverse worker demographics.


Subject(s)
Muscle Fatigue , Muscle, Skeletal , Humans , Female , Male , Aged , Muscle, Skeletal/physiology , Muscle Fatigue/physiology , Hand Strength , Electromyography , Fatigue
13.
Sensors (Basel) ; 23(20)2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37896483

ABSTRACT

When assessing trainees' progresses during a driving training program, instructors can only rely on the evaluation of a trainee's explicit behavior and their performance, without having any insight about the training effects at a cognitive level. However, being able to drive does not imply knowing how to drive safely in a complex scenario such as the road traffic. Indeed, the latter point involves mental aspects, such as the ability to manage and allocate one's mental effort appropriately, which are difficult to assess objectively. In this scenario, this study investigates the validity of deploying an electroencephalographic neurometric of mental effort, obtained through a wearable electroencephalographic device, to improve the assessment of the trainee. The study engaged 22 young people, without or with limited driving experience. They were asked to drive along five different but similar urban routes, while their brain activity was recorded through electroencephalography. Moreover, driving performance, subjective and reaction times measures were collected for a multimodal analysis. In terms of subjective and performance measures, no driving improvement could be detected either through the driver's subjective measures or through their driving performance. On the other side, through the electroencephalographic neurometric of mental effort, it was possible to catch their improvement in terms of mental performance, with a decrease in experienced mental demand after three repetitions of the driving training tasks. These results were confirmed by the analysis of reaction times, that significantly improved from the third repetition as well. Therefore, being able to measure when a task is less mentally demanding, and so more automatic, allows to deduce the degree of users training, becoming capable of handling additional tasks and reacting to unexpected events.


Subject(s)
Automobile Driving , Wearable Electronic Devices , Humans , Adolescent , Reaction Time , Electroencephalography/methods , Accidents, Traffic
14.
Brain Behav ; 13(12): e3272, 2023 12.
Article in English | MEDLINE | ID: mdl-37828722

ABSTRACT

BACKGROUND: Car driving is more and more automated, to such an extent that driving without active steering control is becoming a reality. Although active driving requires the use of visual information to guide actions (i.e., steering the vehicle), passive driving only requires looking at the driving scene without any need to act (i.e., the human is passively driven). MATERIALS & METHODS: After a careful search of the scientific literature, 11 different studies, providing 17 contrasts, were used to run a comprehensive meta-analysis contrasting active driving with passive driving. RESULTS: Two brain regions were recruited more consistently for active driving compared to passive driving, the left precentral gyrus (BA3 and BA4) and the left postcentral gyrus (BA4 and BA3/40), whereas a set of brain regions was recruited more consistently in passive driving compared to active driving: the left middle frontal gyrus (BA6), the right anterior lobe and the left posterior lobe of the cerebellum, the right sub-lobar thalamus, the right anterior prefrontal cortex (BA10), the right inferior occipital gyrus (BA17/18/19), the right inferior temporal gyrus (BA37), and the left cuneus (BA17). DISCUSSION: From a theoretical perspective, these findings support the idea that the output requirement of the visual scanning process engaged for the same activity can trigger different cerebral pathways, associated with different cognitive processes. A dorsal stream dominance was found during active driving, whereas a ventral stream dominance was obtained during passive driving. From a practical perspective, and contrary to the dominant position in the Human Factors community, our findings support the idea that a transition from passive to active driving would remain challenging as passive and active driving engage distinct neural networks.


Subject(s)
Brain , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/metabolism , Neuroimaging , Cerebellum , Hand
15.
Appl Ergon ; 113: 104097, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37506618

ABSTRACT

This study captured neurophysiological, muscular, and perceptual adaptations to shoulder exoskeleton use during overhead work with competing physical-cognitive demands. Twenty-four males and females, randomly divided into control and exoskeleton groups, performed an overhead reaching and pointing task over three days without (single task) and with (dual task) a working memory task. Task performance, electromyography (EMG), neural activity, heart rate, and subjective responses were collected. While task completion time reduced for both groups at the same rate over days, EMG activity of shoulder muscles was lower for the exoskeleton group for both tasks, specifically for females during the dual task. Dual task reduced the physiological benefits of exoskeletons and neuromotor strategies to adapt to the dual task demands differed between the groups. Neuromuscular benefits of exoskeleton use were immediately realized irrespective of cognitive demand, however the perceptual, physiological, and neural adaptations with exoskeleton use were task- and sex-specific.


Subject(s)
Exoskeleton Device , Female , Humans , Male , Biomechanical Phenomena , Cognition , Electromyography , Muscle, Skeletal/physiology , Shoulder/physiology
16.
Sensors (Basel) ; 23(14)2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37514840

ABSTRACT

Humans' performance varies due to the mental resources that are available to successfully pursue a task. To monitor users' current cognitive resources in naturalistic scenarios, it is essential to not only measure demands induced by the task itself but also consider situational and environmental influences. We conducted a multimodal study with 18 participants (nine female, M = 25.9 with SD = 3.8 years). In this study, we recorded respiratory, ocular, cardiac, and brain activity using functional near-infrared spectroscopy (fNIRS) while participants performed an adapted version of the warship commander task with concurrent emotional speech distraction. We tested the feasibility of decoding the experienced mental effort with a multimodal machine learning architecture. The architecture comprised feature engineering, model optimisation, and model selection to combine multimodal measurements in a cross-subject classification. Our approach reduces possible overfitting and reliably distinguishes two different levels of mental effort. These findings contribute to the prediction of different states of mental effort and pave the way toward generalised state monitoring across individuals in realistic applications.


Subject(s)
Cognitive Reserve , Female , Humans , Feasibility Studies , Male , Young Adult , Adult
17.
Brain Sci ; 13(7)2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37508957

ABSTRACT

There is a gap in our understanding of how best to apply transcranial direct-current stimulation (tDCS) to enhance learning in complex, realistic, and multifocus tasks such as aviation. Our goal is to assess the effects of tDCS and feedback training on task performance, brain activity, and connectivity using functional magnetic resonance imaging (fMRI). Experienced glider pilots were recruited to perform a one-day, three-run flight-simulator task involving varying difficulty conditions and a secondary auditory task, mimicking real flight requirements. The stimulation group (versus sham) received 1.5 mA high-definition HD-tDCS to the right dorsolateral prefrontal cortex (DLPFC) for 30 min during the training. Whole-brain fMRI was collected before, during, and after stimulation. Active stimulation improved piloting performance both during and post-training, particularly in novice pilots. The fMRI revealed a number of tDCS-induced effects on brain activation, including an increase in the left cerebellum and bilateral basal ganglia for the most difficult conditions, an increase in DLPFC activation and connectivity to the cerebellum during stimulation, and an inhibition in the secondary task-related auditory cortex and Broca's area. Here, we show that stimulation increases activity and connectivity in flight-related brain areas, particularly in novices, and increases the brain's ability to focus on flying and ignore distractors. These findings can guide applied neurostimulation in real pilot training to enhance skill acquisition and can be applied widely in other complex perceptual-motor real-world tasks.

18.
Front Hum Neurosci ; 17: 1168108, 2023.
Article in English | MEDLINE | ID: mdl-37305364

ABSTRACT

Introduction: The processes involved in how the attention system selectively focuses on perceptual and motor aspects related to a specific task, while suppressing features of other tasks and/or objects in the environment, are of considerable interest for cognitive neuroscience. The goal of this experiment was to investigate neural processes involved in selective attention and performance under multi-task situations. Several studies have suggested that attention-related gamma-band activity facilitates processing in task-specific modalities, while alpha-band activity inhibits processing in non-task-related modalities. However, investigations into the phenomenon of inattentional deafness/blindness (inability to observe stimuli in non-dominant task when primary task is demanding) have yet to observe gamma-band activity. Methods: This EEG experiment utilizes an engaging whole-body perceptual motor task while carrying out a secondary auditory detection task to investigate neural correlates of inattentional deafness in natural immersive high workload conditions. Differences between hits and misses on the auditory detection task in the gamma (30-50 Hz) and alpha frequency (8-12 Hz) range were carried out at the cortical source level using LORETA. Results: Participant auditory task performance correlated with an increase in gamma-band activity for hits over misses pre- and post-stimulus in left auditory processing regions. Alpha-band activity was greater for misses relative to hits in right auditory processing regions pre- and post-stimulus onset. These results are consistent with the facilitatory/inhibitory role of gamma/alpha-band activity for neural processing. Additional gamma- and alpha-band activity was found in frontal and parietal brain regions which are thought to reflect various attentional monitoring, selection, and switching processes. Discussion: The results of this study help to elucidate the role of gamma and alpha frequency bands in frontal and modality-specific regions involved with selective attention in multi-task immersive situations.

19.
J Neural Eng ; 20(3)2023 05 11.
Article in English | MEDLINE | ID: mdl-37040738

ABSTRACT

Objective. The electroencephalogram (EEG) is gaining popularity as a physiological measure for neuroergonomics in human factor studies because it is objective, less prone to bias, and capable of assessing the dynamics of cognitive states. This study investigated the associations between memory workload and EEG during participants' typical office tasks on a single-monitor and dual-monitor arrangement. We expect a higher memory workload for the single-monitor arrangement.Approach. We designed an experiment that mimics the scenario of a subject performing some office work and examined whether the subjects experienced various levels of memory workload in two different office setups: (1) a single-monitor setup and (2) a dual-monitor setup. We used EEG band power, mutual information, and coherence as features to train machine learning models to classify high versus low memory workload states.Main results. The study results showed that these characteristics exhibited significant differences that were consistent across all participants. We also verified the robustness and consistency of these EEG signatures in a different data set collected during a Sternberg task in a prior study.Significance. The study found the EEG correlates of memory workload across individuals, demonstrating the effectiveness of using EEG analysis in conducting real-world neuroergonomic studies.


Subject(s)
Electroencephalography , Workload , Humans , Workload/psychology , Electroencephalography/methods , Memory , Machine Learning
20.
Int J Occup Saf Ergon ; 29(2): 855-862, 2023 Jun.
Article in English | MEDLINE | ID: mdl-35658817

ABSTRACT

The rational design of the alarm signal in the man-machine system is an important factor in determining the occurrence of safety accidents. Neuroergonomics provides a new perspective for the study of the cognitive process of alarm signals, which can reveal the mechanism of human perception of visual alarm signals from the cognitive level of the brain, thereby identifying the effectiveness of alarm signals. This study simulates the new energy vehicle cooling man-machine system, uses the automatic control interface of the test cooling water system as the stimulation material, and uses the event-related potential technology in cognitive neuroscience to conduct experimental verification. The experimental results showed that: three kinds of alarm signals (color , color+shape, color+orientation) all induce visual mismatch waves, and the effective response of human to the alarm signal is color+orientation, color+shape, color from small to large, which provides a reference for the design of alarm signal.


Subject(s)
Cognition , Man-Machine Systems , Humans
SELECTION OF CITATIONS
SEARCH DETAIL