Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Appl Physiol Nutr Metab ; 49(2): 157-166, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37816257

ABSTRACT

Maternal protein malnutrition during developmental periods might impair the redox state and the brain's excitatory/inhibitory neural network, increasing central sympathetic tone. Conversely, moderate physical exercise at an early age reduces the risk of chronic diseases. Thus, we hypothesized that a moderate training protocol could reduce the harmful effects of a low-protein maternal diet on the brainstem of young male offspring. We used a rat model of maternal protein restriction during the gestational and lactation period followed by an offspring's continuous treadmill exercise. Pregnant rats were divided into two groups according to the protein content in the diet: normoprotein (NP), receiving 17% of casein, and low protein (LP), receiving 8% of casein until the end of lactation. At 30 days of age, the male offspring were further subdivided into sedentary (NP-Sed and LP-Sed) or exercised (NP-Ex and LP-Ex) groups. Treadmill exercise was performed as follows: 4 weeks, 5 days/week, 60 min/day at 50% of maximal running capacity. The trained animals performed a treadmill exercise at 50% of the maximal running capacity, 60 min/day, 5 days/week, for 4 weeks. Our results indicate that a low-protein diet promotes deficits in the antioxidant system and a likely mitochondrial uncoupling. On the other hand, physical exercise restores the redox balance, which leads to decreased oxidative stress caused by the diet. In addition, it also promotes benefits to GABAergic inhibitory signaling. We conclude that regular moderate physical exercise performed in youthhood protects the brainstem against changes induced by maternal protein restriction.


Subject(s)
Brain Stem , Caseins , Pregnancy , Female , Rats , Animals , Male , Humans , Rats, Wistar , Brain Stem/metabolism , Antioxidants/metabolism , Oxidation-Reduction , Diet, Protein-Restricted/adverse effects , Maternal Nutritional Physiological Phenomena
2.
Adv Exp Med Biol ; 1427: 23-33, 2023.
Article in English | MEDLINE | ID: mdl-37322332

ABSTRACT

The main question of this chapter is as follows: What is the contribution of changes in the sympathetic-respiratory coupling to the hypertension observed in some experimental models of hypoxia? Although there is evidence supporting the concept that sympathetic-respiratory coupling is increased in different models of experimental hypoxia [chronic intermittent hypoxia (CIH) and sustained hypoxia (SH)], it was also observed that in some strains of rats and in mice, these experimental models of hypoxia do not affect the sympathetic-respiratory coupling and the baseline arterial pressure. The data from studies performed in rats (different strains, male and female, and in the natural sleep cycle) and mice submitted to chronic CIH or SH are critically discussed. The main message from these studies performed in freely moving rodents and in the in situ working heart-brainstem preparation is that experimental hypoxia changes the respiratory pattern, which correlates with increased sympathetic activity and may explain the hypertension observed in male and female rats previously submitted to CIH or SH.


Subject(s)
Hypertension , Rodentia , Rats , Male , Female , Mice , Animals , Rats, Wistar , Sympathetic Nervous System , Hypertension/etiology , Hypoxia/complications
3.
Auton Neurosci ; 247: 103094, 2023 07.
Article in English | MEDLINE | ID: mdl-37137186

ABSTRACT

OBJECTIVE: Post-acute sequelae of SARS-COV-2 (PASC) are emerging as a major health challenge. Orthostatic intolerance secondary to autonomic failure has been found in PASC patients. This study investigated the effect of COVID-19 after recovery on blood pressure (BP) during the orthostatic challenge. RESEARCH DESIGN AND METHODS: Thirty-one out of 45 patients hospitalized due to COVID-19-related pneumonia that developed PASC and did not have hypertension at discharge were studied. They underwent a head-up tilt test (HUTT) at 10.8 ± 1.9 months from discharge. All met the PASC clinical criteria, and an alternative diagnosis did not explain the symptoms. This population was compared with 32 historical asymptomatic healthy controls. RESULTS: Exaggerated orthostatic blood pressure response (EOPR)/orthostatic hypertension (OHT) was detected in 8 out of 23 (34.7 %) patients, representing a significantly increased prevalence (7.67-fold increase p = 0.009) compared to 2 out of 32 (6.4 %) asymptomatic healthy controls matched by age, who underwent HUTT and were not infected with SARS-CoV-2. CONCLUSIONS: This prospective evaluation in patients with PASC revealed abnormal blood pressure rise during the orthostatic challenge, suggesting of autonomic dysfunction in a third of the studied subjects. Our findings support the hypothesis that EOPR/OHT may be a phenotype of neurogenic hypertension. Hypertension in PASC patients may adversely affect the cardiovascular burden in the world.


Subject(s)
Autonomic Nervous System Diseases , COVID-19 , Hypertension , Humans , SARS-CoV-2 , COVID-19/complications , Post-Acute COVID-19 Syndrome , Blood Pressure , Hospitalization , Disease Progression
4.
Exp Physiol ; 108(3): 361-370, 2023 03.
Article in English | MEDLINE | ID: mdl-36715005

ABSTRACT

NEW FINDINGS: What is the central question of this study? Is the cardiovascular phenotype of high blood pressure observed in rats salt loaded with 2% NaCl in drinking solution a blood volume-dependent hypertension? What is the main finding and its importance? Animals exposed to 2% NaCl drinking solution develop hypertension, with dominance of sympathetic outflow and high [Na+ ] in the cerebrospinal fluid, but without changes in the blood volume. The phenotype of salt-dependent hypertension might be related to accumulation of [Na+ ] in the cerebrospinal fluid, which makes it an interesting animal model in which to study the neuronal pathways involved in control of the circulation in osmotic challenge conditions. ABSTRACT: Evidence suggests that hypertension induced by high salt intake is correlated with an autonomic imbalance that favours sympathetic hyperactivity and an increase in vascular resistance, indicating a neurogenic component to this pathology. Although there are several animal models in which to study salt-induced hypertension with prolonged exposure to a high-sodium diet, here we sought to investigate whether the increase in arterial blood pressure of rats subjected to a short exposure to high salt, with 2% NaCl drinking solution instead of water, relies on changes in the circulating blood volume. Male Wistar rats were divided randomly into three groups: euhydrated (EU, n = 10), salt loaded (SL, n = 13) and water deprived (WD, n = 6). The SL rats exhibited a significant increase in mean arterial blood pressure, with a large low-frequency component of systolic arterial blood pressure variability, when compared with the EU group. Circulating blood volume did not differ between SL and EU rats, but it was lower in WD rats. Compared with EU rats, the [Na+ ] in cerebrospinal fluid was higher in SL rats and similar in magnitude to the WD rats. Plasma [Na+ ] did not differ between SL and EU rats, but it was higher in WD rats. Collectively, our data suggest that the hypertension induced by a short exposure to high salt intake closely resembles a neurogenic mechanism, but not a blood volume-dependent mechanism, with cumulative [Na+ ] in the cerebrospinal fluid that could be associated with changes in the neurochemistry of autonomic nuclei, which are highly susceptible to osmotic stress related to high salt consumption.


Subject(s)
Hypertension , Sodium Chloride, Dietary , Rats , Male , Animals , Sodium Chloride, Dietary/adverse effects , Sodium Chloride/pharmacology , Rats, Wistar , Blood Pressure/physiology , Sodium , Blood Volume , Phenotype
5.
Brain Res ; 1748: 147107, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32905820

ABSTRACT

High salt intake is able to evoke neuroendocrine and autonomic responses that include vasopressin release and sympathoexcitation resulting in increasing in the arterial blood pressure (BP). The C1 neurons are a specific population of catecholaminergic neurons located in the RVLM region and they control BP under homeostatic imbalance. Thus, here we hypothesized that the ablation of C1 neurons mitigate the high blood pressure induced by high-salt intake. To test this hypothesis, we injected anti-DßH-SAP saporin at the RVLM and monitored the BP in unanesthetized animals exposed to high salt intake of 2% NaCl solution for 7 days. The injection of anti-DßH-SAP into the RVLM depleted 80% of tyrosine hydroxylase-positive neurons (TH+ neurons) in the C1, 38% in the A5, and no significant reduction in the A1 region, when compared to control group (saline as vehicle). High salt intake elicited a significant increase in BP in the control group, while in the anti-DßH-SAP group the depletion of TH+ neurons prevents the salt-induced hypertension. Moreover, the low frequency component of systolic BP and pulse interval were increased by high-salt intake in control animals but not in anti-DßH-SAP group, which indirectly suggests that the increase in the BP is mediated by increase in sympathetic activity. In conclusion, our data show that hypertension induced by high-salt intake is dependent on C1 neurons.


Subject(s)
Blood Pressure/physiology , Hypertension/physiopathology , Medulla Oblongata/physiopathology , Neurons/pathology , Sodium Chloride, Dietary , Animals , Male , Rats , Rats, Wistar , Sympathetic Nervous System/physiopathology
6.
Curr Hypertens Rep ; 20(6): 53, 2018 05 22.
Article in English | MEDLINE | ID: mdl-29789952

ABSTRACT

PURPOSE OF REVIEW: An abnormal heightened carotid body (CB) chemoreflex, which produces autonomic dysfunction and sympathetic overactivation, is the common hallmark of obstructive sleep apnea (OSA), resistant hypertension, systolic heart failure (HF), and cardiometabolic diseases. Accordingly, it has been proposed that the elimination of the CB chemosensory input to the brainstem may reduce the autonomic and cardiorespiratory alterations in sympathetic-associated diseases in humans. RECENT FINDINGS: A growing body of evidence obtained in preclinical animal models support that an enhanced CB discharge produces sympathetic hyperactivity, baroreflex sensitivity and heart rate variability impairment, breathing instability, hypertension, and insulin resistance. The elimination CB chemosensory input reduces the sympathetic hyperactivity, the elevated arterial blood pressure in OSA and hypertensive models, abolishes breathing instability and improves animal survival in HF models, and restores insulin tolerance in metabolic models. These results highlight the role played by the enhanced CB drive in the progression of sympathetic-related diseases and support the proposal that the surgical ablation of the CB is useful to restore the autonomic balance and normal cardiorespiratory function in humans. Accordingly, the CB ablation has been used in pilot human studies as a therapeutic treatment for resistant hypertension and HF-induced sympathetic hyperactivity. In this review, I will discuss the supporting evidence for a crucial contribution of the CB in the central autonomic dysfunction and the pros and cons of the CB ablation as a therapy to revert autonomic overactivation. The CB ablation could be a useful method to reverse the enhanced chemoreflex in HF and severe hypertension, but caution is required before extensive use of bilateral CB ablation, which abolished ventilatory responses to hypoxia and may impair baroreceptor function.


Subject(s)
Ablation Techniques/methods , Autonomic Nervous System Diseases/surgery , Carotid Body/surgery , Animals , Autonomic Nervous System/physiopathology , Autonomic Nervous System Diseases/physiopathology , Carotid Body/physiopathology , Humans , Hypertension/physiopathology , Hypertension/therapy , Hypoxia/physiopathology , Models, Animal , Pilot Projects , Reflex/physiology
7.
Exp Physiol ; 103(4): 473-482, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29359403

ABSTRACT

NEW FINDINGS: What is the central question of this study? Chronic intermittent hypoxia (CIH) and one-kidney, one-clip experimental models lead to sympathetic overactivity and hypertension. The present study explored the impact of previous exposure to CIH on one-kidney, one-clip renal hypertension; we hypothesized that CIH potentiates its development. What is the main finding and its importance? The development of one-kidney, one-clip renal hypertension was attenuated by previous exposure to CIH, and this protective effect was eliminated by carotid body denervation. These findings indicate that inputs from peripheral chemoreceptors in CIH-preconditioned rats play a role in preventing the increase in sympathetic activity and arterial pressure induced by one-kidney, one-clip renal hypertension. ABSTRACT: Chronic intermittent hypoxia (CIH) and one-kidney, one-clip (1K, 1C) experimental models lead to sympathetic overactivity and hypertension. We hypothesized that previous exposure to CIH potentiates the development of 1K, 1C renal hypertension. Male rats were divided into the following four groups: Control-1K, 1C, maintained under normoxia followed by 1K, 1C surgery (n = 19); Control-Sham, maintained under normoxia, followed by sham surgery (n = 19); CIH-1K, 1C, exposed to CIH (10 days) and 1K, 1C surgery (n = 19); and CIH-Sham, exposed to CIH and sham surgery (n = 18). Animals were catheterized 8 days after 1K, 1C or Sham surgeries and cardiovascular and respiratory parameters recorded on the following day. Baseline mean arterial pressure was higher in Control-1K, 1C than in Control-Sham rats (P < 0.05) and was higher in CIH-1K, 1C than in CIH-Sham rats (P < 0.05). However, the increase in mean arterial pressure in CIH-1K, 1C animals was significantly blunted in comparison to Con-1K, 1C rats (P < 0.05), indicating that previous exposure to CIH attenuates the development of renal hypertension. Systemic administration of hexamethonium, a ganglionic blocker, promoted a larger hypotensive response in Con-1K, 1C compared with CIH-1K, 1C rats (P < 0.05), suggesting that sympathetic activity was attenuated in rats previously exposed to the CIH protocol. In addition, removal of the carotid bodies before 1K, 1C renal hypertension eliminated the protective effect of CIH preconditioning on the development of the 1K, 1C hypertension. We conclude that previous exposure to CIH attenuates the development of renal hypertension via a carotid body-dependent mechanism.


Subject(s)
Hypertension, Renal/physiopathology , Hypoxia/physiopathology , Kidney/physiopathology , Animals , Arterial Pressure/drug effects , Arterial Pressure/physiology , Cardiovascular System/drug effects , Cardiovascular System/physiopathology , Carotid Body/drug effects , Carotid Body/physiopathology , Ganglionic Blockers/pharmacology , Hexamethonium/pharmacology , Hypertension, Renal/chemically induced , Kidney/drug effects , Male , Rats , Rats, Wistar , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/physiopathology
8.
Curr Hypertens Rep ; 20(1): 2, 2018 01 22.
Article in English | MEDLINE | ID: mdl-29356918

ABSTRACT

PURPOSE OF REVIEW: Surgical removal of the baroreceptor afferents [sino-aortic denervation (SAD)] leads to a lack of inhibitory feedback to sympathetic outflow, which in turn is expected to result in a large increase in mean arterial pressure (MAP). However, few days after surgery, the sympathetic nerve activity (SNA) and MAP of SAD rats return to a range similar to that observed in control rats. In this review, we present experimental evidence suggesting that breathing contributes to control of SNA and MAP following SAD.The purpose of this review was to discuss studies exploring SNA and MAP regulation in SAD rats, highlighting the possible role of breathing in the neural mechanisms of this modulation of SNA. RECENT FINDINGS: Recent studies show that baroreceptor afferent stimulation or removal (SAD) results in changes in the respiratory pattern. Changes in the neural respiratory network and in the respiratory pattern must be considered among mechanisms involved in the modulation of the MAP after SAD.


Subject(s)
Aorta/innervation , Arterial Pressure/physiology , Blood Pressure/physiology , Carotid Sinus/innervation , Pressoreceptors/physiology , Respiration , Animals , Aorta/physiology , Carotid Sinus/physiology , Denervation/methods , Hypertension/physiopathology , Male , Nerve Net/physiology , Rats , Sympathetic Nervous System/physiology
9.
Curr Hypertens Rep ; 19(5): 38, 2017 May.
Article in English | MEDLINE | ID: mdl-28451849

ABSTRACT

Obstructive sleep apnea (OSA), a common breathing disorder, is recognized as an independent risk factor for systemic hypertension. Among the alterations induced by OSA, the chronic intermittent hypoxia (CIH) is considered the main factor for the hypertension. Exposure of rodents to CIH is the gold-standard method to study the mechanisms involved in the cardiovascular alterations induced by OSA. Although it is well known that CIH produces hypertension, the underlying mechanisms are not totally elucidated. It is likely that the CIH-induced systemic oxidative stress and inflammation may elicit endothelial dysfunction and increase the arterial blood pressure. In addition, OSA patients and animals exposed to CIH show sympathetic hyperactivity and potentiated cardiorespiratory responses to acute hypoxia, suggesting that CIH enhances the peripheral hypoxic chemoreflex. Recent experimental evidences support the proposal that CIH selectively enhances carotid body (CB) chemosensory reactivity to oxygen, which in turn increases sympathetic outflow leading to neurogenic hypertension. In this review, we will discuss the supporting evidence for a critical role of the CB in the generation and maintenance of the hypertension induced by CIH, also, the contribution of oxidative stress to enhance CB chemosensory drive and the activation of sympathetic-related centers in the brain.


Subject(s)
Carotid Body/physiopathology , Hypertension/physiopathology , Hypoxia/physiopathology , Sleep Apnea, Obstructive/physiopathology , Animals , Humans , Hypertension/etiology , Hypoxia/etiology , Inflammation , Oxidative Stress , Sleep Apnea, Obstructive/complications
11.
Front Physiol ; 7: 424, 2016.
Article in English | MEDLINE | ID: mdl-27713705

ABSTRACT

Despite several studies describing the electrophysiological properties of RVLM presympathetic neurons, there is no consensus in the literature about their pacemaking property, mainly due to different experimental approaches used for recordings of neuronal intrinsic properties. In this review we are presenting a historical retrospective about the pioneering studies and their controversies on the intrinsic electrophysiological property of auto-depolarization of these cells in conjunction with recent studies from our laboratory documenting that RVLM presympathetic neurons present pacemaking capacity. We also discuss whether increased sympathetic activity observed in animal models of neurogenic hypertension (CIH and SHR) are dependent on changes in the intrinsic electrophysiological properties of these cells or due to changes in modulatory inputs from neurons of the respiratory network. We also highlight the key role of INaP as the major current contributing to the pacemaking property of RVLM presympathetic neurons.

SELECTION OF CITATIONS
SEARCH DETAIL