Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.520
Filter
1.
CNS Neurosci Ther ; 30(7): e14826, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38973179

ABSTRACT

AIM: We aimed to confirm the inhibitory effect of nicotinamide on fibrotic scar formation following spinal cord injury in mice using functional metabolomics. METHODS: We proposed a novel functional metabolomics strategy to establish correlations between gene expression changes and metabolic phenotypes using integrated multi-omics analysis. Through the integration of quantitative metabolites analysis and assessments of differential gene expression, we identified nicotinamide as a functional metabolite capable of inhibiting fibrotic scar formation and confirmed the effect in vivo using a mouse model of spinal cord injury. Furthermore, to mimic fibrosis models in vitro, primary mouse embryonic fibroblasts and spinal cord fibroblasts were stimulated by TGFß, and the influence of nicotinamide on TGFß-induced fibrosis-associated genes and its underlying mechanism were examined. RESULTS: Administration of nicotinamide led to a reduction in fibrotic lesion area and promoted functional rehabilitation following spinal cord injury. Nicotinamide effectively downregulated the expression of fibrosis genes, including Col1α1, Vimentin, Col4α1, Col1α2, Fn1, and Acta2, by repressing the TGFß/SMADs pathway. CONCLUSION: Our functional metabolomics strategy identified nicotinamide as a metabolite with the potential to inhibit fibrotic scar formation following SCI by suppressing the TGFß/SMADs signaling. This finding provides new therapeutic strategies and new ideas for clinical treatment.


Subject(s)
Cicatrix , Fibrosis , Mice, Inbred C57BL , Niacinamide , Spinal Cord Injuries , Animals , Niacinamide/pharmacology , Niacinamide/therapeutic use , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/pathology , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/complications , Cicatrix/drug therapy , Cicatrix/pathology , Cicatrix/metabolism , Cicatrix/prevention & control , Mice , Fibrosis/drug therapy , Transforming Growth Factor beta/metabolism , Metabolomics , Fibroblasts/drug effects , Fibroblasts/metabolism , Cells, Cultured , Disease Models, Animal , Female
2.
Mol Neurobiol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981960

ABSTRACT

Hemorrhagic stroke is a global health problem owing to its high morbidity and mortality rates. Nicotinamide riboside is an important precursor of nicotinamide adenine dinucleotide characterized by a high bioavailability, safety profile, and robust effects on many cellular signaling processes. This study aimed to investigate the protective effects of nicotinamide riboside against collagenase-induced hemorrhagic stroke and its underlying mechanisms of action. An intracerebral hemorrhage model was constructed by stereotactically injecting collagenase into the right striatum of adult male Institute for Cancer Research mice. After 30 minutes, nicotinamide riboside was administered via the tail vein. The mice were sacrificed at different time points for assessments. Nicotinamide riboside reduced collagenase-induced hemorrhagic area, significantly reduced cerebral water content and histopathological damage, promoted neurological function recovery, and suppressed reactive oxygen species production and neuroinflammation. Nicotinamide riboside exerts neuroprotective effects against collagenase-induced intracerebral hemorrhage by inhibiting neuroinflammation and oxidative stress.

3.
Parasit Vectors ; 17(1): 288, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971783

ABSTRACT

BACKGROUND: Currently, treatment regimens for visceral leishmaniasis (VL) are limited because of the presence of numerous adverse effects. Nicotinamide, a readily available and cost-effective vitamin, has been widely acknowledged for its safety profile. Several studies have demonstrated the anti-leishmanial effects of nicotinamide in vitro. However, the potential role of nicotinamide in Leishmania infection in vivo remains elusive. METHODS: In this study, we assessed the efficacy of nicotinamide as a therapeutic intervention for VL caused by Leishmania infantum in an experimental mouse model and investigated its underlying molecular mechanisms. The potential molecular mechanism was explored through cytokine analysis, examination of spleen lymphocyte subsets, liver RNA-seq analysis, and pathway validation. RESULTS: Compared to the infection group, the group treated with nicotinamide demonstrated significant amelioration of hepatosplenomegaly and recovery from liver pathological damage. The NAM group exhibited parasite reduction rates of 79.7% in the liver and 86.7% in the spleen, respectively. Nicotinamide treatment significantly reduced the activation of excessive immune response in infected mice, thereby mitigating hepatosplenomegaly and injury. Furthermore, nicotinamide treatment enhanced fatty acid ß-oxidation by upregulating key enzymes to maintain lipid homeostasis. CONCLUSIONS: Our findings provide initial evidence supporting the safety and therapeutic efficacy of nicotinamide in the treatment of Leishmania infection in BALB/c mice, suggesting its potential as a viable drug for VL.


Subject(s)
Leishmania infantum , Leishmaniasis, Visceral , Lipid Metabolism , Liver , Mice, Inbred BALB C , Niacinamide , Spleen , Animals , Leishmaniasis, Visceral/drug therapy , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Visceral/immunology , Niacinamide/pharmacology , Niacinamide/therapeutic use , Mice , Lipid Metabolism/drug effects , Liver/parasitology , Liver/drug effects , Liver/pathology , Leishmania infantum/drug effects , Spleen/parasitology , Spleen/drug effects , Cytokines/metabolism , Disease Models, Animal , Female , Inflammation/drug therapy , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use
4.
Atheroscler Plus ; 57: 1-12, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38974325

ABSTRACT

Nicotinamide adenine dinucleotide (NAD+) is a central and pleiotropic metabolite involved in cellular energy metabolism, cell signaling, DNA repair, and protein modifications. Cardiovascular diseases (CVDs) are the leading cause of death worldwide. Metabolic stress and aging directly affect the cardiovascular system. Compelling data suggest that NAD + levels decrease with age, obesity, and hypertension, which are all notable risk factors for CVD. In addition, the therapeutic elevation of NAD + levels reduces chronic low-grade inflammation, reactivates autophagy and mitochondrial biogenesis, and enhances oxidative metabolism in vascular cells of humans and rodents with vascular disorders. In preclinical models, NAD + boosting can also expand the health span, prevent metabolic syndrome, and decrease blood pressure. Moreover, NAD + storage by genetic, pharmacological, or natural dietary NAD + -increasing strategies has recently been shown to be effective in improving the pathophysiology of cardiac and vascular health in different animal models, and human health. Here, we review and discuss NAD + -related mechanisms pivotal for vascular health and summarize recent experimental evidence in NAD + research directly related to vascular disease, including atherosclerosis, and coronary artery disease. Finally, we comparatively assess distinct NAD + precursors for their clinical efficacy and the efficiency of NAD + elevation in the treatment of major CVD. These findings may provide ideas for new therapeutic strategies to prevent and treat CVD in the clinic.

5.
Cell Biochem Funct ; 42(5): e4087, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38953407

ABSTRACT

ß-Nicotinamide mononucleotide (NMN) is a biologically active nucleotide that regulates the physiological metabolism of the body by rapidly increasing nicotinamide adenine dinucleotide (NAD+). To determine the safety and biological activity of NMN resources, we constructed a recombinant strain of P. pastoris that heterologously expresses nicotinamide-phosphate ribosyltransferase (NAMPT), and subsequently catalyzed and purified the expressed product to obtain NMN. Consequently, this study established a high-fat diet (HFD) obese model to investigate the lipid-lowering activity of NMN. The findings showed that NMN supplementation directly increased the NAD+ levels, and reduced HFD-induced liver injury and lipid deposition. NMN treatment significantly decreased total cholesterol (TC) and triglyceride (TG) in serum and liver, as well as alanine aminotransferase (ALT) and insulin levels in serum (p < .05 or p < .01). In conclusion, this study combined synthetic biology with nutritional evaluation to confirm that P. pastoris-generated NMN modulated lipid metabolism in HFD mice, offering a theoretical framework and evidence for the application of microbially created NMN.


Subject(s)
Diet, High-Fat , Lipid Metabolism , Liver , Mice, Inbred C57BL , Nicotinamide Mononucleotide , Animals , Nicotinamide Mononucleotide/metabolism , Nicotinamide Mononucleotide/pharmacology , Lipid Metabolism/drug effects , Mice , Liver/metabolism , Male , Nicotinamide Phosphoribosyltransferase/metabolism
6.
Sci Rep ; 14(1): 15554, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969654

ABSTRACT

Human hallmarks of sarcopenia include muscle weakness and a blunted response to exercise. Nicotinamide N-methyltransferase inhibitors (NNMTis) increase strength and promote the regenerative capacity of aged muscle, thus offering a promising treatment for sarcopenia. Since human hallmarks of sarcopenia are recapitulated in aged (24-month-old) mice, we treated mice from 22 to 24 months of age with NNMTi, intensive exercise, or a combination of both, and compared skeletal muscle adaptations, including grip strength, longitudinal running capacity, plantarflexor peak torque, fatigue, and muscle mass, fiber type, cross-sectional area, and intramyocellular lipid (IMCL) content. Exhaustive proteome and metabolome analyses were completed to identify the molecular mechanisms underlying the measured changes in skeletal muscle pathophysiology. Remarkably, NNMTi-treated aged sedentary mice showed ~ 40% greater grip strength than sedentary controls, while aged exercised mice only showed a 20% increase relative to controls. Importantly, the grip strength improvements resulting from NNMTi treatment and exercise were additive, with NNMTi-treated exercised mice developing a 60% increase in grip strength relative to sedentary controls. NNMTi treatment also promoted quantifiable improvements in IMCL content and, in combination with exercise, significantly increased gastrocnemius fiber CSA. Detailed skeletal muscle proteome and metabolome analyses revealed unique molecular mechanisms associated with NNMTi treatment and distinct molecular mechanisms and cellular processes arising from a combination of NNMTi and exercise relative to those given a single intervention. These studies suggest that NNMTi-based drugs, either alone or combined with exercise, will be beneficial in treating sarcopenia and a wide range of age-related myopathies.


Subject(s)
Aging , Muscle, Skeletal , Nicotinamide N-Methyltransferase , Physical Conditioning, Animal , Sarcopenia , Animals , Nicotinamide N-Methyltransferase/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Mice , Aging/physiology , Sarcopenia/metabolism , Sarcopenia/drug therapy , Male , Muscle Strength/drug effects , Mice, Inbred C57BL , Enzyme Inhibitors/pharmacology
7.
Dev Cell ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38897197

ABSTRACT

Selective degradation of damaged mitochondria by autophagy (mitophagy) is proposed to play an important role in cellular homeostasis. However, the molecular mechanisms and the requirement of mitochondrial quality control by mitophagy for cellular physiology are poorly understood. Here, we demonstrated that primary human cells maintain highly active basal mitophagy initiated by mitochondrial superoxide signaling. Mitophagy was found to be mediated by PINK1/Parkin-dependent pathway involving p62 as a selective autophagy receptor (SAR). Importantly, this pathway was suppressed upon the induction of cellular senescence and in naturally aged cells, leading to a robust shutdown of mitophagy. Inhibition of mitophagy in proliferating cells was sufficient to trigger the senescence program, while reactivation of mitophagy was necessary for the anti-senescence effects of NAD precursors or rapamycin. Furthermore, reactivation of mitophagy by a p62-targeting small molecule rescued markers of cellular aging, which establishes mitochondrial quality control as a promising target for anti-aging interventions.

8.
Int J Mol Sci ; 25(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38891771

ABSTRACT

Photoprotective properties of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) to reduce UV-induced DNA damage have been established in several studies. UV-induced DNA damage in skin such as single or double strand breaks is known to initiate several cellular mechanisms including activation of poly(ADP-ribose) (pADPr) polymerase-1 (PARP-1). DNA damage from UV also increases extracellular signal-related kinase (ERK) phosphorylation, which further increases PARP activity. PARP-1 functions by using cellular nicotinamide adenine dinucleotide (NAD+) to synthesise pADPr moieties and attach these to target proteins involved in DNA repair. Excessive PARP-1 activation following cellular stress such as UV irradiation may result in excessive levels of cellular pADPr. This can also have deleterious effects on cellular energy levels due to depletion of NAD+ to suboptimal levels. Since our previous work indicated that 1,25(OH)2D3 reduced UV-induced DNA damage in part through increased repair via increased energy availability, the current study investigated the effect of 1,25(OH)2D3 on UV-induced PARP-1 activity using a novel whole-cell enzyme- linked immunosorbent assay (ELISA) which quantified levels of the enzymatic product of PARP-1, pADPr. This whole cell assay used around 5000 cells per replicate measurement, which represents a 200-400-fold decrease in cell requirement compared to current commercial assays that measure in vitro pADPr levels. Using our assay, we observed that UV exposure significantly increased pADPr levels in human keratinocytes, while 1,25(OH)2D3 significantly reduced levels of UV-induced pADPr in primary human keratinocytes to a similar extent as a known PARP-1 inhibitor, 3-aminobenzamide (3AB). Further, both 1,25(OH)2D3 and 3AB as well as a peptide inhibitor of ERK-phosphorylation significantly reduced DNA damage in UV-exposed keratinocytes. The current findings support the proposal that reduction in pADPr levels may be critical for the function of 1,25(OH)2D3 in skin to reduce UV-induced DNA damage.


Subject(s)
DNA Damage , Poly (ADP-Ribose) Polymerase-1 , Ultraviolet Rays , Vitamin D , Humans , Ultraviolet Rays/adverse effects , Poly (ADP-Ribose) Polymerase-1/metabolism , Vitamin D/pharmacology , Vitamin D/metabolism , Vitamin D/analogs & derivatives , DNA Damage/drug effects , Keratinocytes/metabolism , Keratinocytes/radiation effects , Keratinocytes/drug effects , Calcitriol/pharmacology , Calcitriol/metabolism , DNA Repair/drug effects , Phosphorylation/drug effects
9.
Front Endocrinol (Lausanne) ; 15: 1384953, 2024.
Article in English | MEDLINE | ID: mdl-38836233

ABSTRACT

Background: Nicotinamide adenine dinucleotide (NAD+) is a critical coenzyme involved in kidney disease, yet its regulation in diabetic kidney disease (DKD) remains inadequately understood. Objective: Therefore, we investigated the changes of NAD+ levels in DKD and the underlying mechanism. Methods: Alternations of NAD+ levels and its biosynthesis enzymes were detected in kidneys from streptozotocin-induced diabetic mouse model by real-time PCR and immunoblot. The distribution of NAD+ de novo synthetic enzymes was explored via immunohistochemical study. NAD+ de novo synthetic metabolite was measured by LC-MS. Human data from NephroSeq were analyzed to verify our findings. Results: The study showed that NAD+ levels were decreased in diabetic kidneys. Both mRNA and protein levels of kynurenine 3-monooxygenase (KMO) in NAD+ de novo synthesis pathway were decreased, while NAD+ synthetic enzymes in salvage pathway and NAD+ consuming enzymes remained unchanged. Further analysis of human data suggested KMO, primarily expressed in the proximal tubules shown by our immunohistochemical staining, was consistently downregulated in human diabetic kidneys. Conclusion: Our study demonstrated KMO of NAD+ de novo synthesis pathway was decreased in diabetic kidney and might be responsible for NAD+ reduction in diabetic kidneys, offering valuable insights into complex regulatory mechanisms of NAD+ in DKD.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , NAD , Animals , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , NAD/metabolism , Humans , Mice , Diabetes Mellitus, Experimental/metabolism , Male , Mice, Inbred C57BL , Disease Models, Animal , Kidney/metabolism , Kidney/pathology
10.
Regen Ther ; 27: 191-199, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38840730

ABSTRACT

Introduction: Several approaches to expand human hematopoietic stem cells (HSCs) have been reported, but the ability of these methods to expand long-term hematopoietic stem cells (LT-HSCs) remains to be improved, which limits the application of HSCs-based therapies. Methods: CD34+ cells were purified from umbilical cord blood using MacsCD34 beads, and then cultured for 12 d in a serum-free medium. Flow cytometry was used to detect phenotype, cell cycle distribution, and apoptosis of the cultured cells. Colony-forming cell (CFC) assays can evaluate multi-lineage differentiation potential of HSCs. Real-time polymerase chain reaction was employed to detect the expression of genes related to self-renewal programs and antioxidant activity. DCFH-DA probes were used to evaluate intracellular production of reactive oxygen species (ROS). Determination of the effect of different culture conditions on the balance of cytokine by cytometric bead array. Results: Here, we show a combination, Nicotinamide (NAM) combined with pyrimidoindole derivative UM171, can massively expand LT-HSCs ex vivo, and the expanded cells maintained the capability of self-renewal and multilineage differentiation. Additionally, our data indicated that UM171 promoted self-renewal of HSCs by inducing HSCs entry into the cell cycle and activating Notch and Wnt pathways, but the infinite occurrence of this process may lead to mitochondrial metabolism disorder and differentiation of HSCs. NAM kept HSCs in their primitive and dormant states by reducing intracellular ROS levels and upregulating the expression of stemness related genes, so we believed that NAM can act as a brake to control the above process. Conclusions: The discovery of the synergistic effect of NAM and UM171 for expanding LT-HSCs provides a new strategy in solving the clinical issue of limited numbers of HSCs.

11.
Front Pharmacol ; 15: 1410479, 2024.
Article in English | MEDLINE | ID: mdl-38919254

ABSTRACT

Metabolic syndrome (MetS) represents a constellation of metabolic abnormalities, typified by obesity, hypertension, hyperglycemia, and hyperlipidemia. It stems from intricate dysregulations in metabolic pathways governing energy and substrate metabolism. While comprehending the precise etiological mechanisms of MetS remains challenging, evidence underscores the pivotal roles of aberrations in lipid metabolism and insulin resistance (IR) in its pathogenesis. Notably, nicotinamide N-methyltransferase (NNMT) has recently surfaced as a promising therapeutic target for addressing MetS. Single nucleotide variants in the NNMT gene are significantly correlated with disturbances in energy metabolism, obesity, type 2 diabetes (T2D), hyperlipidemia, and hypertension. Elevated NNMT gene expression is notably observed in the liver and white adipose tissue (WAT) of individuals with diabetic mice, obesity, and rats afflicted with MetS. Knockdown of NNMT elicits heightened energy expenditure in adipose and hepatic tissues, mitigates lipid accumulation, and enhances insulin sensitivity. NNMT catalyzes the methylation of nicotinamide (NAM) using S-adenosyl-methionine (SAM) as the donor methyl group, resulting in the formation of S-adenosyl-l-homocysteine (SAH) and methylnicotinamide (MNAM). This enzymatic process results in the depletion of NAM, a precursor of nicotinamide adenine dinucleotide (NAD+), and the generation of SAH, a precursor of homocysteine (Hcy). Consequently, this cascade leads to reduced NAD+ levels and elevated Hcy levels, implicating NNMT in the pathogenesis of MetS. Moreover, experimental studies employing RNA interference (RNAi) strategies and small molecule inhibitors targeting NNMT have underscored its potential as a therapeutic target for preventing or treating MetS-related diseases. Nonetheless, the precise mechanistic underpinnings remain elusive, and as of yet, clinical trials focusing on NNMT have not been documented. Therefore, further investigations are warranted to elucidate the intricate roles of NNMT in MetS and to develop targeted therapeutic interventions.

12.
Front Microbiol ; 15: 1405736, 2024.
Article in English | MEDLINE | ID: mdl-38919503

ABSTRACT

Introduction: ß-nicotinamide mononucleotide (ß-NMN) is an essential precursor of nicotinamide adenine dinucleotide (NAD+) and plays a key role in supplying NAD+ and maintaining its levels. Existing methods for NMN production have some limitations, including low substrate availability, complex synthetic routes, and low synthetic efficiency, which result in low titers and high costs. Methods: We constructed high-titer, genetically engineered strains that produce NMN through a new pathway. Bacillus subtilis WB600 was used as a safe chassis strain. Multiple strains overexpressing NadE, PncB, and PnuC in various combinations were constructed, and NMN titers of different strains were compared via shake-flask culture. Results: The results revealed that the strain B. subtilis PncB1-PnuC exhibited the highest total and extracellular NMN titers. Subsequently, the engineered strains were cultured in a 5-L fermenter using batch and fed-batch fermentation. B. subtilis PncB1-PnuC achieved an NMN titer of 3,398 mg/L via fed-batch fermentation and glucose supplementation, which was 30.72% higher than that achieved via batch fermentation. Discussion: This study provides a safe and economical approach for producing NMN on an industrial scale.

13.
Antibiotics (Basel) ; 13(6)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38927229

ABSTRACT

Reliable drug susceptibility testing of pyrazinamide (PZA) is technically difficult, since PZA activity is pH sensitive. The aim of this study was to evaluate a biphasic medium assay (BMA) for the reliable detection of PZA resistance in Mycobacterium tuberculosis (MTB) using nicotinamide (NIC) as a surrogate for PZA and identifying the appropriate cut-off value for the assay. The PZA susceptibility of 122 multidrug-resistant tuberculosis (MDR-TB) isolates and 39 drug-susceptible tuberculosis (DS-TB) isolates was examined using the BMA with NIC at four different concentrations (250, 500, 1000, and 2000 mg/L) and comparing the results with results from the BACTEC MGIT 960 reference method. Out of 122 MDR-TB isolates, 40 were identified as resistant by the BACTEC MGIT 960 system, of which 92.5% contained mutations within their pncA gene plus promoter region. A minimum inhibitory concentration of NIC ≥ 1000 mg/L was used as the cut-off concentration to define resistance in correlation with the MGIT 960 outcomes. NIC-BMA had a sensitivity of 90.91%, a specificity of 100%, and an accuracy of 97.52% compared with the MGIT 960 method. NIC-BMA is a promising assay to screen PZA resistance in microbiological laboratories without automation or advanced molecular instruments.

14.
Geroscience ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935229

ABSTRACT

Healthy Longevity Medicine aims to optimize health by targeting aging processes across the lifespan. Addressing accelerated aging involves adaptation of lifestyle and the use of geroprotective drugs and supplements, including nutritional supplements and bioactive compounds. The Food and Drug Administration, under the Dietary Supplement Health and Education Act, categorizes bioactive compounds and medicinal products as dietary supplements. While numerous companies sell ingredients that can be deemed geroprotectors, there's limited oversight in their quality control. Governmental safety authorities only verify the presence of prohibited compounds, not the accuracy of ingredients listed on labels.Here, Nicotinamide mononucleotide and Urolithin A supplements, easily accessible online or in pharmacies, were tested for their active ingredient content. Results showed a significant deviation from the labeled amounts, ranging from + 28.6% to -100%. This indicates a considerable disparity in the quality of geroprotective supplements.To address this variability, collaboration between and within societies representing healthcare professionals, industry and regulatory bodies is imperative to ensure the quality of geroprotective supplements.

15.
Curr Pharm Des ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38867533

ABSTRACT

BACKGROUND: Cocrystals are an efficient way for the delivery of low soluble drugs but when dissolved they rapidly disproportionate. To formulate the cocrystals in tablets, cocrystals must be stabilized. In this study ibuprofen-nicotinamide (IBU-NIC) cocrystals were synthesized initially by slow solvent evaporation and for bulk production by fast solvent evaporation techniques. METHOD: The cocrystals were characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectrophotometer (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and optical microscopy. The ibuprofen cocrystals showed greater solubility compared to the parent drug. RESULT: Intrinsic dissolution data was utilized for efficacious screening of tablet formulations. Using hydrophilic polymers at a ratio of 6:1 (polymer to IBU-NIC cocrystal ratio), hydroxypropyl methylcellulose (F1), polyvinylpyrrolidone (PVP) K-30 (F2) and PVP K-90 (F3), three tablet formulations were prepared that stabilized cocrystals during dissolution. The drug release profiles after 60 minutes from formulations F1 (92.30), F2 (98.54), F3 (99.88) were all higher compared to the marketed brand BRUFEN® F, (79.61%) in a simulated intestinal media (p<0.001). CONCLUSION: Significant increase in the dissolution rate of cocrystal was observed with no phase change in all formulations.

16.
Pharmacol Res ; 206: 107264, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38876443

ABSTRACT

Disturbances in copper (Cu) homeostasis have been observed in diabetes and associated complications. Cu is an essential micronutrient that plays important roles in various fundamental biological processes. For example, diabetic cardiomyopathy is associated with elevated levels of Cu in the serum and tissues. Therefore, targeting Cu may be a novel treatment strategy for diabetic complications. This review provides an overview of physiological Cu metabolism and homeostasis, followed by a discussion of Cu metabolism disorders observed during the occurrence and progression of diabetic complications. Finally, we discuss the recent therapeutic advances in the use of Cu coordination complexes as treatments for diabetic complications and their potential mechanisms of action. This review contributes to a complete understanding of the role of Cu in diabetic complications and demonstrates the broad application prospects of Cu-coordinated compounds as potential therapeutic agents.

17.
Int Immunopharmacol ; 137: 112468, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38906004

ABSTRACT

Prolonged or excessive oxidative stress can lead to premature cellular and body aging. Mannan-binding lectin (MBL) is synthesized by the liver and plays an important role in innate immunity, anti-inflammation, and anti-oxidation, and has a positive impact on health and longevity. To date, few studies investigated the role of MBL in attenuating oxidative stress-induced senescence. In this study, we evaluated the role of MBL in oxidative stress-induced premature aging and explored its underlying mechanism in C57BL/6 mice and mouse embryonic fibroblasts (NIH/3T3). First, we established an oxidative premature senescence model induced by D-galactose in C57BL/6 mice. We found that MBL-deficient mice had a marked aging-like appearance, reduced learning and spatial exploration abilities, severe liver pathological damage, and significantly upregulated expression of Senescence-associated proteins (p53 and p21), inflammatory kinesins (IL-1ß and IL-6), and the senescence ß-galactosidase (SA-ß-Gal) positive rate as compared with WT mice. In the H2O2-induced oxidative senescence model of NIH/3T3 cells, consistent results were obtained after MBL intervention. In addition, MBL effectively inhibited G1 phase arrest, ROS levels, DNA damage, and mitochondrial dysfunction in premature senescent cells. Mechanistically, we found that oxidative stress inhibited the nicotinamide adenine dinucleotide (NAD+)/ silent information regulator 1 (Sirt1) signaling pathway, while MBL activated the NAD+/Sirt1 signaling pathway inhibited by oxidative stress. In addition, MBL could activate the NAD+/Sirt1 pathway by upregulating NAMPT, which in turn inhibited p38 phosphorylation by activating the NAD+/Sirt1 pathway. In conclusion, MBL inhibits oxidative aging, which may facilitate the development of therapeutics to delay oxidative aging.


Subject(s)
Cellular Senescence , Galactose , Mannose-Binding Lectin , Mice, Inbred C57BL , NAD , Oxidative Stress , Signal Transduction , Sirtuin 1 , Animals , Sirtuin 1/metabolism , Sirtuin 1/genetics , Oxidative Stress/drug effects , Mice , Cellular Senescence/drug effects , Signal Transduction/drug effects , NIH 3T3 Cells , NAD/metabolism , Mannose-Binding Lectin/metabolism , Mannose-Binding Lectin/genetics , Mice, Knockout , Hydrogen Peroxide/metabolism , Male , Fibroblasts/drug effects , Fibroblasts/metabolism
18.
Stem Cell Rev Rep ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38941038

ABSTRACT

Activation of endogenous neural stem cells (NSC) is one of the most potential measures for neural repair after spinal cord injury. However, methods for regulating neural stem cell behavior are still limited. Here, we investigated the effects of nicotinamide riboside promoting the proliferation of endogenous neural stem cells to repair spinal cord injury. Nicotinamide riboside promotes the proliferation of endogenous neural stem cells and regulates their differentiation into neurons. In addition, nicotinamide riboside significantly restored lower limb motor dysfunction caused by spinal cord injury. Nicotinamide riboside plays its role in promoting the proliferation of neural stem cells by activating the Wnt signaling pathway through the LGR5 gene. Knockdown of the LGR5 gene by lentivirus eliminates the effect of nicotinamide riboside on the proliferation of endogenous neural stem cells. In addition, administration of Wnt pathway inhibitors also eliminated the proliferative effect of nicotinamide riboside. Collectively, these findings demonstrate that nicotinamide promotes the proliferation of neural stem cells by targeting the LGR5 gene to activate the Wnt pathway, which provides a new way to repair spinal cord injury.

19.
Front Neurosci ; 18: 1389111, 2024.
Article in English | MEDLINE | ID: mdl-38911598

ABSTRACT

Introduction: Nicotinamide adenine dinucleotide (NAD) is a crucial molecule in cellular metabolism and signaling. Mapping intracellular NAD content of human brain has long been of interest. However, the sub-millimolar level of cerebral NAD concentration poses significant challenges for in vivo measurement and imaging. Methods: In this study, we demonstrated the feasibility of non-invasively mapping NAD contents in entire human brain by employing a phosphorus-31 magnetic resonance spectroscopic imaging (31P-MRSI)-based NAD assay at ultrahigh field (7 Tesla), in combination with a probabilistic subspace-based processing method. Results: The processing method achieved about a 10-fold reduction in noise over raw measurements, resulting in remarkably reduced estimation errors of NAD. Quantified NAD levels, observed at approximately 0.4 mM, exhibited good reproducibility within repeated scans on the same subject and good consistency across subjects in group data (2.3 cc nominal resolution). One set of higher-resolution data (1.0 cc nominal resolution) unveiled potential for assessing tissue metabolic heterogeneity, showing similar NAD distributions in white and gray matter. Preliminary analysis of age dependence suggested that the NAD level decreases with age. Discussion: These results illustrate favorable outcomes of our first attempt to use ultrahigh field 31P-MRSI and advanced processing techniques to generate a whole-brain map of low-concentration intracellular NAD content in the human brain.

20.
Metabolites ; 14(6)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38921475

ABSTRACT

Recent years have seen a surge in research focused on NAD+ decline and potential interventions, and despite significant progress, new discoveries continue to highlight the complexity of NAD+ biology. Nicotinamide mononucleotide (NMN), a well-established NAD+ precursor, has garnered considerable interest due to its capacity to elevate NAD+ levels and induce promising health benefits in preclinical models. Clinical trials investigating NMN supplementation have yielded variable outcomes while shedding light on the intricacies of NMN metabolism and revealing the critical roles played by gut microbiota and specific cellular uptake pathways. Individual variability in factors such as lifestyle, health conditions, genetics, and gut microbiome composition likely contributes to the observed discrepancies in clinical trial results. Preliminary evidence suggests that NMN's effects may be context-dependent, varying based on a person's physiological state. Understanding these nuances is critical for definitively assessing the impact of manipulating NAD+ levels through NMN supplementation. Here, we review NMN metabolism, focusing on current knowledge, pinpointing key areas where further research is needed, and outlining future directions to advance our understanding of its potential clinical significance.

SELECTION OF CITATIONS
SEARCH DETAIL
...