Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 831
Filter
1.
Trends Neurosci ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38972795

ABSTRACT

Caveolins are a family of transmembrane proteins located in caveolae, small lipid raft invaginations of the plasma membrane. The roles of caveolin-enriched lipid rafts are diverse, and include mechano-protection, lipid homeostasis, metabolism, transport, and cell signaling. Caveolin-1 (Cav-1) and other caveolins were described in endothelial cells and later in other cell types of the central nervous system (CNS), including neurons, astrocytes, oligodendrocytes, microglia, and pericytes. This pancellular presence of caveolins demands a better understanding of their functional roles in each cell type. In this review we describe the various functions of Cav-1 in the cells of normal and pathological brains. Several emerging preclinical findings suggest that Cav-1 could represent a potential therapeutic target in brain disorders.

2.
Neuroscience ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964373

ABSTRACT

The neurovascular unit (NVU) is assembled by endothelial cells (ECs) and pericytes, and encased by a basement membrane (BM) surveilled by microglia and surrounded by perivascular astrocytes (PVA), which in turn are in contact with synapses. Cerebral ischemia induces the rapid release of the serine proteinase tissue-type plasminogen activator (tPA) from endothelial cells, perivascular astrocytes, microglia and neurons. Owning to its ability to catalyze the conversion of plasminogen into plasmin, in the intravascular space tPA functions as a fibrinolytic enzyme. In contrast, the release of astrocytic, microglial and neuronal tPA have a plethora of effects that not always require the generation of plasmin. In the ischemic brain tPA increases the permeability of the NVU, induces microglial activation, participates in the recycling of glutamate, and has various effects on neuronal survival. These effects are mediated by different receptors, notably subunits of the N-methyl-D-aspartate receptor (NMDAR) and the low-density lipoprotein receptor-related protein-1 (LRP-1). Here we review data on the role of tPA in the NVU under non-ischemic and ischemic conditions, and analyze how this knowledge may lead to the development of potential strategies for the treatment of acute ischemic stroke patients.

3.
Geroscience ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888875

ABSTRACT

Growing evidence indicates an important role of neurovascular unit (NVU) dysfunction in the pathophysiology of cerebral small vessel disease (cSVD). Individually measurable functions of the NVU have been correlated with cognitive function, but a combined analysis is lacking. We aimed to perform a unified analysis of NVU function and its relation with cognitive performance. The relationship between NVU function in the white matter and cognitive performance (both latent variables composed of multiple measurable variables) was investigated in 73 patients with cSVD (mean age 70 ± 10 years, 41% women) using canonical correlation analysis. MRI-based NVU function measures included (1) the intravoxel incoherent motion derived perfusion volume fraction (f) and microvascular diffusivity (D*), reflecting cerebral microvascular flow; (2) the IVIM derived intermediate volume fraction (fint), indicative of the perivascular clearance system; and (3) the dynamic contrast-enhanced MRI derived blood-brain barrier (BBB) leakage rate (Ki) and leakage volume fraction (VL), reflecting BBB integrity. Cognitive performance was composed of 13 cognitive test scores. Canonical correlation analysis revealed a strong correlation between the latent variables NVU function and cognitive performance (r 0.73; p = 0.02). For the NVU, the dominating variables were D*, fint, and Ki. Cognitive performance was driven by multiple cognitive tests comprising different cognitive domains. The functionality of the NVU is correlated with cognitive performance in cSVD. Instead of focusing on individual pathophysiological mechanisms, future studies should target NVU dysfunction as a whole to acquire a coherent understanding of the complex disease mechanisms that occur in the NVU in cSVD.Trial registration: NTR3786 (Dutch Trial Register).

4.
Cureus ; 16(5): e60682, 2024 May.
Article in English | MEDLINE | ID: mdl-38899254

ABSTRACT

Introduction The neurovascular unit (NVU), comprising vascular and glial cells along with neurons, is vital for maintaining the blood-brain barrier (BBB) and cerebral homeostasis. Dysfunction of the NVU is implicated in key neurodegenerative disorders such as Alzheimer's disease (AD). Monomeric C-reactive protein (mCRP), the dissociated form of native, pentameric C-reactive protein (pCRP), is associated with enhanced pro-inflammatory responses in the vascular system, leading to increased permeability and potential NVU disruption. Methods This study utilized ApoE-/- mice receiving a high-fat diet which were injected intraperitoneally with either mCRP or mCRP together with a small molecule inhibitor (C10M) and investigated the deposition of mCRP and CD105 expression in the brain parenchyma and its localization within the microvasculature. Results Histological analysis revealed significant mCRP deposition in brain microvessels and neurons, indicating potential disruption of the BBB and neuronal damage. Moreover, co-administration of C10M effectively blocked mCRP accumulation in the brain parenchyma, suggesting its potential as a therapeutic agent for effectively inhibiting inflammation-associated degenerative changes. Immunohistochemical staining demonstrated co-localization of mCRP with CD105, indicating potential angiogenic activation and increased susceptibility to inflammatory insult. Discussion These findings provide evidence supporting the potential role of mCRP as a contributor to neuroinflammation in individuals with chronic systemic inflammation. Conclusion Further studies in human subjects should help validate the efficacy of C10M in preventing or halting neurodegeneration in conditions such as AD and stroke-associated dementia.

5.
Neuroscience ; 552: 1-13, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38871021

ABSTRACT

Alzheimer's disease is a fatal chronic neurodegenerative condition marked by a gradual decline in cognitive abilities and impaired vascular function within the central nervous system. This affliction initiates its insidious progression with the accumulation of two aberrant protein entities including Aß plaques and neurofibrillary tangles. These chronic elements target distinct brain regions, steadily erasing the functionality of the hippocampus and triggering the erosion of memory and neuronal integrity. Several assumptions are anticipated for AD as genetic alterations, the occurrence of Aß plaques, altered processing of amyloid precursor protein, mitochondrial damage, and discrepancy of neurotropic factors. In addition to Aß oligomers, the deposition of tau hyper-phosphorylates also plays an indispensable part in AD etiology. The brain comprises a complex network of capillaries that is crucial for maintaining proper function. Tau is expressed in cerebral blood vessels, where it helps to regulate blood flow and sustain the blood-brain barrier's integrity. In AD, tau pathology can disrupt cerebral blood supply and deteriorate the BBB, leading to neuronal neurodegeneration. Neuroinflammation, deficits in the microvasculature and endothelial functions, and Aß deposition are characteristically detected in the initial phases of AD. These variations trigger neuronal malfunction and cognitive impairment. Intracellular tau accumulation in microglia and astrocytes triggers deleterious effects on the integrity of endothelium and cerebral blood supply resulting in further advancement of the ailment and cerebral instability. In this review, we will discuss the impact of tau on neurovascular impairment, mitochondrial dysfunction, oxidative stress, and the role of hyperphosphorylated tau in neuron excitotoxicity and inflammation.

6.
Cell Biosci ; 14(1): 85, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937783

ABSTRACT

Microvascular destabilization is the primary cause of the inner blood-retinal barrier (iBRB) breakdown and increased vascular leakage in diabetic retinopathy (DR). Microvascular destabilization results from the combinational effects of increased levels of growth factors and cytokines, involvement of inflammation, and the changed cell-to-cell interactions, especially the loss of endothelial cells and pericytes, due to hyperglycemia and hypoxia. As the manifestation of microvascular destabilization, the fluid transports via paracellular and transcellular routes increase due to the disruption of endothelial intercellular junctional complexes and/or the altered caveolar transcellular transport across the retinal vascular endothelium. With diabetes progression, the functional and the structural changes of the iBRB components, including the cellular and noncellular components, further facilitate and aggravate microvascular destabilization, resulting in macular edema, the neuroretinal damage and the dysfunction of retinal inner neurovascular unit (iNVU). Although there have been considerable recent advances towards a better understanding of the complex cellular and molecular network underlying the microvascular destabilization, some still remain to be fully elucidated. Recent data indicate that targeting the intricate signaling pathways may allow to against the microvascular destabilization. Therefore, efforts have been made to better clarify the cellular and molecular mechanisms that are involved in the microvascular destabilization in DR. In this review, we discuss: (1) the brief introduction of DR and microvascular destabilization; (2) the cellular and molecular components of iBRB and iNVU, and the breakdown of iBRB; (3) the matrix and cell-to-cell contacts to maintain microvascular stabilization, including the endothelial glycocalyx, basement membrane, and various cell-cell interactions; (4) the molecular mechanisms mediated cell-cell contacts and vascular cell death; (5) the altered cytokines and signaling pathways as well as the intricate network of the cytokines involved in microvascular destabilization. This comprehensive review aimed to provide the insights for microvascular destabilization by targeting the key molecules or specific iBRB cells, thus restoring the function and structure of iBRB and iNVU, to treat DR.

7.
Brain Commun ; 6(3): fcae166, 2024.
Article in English | MEDLINE | ID: mdl-38938620

ABSTRACT

Huntington's disease is a neurodegenerative disorder in which neuronal death leads to chorea and cognitive decline. Individuals with ≥40 cytosine-adenine-guanine repeats on the interesting transcript 15 gene develop Huntington's disease due to a mutated huntingtin protein. While the associated structural and molecular changes are well characterized, the alterations in neurovascular function that lead to the symptoms are not yet fully understood. Recently, the neurovascular unit has gained attention as a key player in neurodegenerative diseases. The mutant huntingtin protein is known to be present in the major parts of the neurovascular unit in individuals with Huntington's disease. However, a non-invasive assessment of neurovascular unit function in Huntington's disease has not yet been performed. Here, we investigate neurovascular interactions in presymptomatic (N = 13) and symptomatic (N = 15) Huntington's disease participants compared to healthy controls (N = 36). To assess the dynamics of oxygen transport to the brain, functional near-infrared spectroscopy, ECG and respiration effort were recorded. Simultaneously, neuronal activity was assessed using EEG. The resultant time series were analysed using methods for discerning time-resolved multiscale dynamics, such as wavelet transform power and wavelet phase coherence. Neurovascular phase coherence in the interval around 0.1 Hz is significantly reduced in both Huntington's disease groups. The presymptomatic Huntington's disease group has a lower power of oxygenation oscillations compared to controls. The spatial coherence of the oxygenation oscillations is lower in the symptomatic Huntington's disease group compared to the controls. The EEG phase coherence, especially in the α band, is reduced in both Huntington's disease groups and, to a significantly greater extent, in the symptomatic group. Our results show a reduced efficiency of the neurovascular unit in Huntington's disease both in the presymptomatic and symptomatic stages of the disease. The vasculature is already significantly impaired in the presymptomatic stage of the disease, resulting in reduced cerebral blood flow control. The results indicate vascular remodelling, which is most likely a compensatory mechanism. In contrast, the declines in α and γ coherence indicate a gradual deterioration of neuronal activity. The results raise the question of whether functional changes in the vasculature precede the functional changes in neuronal activity, which requires further investigation. The observation of altered dynamics paves the way for a simple method to monitor the progression of Huntington's disease non-invasively and evaluate the efficacy of treatments.

8.
Article in English | MEDLINE | ID: mdl-38739319

ABSTRACT

Brain drug delivery is severely hindered by the presence of the blood-brain barrier (BBB). Its functionality relies on the interactions of the brain endothelial cells with additional cellular constituents, including pericytes, astrocytes, neurons, or microglia. To boost brain drug delivery, nanomedicines have been designed to exploit distinct delivery strategies, including magnetically driven nanocarriers as a form of external physical targeting to the BBB. Herein, a lipid-based magnetic nanocarrier prepared by a low-energy method is first described. Magnetic nanocapsules with a hydrodynamic diameter of 256.7 ± 8.5 nm (polydispersity index: 0.089 ± 0.034) and a ξ-potential of -30.4 ± 0.3 mV were obtained. Transmission electron microscopy-energy dispersive X-ray spectroscopy analysis revealed efficient encapsulation of iron oxide nanoparticles within the oily core of the nanocapsules. Both thermogravimetric analysis and phenanthroline-based colorimetric assay showed that the iron oxide percentage in the final formulation was 12 wt.%, in agreement with vibrating sample magnetometry analysis, as the specific saturation magnetization of the magnetic nanocapsules was 12% that of the bare iron oxide nanoparticles. Magnetic nanocapsules were non-toxic in the range of 50-300 µg/mL over 72 h against both the human cerebral endothelial hCMEC/D3 and Human Brain Vascular Pericytes cell lines. Interestingly, higher uptake of magnetic nanocapsules in both cell types was evidenced in the presence of an external magnetic field than in the absence of it after 24 h. This increase in nanocapsules uptake was also evidenced in pericytes after only 3 h. Altogether, these results highlight the potential for magnetic targeting to the BBB of our formulation.

9.
Pain Ther ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743247

ABSTRACT

Cortical spreading depression (CSD) is a slow wave of cortical depolarization closely associated with migraines with an aura. Previously, it was thought that CSD depolarization was mainly driven by neurons, with characteristic changes in neuronal swelling and increased extracellular potassium (K+) and glutamate. However, the role of astrocytes, a member of the neurovascular unit, in migraine with CSD has recently received increasing attention. In the early stages of CSD, astrocytes provide neurons with energy support and clear K+ and glutamate from synaptic gaps. However, in the late stages of CSD, astrocytes release large amounts of lactic acid to exacerbate hypoxia when the energy demand exceeds the astrocytes' compensatory capacity. Astrocyte endfoot swelling is a characteristic of CSD, and neurons are not similarly altered. It is primarily due to K+ influx and abnormally active calcium (Ca2+) signaling. Aquaporin 4 (AQP-4) only mediates K+ influx and has little role as an aquaporin. Astrocytes endfoot swelling causes perivascular space closure, slowing the glymphatic system flow and exacerbating neuroinflammation, leading to persistent CSD. Astrocytes are double-edged swords in migraine with CSD and may be potential targets for CSD interventions.

10.
J Neuroinflammation ; 21(1): 142, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807204

ABSTRACT

BACKGROUND: Intrauterine inflammation is considered a major cause of brain injury in preterm infants, leading to long-term neurodevelopmental deficits. A potential contributor to this brain injury is dysregulation of neurovascular coupling. We have shown that intrauterine inflammation induced by intra-amniotic lipopolysaccharide (LPS) in preterm lambs, and postnatal dopamine administration, disrupts neurovascular coupling and the functional cerebral haemodynamic responses, potentially leading to impaired brain development. In this study, we aimed to characterise the structural changes of the neurovascular unit following intrauterine LPS exposure and postnatal dopamine administration in the brain of preterm lambs using cellular and molecular analyses. METHODS: At 119-120 days of gestation (term = 147 days), LPS was administered into the amniotic sac in pregnant ewes. At 126-7 days of gestation, the LPS-exposed lambs were delivered, ventilated and given either a continuous intravenous infusion of dopamine at 10 µg/kg/min or isovolumetric vehicle solution for 90 min (LPS, n = 6; LPSDA, n = 6). Control preterm lambs not exposed to LPS were also administered vehicle or dopamine (CTL, n = 9; CTLDA, n = 7). Post-mortem brain tissue was collected 3-4 h after birth for immunohistochemistry and RT-qPCR analysis of components of the neurovascular unit. RESULTS: LPS exposure increased vascular leakage in the presence of increased vascular density and remodelling with increased astrocyte "end feet" vessel coverage, together with downregulated mRNA levels of the tight junction proteins Claudin-1 and Occludin. Dopamine administration decreased vessel density and size, decreased endothelial glucose transporter, reduced neuronal dendritic coverage, increased cell proliferation within vessel walls, and increased pericyte vascular coverage particularly within the cortical and deep grey matter. Dopamine also downregulated VEGFA and Occludin tight junction mRNA, and upregulated dopamine receptor DRD1 and oxidative protein (NOX1, SOD3) mRNA levels. Dopamine administration following LPS exposure did not exacerbate any effects induced by LPS. CONCLUSION: LPS exposure and dopamine administration independently alters the neurovascular unit in the preterm brain. Alterations to the neurovascular unit may predispose the developing brain to further injury.


Subject(s)
Animals, Newborn , Dopamine , Lipopolysaccharides , Animals , Dopamine/metabolism , Sheep , Female , Lipopolysaccharides/toxicity , Pregnancy , Brain/drug effects , Brain/metabolism , Brain/pathology , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/pathology , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Premature Birth/chemically induced , Premature Birth/pathology
11.
Front Aging Neurosci ; 16: 1412006, 2024.
Article in English | MEDLINE | ID: mdl-38756535

ABSTRACT

The targeting of amyloid-beta (Aß) plaques therapeutically as one of the primary causes of Alzheimer's disease (AD) dementia has been an ongoing effort spanning decades. While some antibodies are extremely promising and have been moved out of clinical trials and into the clinic, most of these treatments show similar adverse effects in the form of cerebrovascular damage known as amyloid-related imaging abnormalities (ARIA). The two categories of ARIA are of major concern for patients, families, and prescribing physicians, with ARIA-E presenting as cerebral edema, and ARIA-H as cerebral hemorrhages (micro- and macro-). From preclinical and clinical trials, it has been observed that the greatest genetic risk factor for AD, APOEε4, is also a major risk factor for anti-Aß immunotherapy-induced ARIA. APOEε4 carriers represent a large population of AD patients, and, therefore, limits the broad adoption of these therapies across the AD population. In this review we detail three hypothesized mechanisms by which APOEε4 influences ARIA risk: (1) reduced cerebrovascular integrity, (2) increased neuroinflammation and immune dysregulation, and (3) elevated levels of CAA. The effects of APOEε4 on ARIA risk is clear, however, the underlying mechanisms require more research.

12.
Viruses ; 16(5)2024 05 15.
Article in English | MEDLINE | ID: mdl-38793666

ABSTRACT

SARS-CoV-2 primarily infects the lungs via the ACE2 receptor but also other organs including the kidneys, the gastrointestinal tract, the heart, and the skin. SARS-CoV-2 also infects the brain, but the hematogenous route of viral entry to the brain is still not fully characterized. Understanding how SARS-CoV-2 traverses the blood-brain barrier (BBB) as well as how it affects the molecular functions of the BBB are unclear. In this study, we investigated the roles of the receptors ACE2 and DPP4 in the SARS-CoV-2 infection of the discrete cellular components of a transwell BBB model comprising HUVECs, astrocytes, and pericytes. Our results demonstrate that direct infection on the BBB model does not modulate paracellular permeability. Also, our results show that SARS-CoV-2 utilizes clathrin and caveolin-mediated endocytosis to traverse the BBB, resulting in the direct infection of the brain side of the BBB model with a minimal endothelial infection. In conclusion, the BBB is susceptible to SARS-CoV-2 infection in multiple ways, including the direct infection of endothelium, astrocytes, and pericytes involving ACE2 and/or DPP4 and the blood-to-brain transcytosis, which is an event that does not require the presence of host receptors.


Subject(s)
Angiotensin-Converting Enzyme 2 , Astrocytes , Blood-Brain Barrier , COVID-19 , Dipeptidyl Peptidase 4 , Pericytes , SARS-CoV-2 , Transcytosis , Virus Internalization , Blood-Brain Barrier/virology , Blood-Brain Barrier/metabolism , Humans , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/metabolism , Pericytes/virology , Pericytes/metabolism , COVID-19/virology , COVID-19/metabolism , Astrocytes/virology , Astrocytes/metabolism , Dipeptidyl Peptidase 4/metabolism , Brain/virology , Brain/metabolism , Endocytosis , Human Umbilical Vein Endothelial Cells/virology , Permeability
13.
J Physiol Sci ; 74(Suppl 1): 31, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816814

ABSTRACT

The joint workshop between U.S. and Japanese researchers, supported by The U.S.-Japan Brain Research Cooperative Program, convened in January 2023 at Keio University Mita campus in Tokyo, Japan. The workshop had a threefold objective. Firstly, it aimed to facilitate robust exchanges between U.S. and Japanese researchers engaged in Neurovascular Unit (NVU) research, enhancing the global network of scholars in the field. Secondly, it aimed to encourage the initiation of collaborative research projects, fostering interdisciplinary efforts and synergistic advancements in understanding the brain vascular physiology and central nervous system. Lastly, the workshop emphasized the nurturing of young researchers, recognizing their pivotal role in shaping the future of NVU research. Throughout the workshop, participants discussed fundamental aspects of the NVU, exploring its complex connections and vital functions. By sharing their expertise and insights, the workshop attendees sought to uncover novel approaches to mitigate the burden of neurological diseases for individuals worldwide. This report provides a summary of the presentations and discussions held during the workshop, showcasing the collective efforts and progress made by the participants.


Subject(s)
Brain , Humans , Japan , United States , Brain/physiology , Biomedical Research
14.
Cells ; 13(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38607034

ABSTRACT

The aim of this article is to describe sustained myopic eye growth's effect on astrocyte cellular distribution and its association with inner retinal layer thicknesses. Astrocyte density and distribution, retinal nerve fiber layer (RNFL), ganglion cell layer, and inner plexiform layer (IPL) thicknesses were assessed using immunochemistry and spectral-domain optical coherence tomography on seventeen common marmoset retinas (Callithrix jacchus): six induced with myopia from 2 to 6 months of age (6-month-old myopes), three induced with myopia from 2 to 12 months of age (12-month-old myopes), five age-matched 6-month-old controls, and three age-matched 12-month-old controls. Untreated marmoset eyes grew normally, and both RNFL and IPL thicknesses did not change with age, with astrocyte numbers correlating to RNFL and IPL thicknesses in both control age groups. Myopic marmosets did not follow this trend and, instead, exhibited decreased astrocyte density, increased GFAP+ spatial coverage, and thinner RNFL and IPL, all of which worsened over time. Myopic changes in astrocyte density, GFAP+ spatial coverage and inner retinal layer thicknesses suggest astrocyte template reorganization during myopia development and progression which increased over time. Whether or not these changes are constructive or destructive to the retina still remains to be assessed.


Subject(s)
Myopia , Retinal Ganglion Cells , Animals , Astrocytes , Nerve Fibers , Retina , Tomography, Optical Coherence/methods , Callithrix
15.
Biomedicines ; 12(4)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38672112

ABSTRACT

BACKGROUND: There is growing interest in finding methods to enhance cognitive function and comprehend the neurophysiological mechanisms that underlie these improvements. It is assumed that non-pharmacological interventions have better results in cognitive recovery. The aim of this study was to assess the effect of multi-task cognitive training (MTT) on electroencephalographic (EEG) changes and markers of the neurovascular unit in patients undergoing coronary artery bypass grafting (CABG). METHODS: This prospective cohort study involved 62 CABG patients aged 45-75 years, 30 of whom underwent a 5-7-day MTT course. The groups of patients were comparable with respect to baseline clinical and anamnestic characteristics. An EEG study was performed before surgery and 11-12 days after CABG. Markers of the neurovascular unit (S100ß, NSE, and BDNF) were examined at three time points: before surgery, within the first 24 h after surgery, and 11-12 days after CABG. RESULTS: Patients without training demonstrated higher relative theta power changes compared to the MTT patients. The course of MTT was associated with low plasma S100ß concentration but high BDNF levels at the end of the training course. CONCLUSIONS: The theta activity changes and the markers of the neurovascular unit (S100ß, BDNF) indicated that the severity of brain damage in cardiac surgery patients after a short course of MTT was slightly reduced. Electrical brain activity indicators and vascular markers can be informative for monitoring the process of cognitive rehabilitation in cardiac surgery patients.

16.
Front Biosci (Landmark Ed) ; 29(4): 136, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38682184

ABSTRACT

Alzheimer's disease (AD) is an age-related progressive neurodegenerative disorder characterized by aberrant amyloid precursor protein (APP) cleavage, pathological aggregations of beta-amyloid (Aß) that make up Aß plaques and hyperphosphorylation of Tau that makes up neurofibrillary tangles (NFTs). Although progress has been made in research on AD, the fundamental causes of this disease have not been fully elucidated. Recent studies have shown that vascular dysfunction especially the loss of pericytes plays a significant role in the onset of AD. Pericytes play a variety of important roles in the nervous system including the regulation of the cerebral blood flow (CBF), the formation and maintenance of the blood-brain barrier (BBB), angiogenesis, and the clearance of toxic substances from the brain. Pericytes participate in the transport of Aß through various receptors, and Aß acts on pericytes to cause them to constrict, detach, and die. The loss of pericytes elevates the levels of Aß1-40 and Aß1-42 by disrupting the integrity of the BBB and reducing the clearance of soluble Aß from the brain interstitial fluid. The aggravated deposition of Aß further exacerbates pericyte dysfunction, forming a vicious cycle. The combined influence of these factors eventually results in the loss of neurons and cognitive decline. Further exploration of the interactions between pericytes and Aß is beneficial for understanding AD and could lead to the identification of new therapeutic targets for the prevention and treatment of AD. In this review, we explore the characterization of pericytes, interactions between pericytes and other cells in the neurovascular unit (NVU), and the physiological functions of pericytes and dysfunctions in AD. This review discusses the interactions between pericytes and Aß, as well as current and further strategies for preventing or treating AD targeting pericytes.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Blood-Brain Barrier , Pericytes , Pericytes/metabolism , Alzheimer Disease/metabolism , Humans , Amyloid beta-Peptides/metabolism , Blood-Brain Barrier/metabolism , Animals , Brain/metabolism
17.
Neurosci Bull ; 40(5): 621-634, 2024 May.
Article in English | MEDLINE | ID: mdl-38564049

ABSTRACT

Epilepsy is a multifaceted neurological syndrome characterized by recurrent, spontaneous, and synchronous seizures. The pathogenesis of epilepsy, known as epileptogenesis, involves intricate changes in neurons, neuroglia, and endothelium, leading to structural and functional disorders within neurovascular units and culminating in the development of spontaneous epilepsy. Although current research on epilepsy treatments primarily centers around anti-seizure drugs, it is imperative to seek effective interventions capable of disrupting epileptogenesis. To this end, a comprehensive exploration of the changes and the molecular mechanisms underlying epileptogenesis holds the promise of identifying vital biomarkers for accurate diagnosis and potential therapeutic targets. Emphasizing early diagnosis and timely intervention is paramount, as it stands to significantly improve patient prognosis and alleviate the socioeconomic burden. In this review, we highlight the changes and molecular mechanisms of the neurovascular unit in epileptogenesis and provide a theoretical basis for identifying biomarkers and drug targets.


Subject(s)
Epilepsy , Humans , Epilepsy/physiopathology , Animals , Neurovascular Coupling/physiology , Brain/metabolism , Brain/physiopathology , Anticonvulsants/therapeutic use , Neurons/metabolism , Neuroglia/metabolism
18.
Ecotoxicol Environ Saf ; 277: 116269, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38657460

ABSTRACT

This study aimed to determine the toxic effects of vascular CCM3 gene deficiency and lead (Pb) exposure on the nervous system. Lentiviral transfection was performed to generate a stable strain of brain microvascular endothelial cells with low CCM3 expression. MTT assay assessed the survival rate of cells exposed to Pb, determining the dose and duration of Pb exposure in vitro. Proteomic analysis was performed on the differentially expressed proteins in bEnd3 and HT22 cells and flow cytometry was used to detect cell apoptosis. Finally, urine samples from pregnant and postpartum women were subjected to ICP-MS to detect Pb levels and HPLC to detect neurotransmitter metabolites. Based on the proteomic analysis of bEnd3 (CCM3-/-) cells co-cultured with HT22 cells, it was determined that HT22 cells and CCM3 genes interfered with bEnd3 cell differential proteins,2 including apoptosis and ferroptosis pathways. Electron microscopy observation, ICP-MS iron ion loading detection, and WB determination of protein GPX4 expression confirmed that HT22 cells undergo apoptosis, while bEnd3 cells undergo multiple pathways of iron death and apoptosis regulation. Furthermore, a linear regression model showed the interaction between maternal urine Pb levels, the rs9818496 site of the CCM3 SNP in peripheral blood DNA, and the concentration of the neurotransmitter metabolite 5-HIAA in maternal urine (F=4.198, P < 0.05). bEnd3 cells with CCM3 gene deficiency can induce HT22 cell apoptosis through iron death and apoptosis pathways under Pb exposure in a combined cell culture Pb exposure model, and CCM3 gene deficiency in endothelial cells and Pb exposure interacts with neural cell HT22. Epidemiological studies on maternal and newborn infants further confirmed the interaction between urine Pb levels in mothers and the SNP rs9818496 site of the CCM3 gene in peripheral blood DNA.


Subject(s)
Apoptosis Regulatory Proteins , Apoptosis , Lead , Lead/toxicity , Lead/blood , Humans , Female , Apoptosis/drug effects , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Pregnancy , Animals , Endothelial Cells/drug effects , Proto-Oncogene Proteins/genetics , Mice , Cell Line , Neurotoxicity Syndromes/genetics , Adult , Proteomics , Membrane Proteins
19.
Mol Neurobiol ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472651

ABSTRACT

Calpain and PARP-NF-κB signaling are reported to participate in the ischemic brain injury. In this study, it was investigated whether calpain was contributed to the neurovascular unit (NVU) damage through up-regulating PARP-NF-κB signaling during experimental ischemic stroke. Male Sprague-Dawley rats were suffered from 90 min of middle cerebral artery occlusion, followed by reperfusion. The NVU damage was evaluated by the permeability of blood-brain barrier (BBB), the degradation of proteins in extracellular matrix and tight junctions, and ultrastructural changes. The inflammatory response was determined by the expression of inflammatory genes driven by PARP-NF-κB signaling and the activities of myeloperoxidase (MPO). Treatment with MDL 28,170, a calpain inhibitor, improved neurological functions, reduced TUNEL staining index, lessened brain swelling, and decreased infarct volume in ischemic rats. Moreover, it reduced the BBB permeability, enhanced the levels of laminin, collagen IV and occludin, and attenuated the ultrastructural damage of NVU in penumbra and core after induction of ischemia. Meanwhile, it enhanced the levels of cytosolic IκBα, lessened the levels of nuclear PARP and NF-κB p65, reduced the levels of ICAM-1, TNF-α, IL-1ß, MMP-9, and MMP-2,and suppressed the activities of MPO in penumbra and core. These data showed that calpain inhibition suppressed PARP-NF-κB signaling-mediated inflammatory response, reduced NVU damage, and protected brain against ischemic stroke, suggesting the involvement of calpain in the NVU damage through up-regulating PARP-NF-κB signaling during brain ischemia.

20.
Biomedicines ; 12(3)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38540242

ABSTRACT

The biological barriers existing in the human body separate the blood circulation from the interstitial fluid in tissues. The blood-brain barrier (BBB) isolates the central nervous system from the bloodstream, presenting a dual role: the protection of the human brain against potentially toxic/harmful substances coming from the blood, while providing nutrients to the brain and removing metabolites. In terms of architectural features, the presence of junctional proteins (that restrict the paracellular transport) and the existence of efflux transporters at the BBB are the two major in vivo characteristics that increase the difficulty in creating an ideal in vitro model for drug permeability studies and neurotoxicity assessments. The purpose of this work is to provide an up-to-date literature review on the current in vitro models used for BBB studies, focusing on the characteristics, advantages, and disadvantages of both primary cultures and immortalized cell lines. An accurate analysis of the more recent and emerging techniques implemented to optimize the in vitro models is also provided, based on the need of recreating as closely as possible the BBB microenvironment. In fact, the acceptance that the BBB phenotype is much more than endothelial cells in a monolayer has led to the shift from single-cell to multicellular models. Thus, in vitro co-culture models have narrowed the gap between recreating as faithfully as possible the human BBB phenotype. This is relevant for permeability and neurotoxicity assays, and for studies related to neurodegenerative diseases. Several studies with these purposes will be also presented and discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...