ABSTRACT
Molecular biology is currently a fast-advancing science. Sequencing techniques are getting cheaper, but the interpretation of genetic variants requires expertise and computational power, therefore is still a challenge. Next-generation sequencing releases thousands of variants and to classify them, researchers propose protocols with several parameters. Here we present a review of several in silico pathogenicity prediction tools involved in the variant prioritization/classification process used by some international protocols for variant analysis and studies evaluating their efficiency.
ABSTRACT
Porcine Astrovirus (PoAstV) causes mild diarrhea in young pigs and is considered an emerging virus in the swine industry worldwide. PoAstV has high genetic diversity and has been classified into five genetic lineages, PoAstV1-5. In Chile, only human astroviruses have been reported. This study aimed to determine the presence and genetic diversity of PoAstV circulating in intensive pig farms in Chile. Seventeen Chilean intensive swine farms from Valparaíso, Metropolitana, O'Higgins, Ñuble and Araucanía regions were sampled. A selection of oral fluid and fecal material samples from 1-80 days-old pigs were collected and analyzed using next-generation sequencing. The circulation of PoAstV was confirmed in all studied farms. We obtained complete or partial sequences of PoAstV-2 (n = 3), PoAstV-4 (n = 2), and PoAstV-5 (n = 7). In 15 out of 17 farms, we detected more than one lineage co-circulating. Phylogenetic analyses grouped the seven PoAstV-5 strains in a monophyletic cluster, closely related to the United States PoAstV-5 strains. The three PoAstV-2 were located into two separate sub-clusters. PoAstV-4 sequences are also grouped in two different clusters, all related to Japanese strains. Thus, our results indicate that PoAstV circulates in Chile with high frequency and diversity. However, the lack of reference sequences impairs local evolution patterns establishment and regional comparisons. This is the first contribution of PoAstV genomes in Latin America; more studies are needed to understand the diversity and impact of PoAstV on swine health.