Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 323
Filter
1.
J Clin Med ; 13(17)2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39274310

ABSTRACT

Smoking habits (from classic cigarettes to e-cigarettes and heated tobacco) are a relatively common finding in the medical histories of couples referred to fertility centers. Tobacco smoke and e-cigarettes may deliver many substances with known harmful effects on both general and reproductive health, including nicotine. Nicotinic Acetylcholine receptors (nAChRs) form a heterogeneous family of ion channels that are differently expressed in different tissues. According to the homomeric or heteromeric combination of at least five different subunits (named from α to ε), they have peculiar pharmacological and biophysical properties. nAChRs respond to the neurotransmitter acetylcholine, which influences a number of physiological functions not restricted to neurons and plays an important role in the structure and function of non-neuronal tissues such as the testis. nAChRs are also the target of Nicotine, the active element responsible for tobacco addiction. This review summarizes recent findings on the involvement of nAChRs in testicular physiology, highlighting the effects of nicotine exposure observed in animal studies and clinical settings. We will discuss the latest data on fertility outcomes and the implications for understanding nAChR functions in reproductive health.

2.
bioRxiv ; 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39185195

ABSTRACT

Neonicotinoid insecticides act selectively on their nicotinic receptor targets leading to variable sensitivity among arthropods. This study aimed to investigate the molecular mechanisms underlying contrasting susceptibility to neonicotinoids observed in wild populations of two mosquito sibling species. Bioassays and a synergism test revealed that the sister taxa, Anopheles gambiae and An. coluzzii, from Yaounde, Cameroon, rely on cytochrome P450s to detoxify neonicotinoids and develop resistance. However, contrary to An. coluzzii, An. gambiae populations are evolving stronger resistance to several active ingredients facilitated by mutations and reduced expression of nicotinic acetylcholine receptors. Six mutations were detected in coding sequences of the ß1 and α6 subunits, including two substitutions in one of the loops that modulate ligand binding and sensitivity. Allele frequencies were strongly correlated with a susceptibility gradient between An. coluzzii and An. gambiae suggesting that the mutations may play a key role in sensitivity. Messenger RNA expression levels of the ß1, α3, and α7 subunits decreased dramatically, on average by 23.27, 17.50, 15.80-fold, respectively, in wild An. gambiae populations compared to a susceptible insectary colony. By contrast, only the ß2 and α9-1 subunits were moderately downregulated (5.28 and 2.67-fold change, respectively) in field-collected An. coluzzii adults relative to susceptible colonized mosquitoes. Our findings provide critical information for the application and resistance management of neonicotinoids in malaria prevention.

3.
Article in English | MEDLINE | ID: mdl-39132445

ABSTRACT

In the United States, the Food and Drug Administration (FDA) requires tobacco product manufacturers to submit Premarket Tobacco Product Applications (PMTA) for new products, granting marketing approval only if deemed appropriate for the protection of public health. Historically, the tobacco industry has exploited loopholes in the Tobacco Control Act (TCA), especially related to the definitions of nicotine, tobacco product and characterizing flavors, to circumvent the PMTA requirement. In 2023, the industry introduced several 'PMTA-exempt' e-cigarette and smokeless products, including products containing 6-methyl nicotine, a synthetic nicotine analog that is pharmacologically more potent than nicotine. In late 2023 and early 2024, the major US e-cigarette suppliers Nicotine River and ECBlend introduced 'PMTA-exempt' products with the brand names 'Nixamide' or 'Nixodine' or 'Nixotine', with nicotinamide as the main active ingredient. Nicotinamide is a form of vitamin B3 with no known pharmacological activity at nicotinic receptors. Here, we report that the marketing claims for these products, suggesting them and be nicotine substitute products designed to target nicotinic receptors and provide the same experience as nicotine, is deceptive and misleading to consumers. We also inform that these products have evolved further to contain a combination of nicotinamide and 6-methyl nicotine. The regulatory implications of these newly introduced products are discussed.

4.
J Pharmacol Sci ; 156(2): 86-101, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39179339

ABSTRACT

Consumption of palatable food (PF) can alleviate anxiety, and pain in humans. Contrary, spontaneous withdrawal of long-term PF intake produces anxiogenic-like behavior and abnormal pain sensation, causing challenges to weight-loss diet and anti-obesity agents. Thus, we examined α7-nicotinic acetylcholine receptors (α7nAChR) involvement since it plays essential role in nociception and psychological behaviors. METHODS: Adult male C57BL/6 mice were placed on a Standard Chow (SC) alone or with PF on intermittent or continuous regimen for 6 weeks. Then, mice were replaced with normal SC (spontaneous withdrawal). Body weight, food intake, and calories intake with and without the obesogenic diet were measured throughout the study. During PF withdrawal, anxiety-like behaviors and pain sensitivity were measured with PNU-282987 (α7nAChR agonist) administration. RESULTS: Six weeks of SC + PF-intermittent and continuous paradigms produced a significant weight gain. PF withdrawal displayed hyperalgesia and anxiety-like behaviors. During withdrawal, PNU-282987 significantly attenuated hyperalgesia and anxiety-like behaviors. CONCLUSION: The present study shows that a PF can increase food intake and body weight. Also, enhanced pain sensitivity and anxiety-like behavior were observed during PF withdrawal. α7nAChR activation attenuated anxiolytic-like behavior and hyperalgesia in PF abstinent mice. These data suggest potential therapeutic effects of targeting α7 nAChRs for obesity-withdrawal symptoms in obese subjects.


Subject(s)
Anxiety , Benzamides , Bridged Bicyclo Compounds , Hyperalgesia , Mice, Inbred C57BL , Obesity , alpha7 Nicotinic Acetylcholine Receptor , Animals , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Male , Anxiety/etiology , Hyperalgesia/etiology , Hyperalgesia/metabolism , Benzamides/pharmacology , Benzamides/administration & dosage , Obesity/psychology , Obesity/metabolism , Bridged Bicyclo Compounds/pharmacology , Mice , Eating/drug effects , Behavior, Animal/drug effects , Weight Gain/drug effects
5.
Physiol Behav ; 284: 114647, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39067780

ABSTRACT

It was previously shown in striatal slices obtained from male rats that insulin excites cholinergic interneurons and increases dopamine (DA) release via α4ß2 nicotinic receptors on DA terminals. The effect of insulin on DA release was blocked either by maintaining rats on a high sugar-high fat (HS-HF) diet that induced hyperinsulinemia and nucleus accumbens (NAc) insulin receptor insensitivity, or applying the α4ß2 antagonist DHßE. In vivo, NAc shell insulin inactivation decreased a glucose lick microstructure parameter indicative of hedonic impact in male and female rats, and prevented flavor-nutrient learning, tested only in males. The HS-HF diet decreased hedonic impact in males but not females, and prevented flavor-nutrient learning, tested only in males. The present study extends testing to more fully assess the translation of brain slice results to the behaving rat. Insulin inactivation by antibody microinjection in NAc shell was found to decrease the number of lick bursts emitted and average lick burst size, measures of incentive motivation and hedonic impact respectively, for a wide range of glucose concentrations in male and female rats. In contrast, the HS-HF diet decreased these lick parameters in males but not females. Follow-up two-bottle choice tests for 10 % versus 40 % glucose showed decreased intake of both concentrations by males but increased intake of 40 % glucose by females. In a further set of experiments, it was predicted that α4ß2 receptor blockade would induce the same behavioral effects as insulin inactivation. In females, DHßE microinjection in NAc shell decreased both lick parameters for glucose as predicted, but in males only the number of lick bursts emitted was decreased. DHßE also decreased the number of lick bursts emitted for saccharin by females but not males. Finally, DHßE microinjection in NAc shell decreased flavor-nutrient learning in both sexes. The few discrepancies seen with regard to the hypothesized insulin-nicotinic-dopaminergic regulation of behavioral responses to nutritive sweetener, and its inhibition by HS-HF diet, are discussed with reference to sex differences in DA dynamics, female resistance to diet-induced metabolic morbidities, and extra-striatal cholinergic inputs to NAc.


Subject(s)
Diet, High-Fat , Dopamine , Insulin , Nucleus Accumbens , Animals , Male , Female , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Insulin/metabolism , Dopamine/metabolism , Rats , Diet, High-Fat/adverse effects , Sex Characteristics , Dietary Sugars , Rats, Sprague-Dawley , Glucose/metabolism
6.
Addiction ; 119(10): 1713-1725, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38965792

ABSTRACT

BACKGROUND AND AIMS: Cytisine (also known as cytisinicline) is a low-cost partial agonist of nicotinic acetylcholine receptors used to assist tobacco cessation. We aimed to review the effectiveness of cytisine for tobacco cessation and the effects of dose and co-use of behavioural or other pharmacological interventions on cessation outcomes. METHODS: We searched seven databases, Google Scholar, and reference lists of included publications for randomised controlled trials investigating use of cytisine as a tobacco cessation aid. Studies were eligible if participants were ≥15 years old and used tobacco upon study enrolment. We conducted four random effects meta-analyses and sensitivity analyses with fixed effects models. We used the Cochrane risk-of-bias tool for randomised trials version 2 to assess risk of bias in included studies, with adjustments recommended by the Cochrane Tobacco Addiction Group. RESULTS: Participants using cytisine were significantly more likely to quit tobacco than participants who received placebo/no intervention/usual care (risk ratio [RR] = 2.65, 95% confidence interval [CI] = 1.50-4.67, 6 trials, 5194 participants) or nicotine replacement therapy (RR = 1.36, 95% CI = 1.06-1.73, p = 0.0152, 2 trials, 1511 participants). The difference in cessation rates among participants receiving cytisine versus varenicline was not statistically significant (RR = 0.96, 95% CI 0.63-1.45, P = 0.8464, 3 trials, 2508 participants). Two trials examined longer versus shorter treatment duration, finding higher abstinence rates with longer treatment (RR = 1.29, 95% CI = 1.02-1.63, 2 trials, 1009 participants). The differences in the number of adverse events reported by participants who received cytisine versus placebo (RR = 1.19, 95% CI = 0.99-1.41, P = 0.0624; 6 trials; 4578 participants) or cytisine versus varenicline (RR = 1.37, 95% CI = 0.57-3.33, P = 0.4835; 2 trials; 1345 participants) were not statistically significant. Most adverse events were mild (e.g. abnormal dreams, nausea, headaches). CONCLUSIONS: Cytisine is an effective aid for tobacco cessation and appears to be more effective for tobacco cessation than placebo, no intervention, usual care and nicotine replacement therapy.


Subject(s)
Alkaloids , Azocines , Quinolizines , Smoking Cessation , Azocines/therapeutic use , Quinolizines/therapeutic use , Humans , Alkaloids/therapeutic use , Smoking Cessation/methods , Smoking Cessation Agents/therapeutic use , Randomized Controlled Trials as Topic , Nicotinic Agonists/therapeutic use , Tobacco Use Cessation/methods , Tobacco Use Cessation Devices , Treatment Outcome , Quinolizidine Alkaloids
7.
J Neuroendocrinol ; : e13421, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38826071

ABSTRACT

Reproduction in all mammalian species depends on the growth and maturation of ovarian follicles, that is, folliculogenesis. Follicular development can culminate with the rupture of mature follicles and the consequent expulsion of their oocytes (ovulation) or in atresia, characterized by the arrest of development and eventual degeneration. These processes are regulated by different neuroendocrine signals arising at different hypothalamic nuclei, including the suprachiasmatic nucleus (SCN). In the later, the activation of muscarinic receptors (mAChRs) and nicotinic receptors (nAChRs) by acetylcholine is essential for the regulation of the pre-ovulatory signals that stimulate the rupture of mature follicles. To evaluate the participation of the nAChRs in the SCN throughout the oestrous cycle in the regulation of the hypothalamic-pituitary-ovarian axis. For this purpose, 90-day-old adult female rats in metoestrus, dioestrus, proestrus or oestrus were microinjected into the left- or right-SCN with 0.3 µL of saline solution as vehicle or with 0.225 µg of mecamylamine (Mec), a non-selective antagonist of the nicotinic receptors, diluted in 0.3 µL of vehicle. The animals were sacrificed when they presented vaginal cornification, indicative of oestrus stage, and the effects of the unilateral pharmacological blockade of the nAChRs in the SCN on follicular development, ovulation and secretion of oestradiol and follicle-stimulating hormone (FSH) were evaluated. The microinjection of Mec decreased the serum levels of FSH, which resulted in a lower number of growing and healthy follicles and an increase in atresia. The higher percentage of atresia in pre-ovulatory follicles was related to a decrease in the number of ova shed and abnormalities in oestradiol secretion. We also detected asymmetric responses between the left and right treatments that depended on the stage of the oestrous cycle. The present results allow us to suggest that during all the stages of the oestrous cycle, cholinergic signals that act on the nAChRs in the SCN are pivotal to modulate the secretion of gonadotropins and hence the physiology of the ovaries. Further research is needed to determine if such signals are generated by the cholinergic neurons in the SCN or by cholinergic afferents to the SCN.

8.
Int J Mol Sci ; 25(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38791353

ABSTRACT

Acetylcholine-activated receptors are divided broadly into two major structurally distinct classes: ligand-gated ion channel nicotinic and G-protein-coupled muscarinic receptors. Each class encompasses several structurally related receptor subtypes with distinct patterns of tissue expression and post-receptor signal transduction mechanisms. The activation of both nicotinic and muscarinic cholinergic receptors has been associated with the induction and progression of gastrointestinal neoplasia. Herein, after briefly reviewing the classification of acetylcholine-activated receptors and the role that nicotinic and muscarinic cholinergic signaling plays in normal digestive function, we consider the mechanics of acetylcholine synthesis and release by neuronal and non-neuronal cells in the gastrointestinal microenvironment, and current methodology and challenges in measuring serum and tissue acetylcholine levels accurately. Then, we critically evaluate the evidence that constitutive and ligand-induced activation of acetylcholine-activated receptors plays a role in promoting gastrointestinal neoplasia. We focus primarily on adenocarcinomas of the stomach, pancreas, and colon, because these cancers are particularly common worldwide and, when diagnosed at an advanced stage, are associated with very high rates of morbidity and mortality. Throughout this comprehensive review, we concentrate on identifying novel ways to leverage these observations for prognostic and therapeutic purposes.


Subject(s)
Acetylcholine , Gastrointestinal Neoplasms , Humans , Gastrointestinal Neoplasms/metabolism , Gastrointestinal Neoplasms/pathology , Acetylcholine/metabolism , Animals , Signal Transduction , Receptors, Muscarinic/metabolism , Receptors, Nicotinic/metabolism
9.
Br J Pharmacol ; 181(17): 3172-3191, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38720171

ABSTRACT

BACKGROUND AND PURPOSE: Oligomeric amyloid ß 1-42 (oAß1-42) exhibits agonist-like action at human α7- and α7ß2-containing nicotinic receptors. The N-terminal amyloid ß1-15 fragment (N-Aß fragment) modulates presynaptic calcium and enhances hippocampal-based synaptic plasticity via α7-containing nicotinic receptors. Further, the N-Aß fragment and its core sequence, the N-amyloid-beta core hexapeptide (N-Aßcore), protect against oAß1-42-associated synapto- and neurotoxicity. Here, we investigated how oAß1-42, the N-Aß fragment, and the N-Aßcore regulate the single-channel properties of α7- and α7ß2-nicotinic receptors. EXPERIMENTAL APPROACH: Single-channel recordings measured the impact of acetylcholine, oAß1-42, the N-Aß fragment, and the N-Aßcore on the unitary properties of human α7- and α7ß2-containing nicotinic receptors expressed in nicotinic-null SH-EP1 cells. Molecular dynamics simulations identified potential sites of interaction between the N-Aß fragment and orthosteric α7+/α7- and α7+/ß2- nicotinic receptor binding interfaces. KEY RESULTS: The N-Aß fragment and N-Aßcore induced α7- and α7ß2-nicotinic receptor single-channel openings. Relative to acetylcholine, oAß1-42 preferentially enhanced α7ß2-nicotinic receptor single-channel open probability and open-dwell times. Co-application with the N-Aßcore neutralized these effects. Further, administration of the N-Aß fragment alone, or in combination with acetylcholine or oAß1-42, selectively enhanced α7-nicotinic receptor open probability and open-dwell times (compared to acetylcholine or oAß1-42). CONCLUSIONS AND IMPLICATIONS: Amyloid-beta peptides demonstrate functional diversity in regulating α7- and α7ß2-nicotinic receptor function, with implications for a wide range of nicotinic receptor-mediated functions in Alzheimer's disease. The effects of these peptides on α7- and/or α7ß2-nicotinic receptors revealed complex interactions with these subtypes, providing novel insights into the neuroprotective actions of amyloid ß-derived fragments against the toxic effects of oAß1-42.


Subject(s)
Amyloid beta-Peptides , Peptide Fragments , alpha7 Nicotinic Acetylcholine Receptor , Humans , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/pharmacology , Amyloid beta-Peptides/toxicity , alpha7 Nicotinic Acetylcholine Receptor/metabolism , alpha7 Nicotinic Acetylcholine Receptor/agonists , Peptide Fragments/pharmacology , Neuroprotective Agents/pharmacology , Molecular Dynamics Simulation , Acetylcholine/pharmacology , Receptors, Nicotinic/metabolism
10.
Br J Pharmacol ; 181(13): 1916-1934, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38430056

ABSTRACT

BACKGROUND AND PURPOSE: Asthma is characterized by airway inflammation, mucus hypersecretion, and airway hyperresponsiveness. The use of nicotinic agents to mimic the cholinergic anti-inflammatory pathway (CAP) controls experimental asthma. Yet, the effects of vagus nerve stimulation (VNS)-induced CAP on allergic inflammation remain unknown. EXPERIMENTAL APPROACH: BALB/c mice were sensitized and challenged with house dust mite (HDM) extract and treated with active VNS (5 Hz, 0.5 ms, 0.05-1 mA). Bronchoalveolar lavage (BAL) fluid was assessed for total and differential cell counts and cytokine levels. Lungs were examined by histopathology and electron microscopy. KEY RESULTS: In the HDM mouse asthma model, VNS at intensities equal to or above 0.1 mA (VNS 0.1) but not sham VNS reduced BAL fluid differential cell counts and alveolar macrophages expressing α7 nicotinic receptors (α7nAChR), goblet cell hyperplasia, and collagen deposition. Besides, VNS 0.1 also abated HDM-induced elevation of type 2 cytokines IL-4 and IL-5 and was found to block the phosphorylation of transcription factor STAT6 and expression level of IRF4 in total lung lysates. Finally, VNS 0.1 abrogated methacholine-induced hyperresponsiveness in asthma mice. Prior administration of α-bungarotoxin, a specific inhibitor of α7nAChR, but not propranolol, a specific inhibitor of ß2-adrenoceptors, abolished the therapeutic effects of VNS 0.1. CONCLUSION AND IMPLICATIONS: Our data revealed the protective effects of VNS on various clinical features in allergic airway inflammation model. VNS, a clinically approved therapy for depression and epilepsy, appears to be a promising new strategy for controlling allergic asthma.


Subject(s)
Asthma , Mice, Inbred BALB C , Vagus Nerve Stimulation , alpha7 Nicotinic Acetylcholine Receptor , Animals , alpha7 Nicotinic Acetylcholine Receptor/metabolism , alpha7 Nicotinic Acetylcholine Receptor/agonists , Asthma/immunology , Asthma/metabolism , Asthma/therapy , Mice , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/immunology , Lung/immunology , Lung/metabolism , Lung/pathology , Pyroglyphidae/immunology , Inflammation/metabolism , Inflammation/immunology , Cytokines/metabolism , Female , Disease Models, Animal
11.
Cells ; 13(6)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38534318

ABSTRACT

Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by resting tremor, bradykinesia, rigidity, and postural instability that also includes non-motor symptoms such as mood dysregulation. Dopamine (DA) is the primary neurotransmitter involved in this disease, but cholinergic imbalance has also been implicated. Current intervention in PD is focused on replenishing central DA, which provides remarkable temporary symptomatic relief but does not address neuronal loss and the progression of the disease. It has been well established that neuronal nicotinic cholinergic receptors (nAChRs) can regulate DA release and that nicotine itself may have neuroprotective effects. Recent studies identified nAChRs in nonneuronal cell types, including glial cells, where they may regulate inflammatory responses. Given the crucial role of neuroinflammation in dopaminergic degeneration and the involvement of microglia and astrocytes in this response, glial nAChRs may provide a novel therapeutic target in the prevention and/or treatment of PD. In this review, following a brief discussion of PD, we focus on the role of glial cells and, specifically, their nAChRs in PD pathology and/or treatment.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Receptors, Nicotinic , Humans , Parkinson Disease/metabolism , Receptors, Nicotinic/metabolism , Neurodegenerative Diseases/metabolism , Nicotine/metabolism , Dopamine/metabolism , Astrocytes/metabolism
12.
J Neurochem ; 168(7): 1281-1296, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38339787

ABSTRACT

Insect neuronal nicotinic acetylcholine receptors (nAChRs) are transmembrane receptors that play a key role in the development and synaptic plasticity of both vertebrates and invertebrates and are considered to be major targets of neonicotinoid insecticides. We used dorsal unpaired median (DUM) neurons, which are insect neurosecretory cells, in order to explore the intracellular mechanisms leading to the regulation of insect neuronal nAChRs in more detail. Using whole-cell patch-clamp and fura-2AM calcium imaging techniques, we found that a novel CaMKK/AMPK pathway could be involved in the intracellular regulation of DUM neuron nAChRs. The CaMKK selective inhibitor, STO, reduced nicotinic current amplitudes, and strongly when co-applied with α-Bgt. Interestingly, intracellular application of the AMPK activator, A-76, prevented the reduction in nicotine-induced currents observed in the presence of the AMPK inhibitor, dorsomorphin. STO prevented the increase in intracellular calcium induced by nicotine, which was not dependent on α-Bgt. Currents induced by 1 mM LMA, a selective activator of nAChR2, were reduced under bath application of STO, and mecamylamine, which blocked nAChR2 subtype, inhibited the increase in intracellular calcium induced by LMA. These findings provide insight into potential complex mechanisms linked to the modulation of the DUM neuron nAChRs and CaMKK pathway.


Subject(s)
Calcium , Nicotine , Animals , Nicotine/pharmacology , Calcium/metabolism , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/drug effects , Nicotinic Agonists/pharmacology , Patch-Clamp Techniques , Neurons/drug effects , Neurons/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Kinase/antagonists & inhibitors , Naphthalimides/pharmacology , Protein Kinase Inhibitors/pharmacology , Benzimidazoles
13.
ACS Chem Neurosci ; 15(5): 994-1009, 2024 03 06.
Article in English | MEDLINE | ID: mdl-38407056

ABSTRACT

Cholinergic deficit is a characteristic factor of several pathologies, such as myasthenia gravis, some types of congenital myasthenic syndromes, and Alzheimer's Disease. Two molecular targets for its treatment are acetylcholinesterase (AChE) and nicotinic acetylcholine receptor (nAChR). In previous studies, we found that caffeine behaves as a partial nAChR agonist and confirmed that it inhibits AChE. Here, we present new bifunctional caffeine derivatives consisting of a theophylline ring connected to amino groups by different linkers. All of them were more potent AChE inhibitors than caffeine. Furthermore, although some of them also activated muscle nAChR as partial agonists, not all of them stabilized nAChR in its desensitized conformation. To understand the molecular mechanism underlying these results, we performed docking studies on AChE and nAChR. The nAChR agonist behavior of the compounds depends on their accessory group, whereas their ability to stabilize the receptor in a desensitized state depends on the interactions of the linker at the binding site. Our results show that the new compounds can inhibit AChE and activate nAChR with greater potency than caffeine and provide further information on the modulation mechanisms of pharmacological targets for the design of novel therapeutic interventions in cholinergic deficit.


Subject(s)
Caffeine , Receptors, Nicotinic , Caffeine/pharmacology , Acetylcholinesterase/metabolism , Receptors, Nicotinic/metabolism , Cholinergic Agents/pharmacology , Cholinesterase Inhibitors/pharmacology
14.
Toxicol Res (Camb) ; 13(1): tfad126, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38239268

ABSTRACT

Acetamiprid (ACE), is a popular neonicotinoid pesticide, that has a high affinity for mammalian nicotinic acetylcholine receptors (nAChRs). Therefore, ACE might induce depressive effects by perturbing the cholinergic system in mammalian. The aim of this study was to evaluate the effects of ACE exposure on depressive-like behaviors and grip strength (GS) in mice. Also the possible role of nAChR activation in depression was assessed by varenicline, and bupropion. Male Swiss mice (27 ± 2 g) were daily exposed to ACE by gavage (0.1, 1, 5 mg/kg), behavioral tests took place after 3 h, 7 days and 15 days, the subacute ACE (0.1 mg/kg) exposure was assessed after 30 days. Varenicline (0.5 mg/kg) or bupropion (4 mg/kg) were injected intraperitoneally 30 min prior exposure to (1 mg/kg) ACE. The locomotor activity, forced swimming test (FST), and sucrose preference (SP) test were assessed. After a week ACE dose dependently increased the immobility time during FST, and after 15 days' depressive behavior was observed equally for ACE (0.1-5 mg/kg). The subacute exposure (0.1 mg/kg) significantly increased the immobility time, SP also declined that revealed anhedonia. These behavioral changes showed that ACE can initiate depressive effects. The changes in locomotor activity were not significant. GS significantly reduced following a week of exposure to ACE (1-5 mg/kg) that indicated neurotoxicity. These effects were antagonized by bupropion or varenicline, thus ACE effect on nAChRs was essential in initiating the depressive behavior.

15.
Curr Issues Mol Biol ; 46(1): 808-820, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38248354

ABSTRACT

Chromaffin cells have been used as a physiological model to understand neurosecretion in mammals for many years. Nicotinic receptors located in the cells' membrane are stimulated by acetylcholine, and they participate in the exocytosis of chromaffin granules, releasing catecholamines in response to stress. In this work, we discuss how the participation of nicotinic receptors and the localization of active zones in the borders of the cytoskeleton can generate local calcium signals leading to secretion. We use a computational model of a cytoskeleton cage to simulate Ca2+ levels in response to voltage and acetylcholine pulses. We find that nicotinic receptors are able to enhance the differences between local and average calcium values, as well as the heterogeneous distributions around the active zones, producing a non-linear, highly localized Ca2+ entry that, although consisting of a few ions, is able to improve secretion responses in chromaffin cells. Our findings emphasize the intricate interplay among nicotinic receptors, the cytoskeleton, and active zones within chromaffin cells as an example of Ca2+-dependent neurosecretion in mammals.

16.
J Neurochem ; 168(4): 334-338, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38082541

ABSTRACT

This preface introduces the Journal of Neurochemistry special issue on Cholinergic Mechanisms that highlights the progress in the molecular, structural, neurochemical, pharmacological, toxicological, and clinical studies of the cholinergic system which underline its complexity and impact on health and disease. This issue comprises of (systematic) reviews and original articles, the majority of which have been presented at the 17th International Symposium on Cholinergic Mechanisms (ISCM2022) held in Dubrovnik, Croatia in May 2022. The symposium brought together leading "Cholinergikers" to shed new light on cholinergic transmission, ranging from the molecular to the clinical and cognitive mechanisms.


Subject(s)
Acetylcholine , Receptors, Nicotinic , Acetylcholine/pharmacology , Synaptic Transmission , Cholinergic Agents/pharmacology , Receptors, Nicotinic/metabolism
17.
CNS Neurol Disord Drug Targets ; 23(3): 384-394, 2024.
Article in English | MEDLINE | ID: mdl-37366362

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder affecting millions worldwide. One of the leading hypotheses for the underlying cause of AD is a reduction in nicotinic receptor levels in the brain. Among the nicotinic receptors, the alpha-7-nicotinic acetylcholine receptor (α7nAChR) has received particular attention due to its involvement in cognitive function.α7nAChR is a ligand-gated ion channel that is primarily found in the hippocampus and prefrontal cortex, areas of the brain responsible for learning, memory, and attention. Studies have shown that α7nAChR dysfunction is a key contributor to the pathogenesis of AD. The receptor is involved in regulating amyloidbeta (Aß) production, a hallmark of AD pathology. Many drugs have been investigated as α7nAChR agonists or allosteric modulators to improve cognitive deficits in AD. Clinical studies have shown promising results with α7nAChR agonists, including improved memory and cognitive function. Although several studies have shown the significance of the α7 nAChR in AD, little is known about its function in AD pathogenesis. As a result, in this review, we have outlined the basic information of the α7 nAChR's structure, functions, cellular responses to its activation, and its role in AD's pathogenesis.


Subject(s)
Alzheimer Disease , Receptors, Nicotinic , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Amyloid beta-Peptides/metabolism , Receptors, Nicotinic/metabolism , Brain/metabolism
18.
J Neurochem ; 168(4): 414-427, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37017608

ABSTRACT

The α7 nicotinic receptors (NR) have been confirmed in the heart but their role in cardiac functions has been contradictory. To address these contradictory findings, we analyzed cardiac functions in α7 NR knockout mice (α7-/-) in vivo and ex vivo in isolated hearts. A standard limb leads electrocardiogram was used, and the pressure curves were recorded in vivo, in Arteria carotis and in the left ventricle, or ex vivo, in the left ventricle of the spontaneously beating isolated hearts perfused following Langedorff's method. Experiments were performed under basic conditions, hypercholinergic conditions, and adrenergic stress. The relative expression levels of α and ß NR subunits, muscarinic receptors, ß1 adrenergic receptors, and acetylcholine life cycle markers were determined using RT-qPCR. Our results revealed a prolonged QT interval in α7-/- mice. All in vivo hemodynamic parameters were preserved under all studied conditions. The only difference in ex vivo heart rate between genotypes was the loss of bradycardia in prolonged incubation of isoproterenol-pretreated hearts with high doses of acetylcholine. In contrast, left ventricular systolic pressure was lower under basal conditions and showed a significantly higher increase during adrenergic stimulation. No changes in mRNA expression were observed. In conclusion, α7 NR has no major effect on heart rate, except when stressed hearts are exposed to a prolonged hypercholinergic state, suggesting a role in acetylcholine spillover control. In the absence of extracardiac regulatory mechanisms, left ventricular systolic impairment is revealed.


Subject(s)
Hemodynamics , alpha7 Nicotinic Acetylcholine Receptor , Animals , Mice , Acetylcholine/metabolism , Adrenergic Agents , alpha7 Nicotinic Acetylcholine Receptor/genetics , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Hemodynamics/genetics , Receptors, Nicotinic/genetics , Receptors, Nicotinic/metabolism , Myocardium/metabolism
19.
Neurotox Res ; 42(1): 3, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38095760

ABSTRACT

Toxic exposures to heavy metals, such as iron (Fe) and manganese (Mn), can result in long-range neurological diseases and are therefore of significant environmental and medical concerns. We have previously reported that damage to neuroblastoma-derived dopaminergic cells (SH-SY5Y) by both Fe and Mn could be prevented by pre-treatment with nicotine. Moreover, butyrate, a short chain fatty acid (SCFA) provided protection against salsolinol, a selective dopaminergic toxin, in the same cell line. Here, we broadened the investigation to determine whether butyrate might also protect against Fe and/or Mn, and whether, if combined with nicotine, an additive or synergistic effect might be observed. Both butyrate and nicotine concentration-dependently blocked Fe and Mn toxicities. Ineffective concentrations of nicotine and butyrate, when combined, provided full protection against both Fe and Mn. Moreover, the effects of nicotine but not butyrate could be blocked by mecamylamine, a non-selective nicotinic antagonist. On the other hand, the effects of butyrate, but not nicotine, could be blocked by beta-hydroxy butyrate, a fatty acid-3 receptor antagonist. These results not only provide further support for neuroprotective effects of both nicotine and butyrate but also indicate distinct mechanisms of action for each one. Furthermore, potential utility of butyrate and nicotine combination against heavy metal toxicities is suggested.


Subject(s)
Neuroblastoma , Nicotine , Humans , Nicotine/toxicity , Manganese/toxicity , Iron/toxicity , Butyrates/pharmacology , Cell Line, Tumor , Cell Culture Techniques
20.
Res Sq ; 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37886507

ABSTRACT

Toxic exposures to heavy metals, such as iron (Fe) and manganese (Mn), can result in long-range neurological diseases and are therefore of significant environmental and medical concerns. We have previously reported that damage to neuroblastoma-derived dopaminergic cells (SH-SY5Y) by both Fe and Mn could be prevented by pre-treatment with nicotine. Moreover, butyrate, a short chain fatty acid (SCFA) provided protection against salsolinol, a selective dopaminergic toxin, in the same cell line. Here, we broadened the investigation to determine whether butyrate might also protect against Fe and/or Mn, and whether, if combined with nicotine, an additive or synergistic effect might be observed. Both butyrate and nicotine concentration-dependently blocked Fe and Mn toxicities. The ineffective concentrations of nicotine and butyrate, when combined, provided full protection against both Fe and Mn. Moreover, the effects of nicotine but not butyrate could be blocked by mecamylamine, a non-selective nicotinic antagonist. On the other hand, the effects of butyrate, but not nicotine, could be blocked by beta-hydroxy butyrate, a fatty acid-3 receptor antagonist. These results not only provide further support for neuroprotective effects of both nicotine and butyrate but indicate distinct mechanisms of action for each one. Furthermore, potential utility of the combination of butyrate and nicotine against heavy metal toxicities is suggested.

SELECTION OF CITATIONS
SEARCH DETAIL