ABSTRACT
The valorization of byproducts from the sugarcane industry represents a potential alternative method with a low energy cost for the production of metabolites that are of commercial and industrial interest. The production of exopolysaccharides (EPSs) was carried out using the yeast Suhomyces kilbournensis isolated from agro-industrial sugarcane, and the products and byproducts of this agro-industrial sugarcane were used as carbon sources for their recovery. The effect of pH, temperature, and carbon and nitrogen sources and their concentration in EPS production by submerged fermentation (SmF) was studied in 170 mL glass containers of uniform geometry at 30 °C with an initial pH of 6.5. The resulting EPSs were characterized with Fourier-transform infrared spectroscopy (FT-IR). The results showed that the highest EPS production yields were 4.26 and 44.33 g/L after 6 h of fermentation using sucrose and molasses as carbon sources, respectively. Finally, an FT-IR analysis of the EPSs produced by S. kilbournensis corresponded to levan, corroborating its origin. It is important to mention that this is the first work that reports the production of levan using this yeast. This is relevant because, currently, most studies are focused on the use of recombinant and genetically modified microorganisms; in this scenario, Suhomyces kilbournensis is a native yeast isolated from the sugar production process, giving it a great advantage in the incorporation of carbon sources into their metabolic processes in order to produce levan sucrose, which uses fructose to polymerize levan.
Subject(s)
Saccharomycetales , Saccharum , Fermentation , Saccharum/metabolism , Molasses/analysis , Carbon , Spectroscopy, Fourier Transform Infrared , Saccharomyces cerevisiae/metabolism , Fructans/chemistry , Sucrose/metabolismABSTRACT
Cultivating Limnospira maxima, renowned for its abundant proteins and valuable pigments, faces substantial challenges rooted in the limited understanding of its optimal growth parameters, associated high costs, and constraints in the procurement of traditional nitrogen sources, particularly NaNO3. To overcome these challenges, we conducted a comprehensive 4 × 3 factorial design study. Factors considered included white, red, blue, and yellow light spectra, along with nitrogen sources NaNO3 and KNO3, as well as a nitrogen-free control, for large-scale implementation. Optimal growth, measured by Optical Density, occurred with white and yellow light combined with KNO3 as the nitrogen source. These conditions also increased dry weight and Chl-a content. Cultures with nitrogen deprivation exhibited high values for these variables, attributed to carbon accumulation in response to nitrogen scarcity. Phycocyanin, a crucial pigment for nutrition and industry, reached its highest levels in cultures exposed to white light and supplemented with KNO3, with an impressive content of 384.11 g kg-1 of dry weight. These results highlight the efficacy and cost-efficiency of using a combination of white light and KNO3 for large-scale L. maxima cultivation. This strategy offers promising opportunities to address global food security challenges and enhance the production of industrially relevant pigments.
ABSTRACT
The Gram-positive bacteria lactic acid bacteria (LAB) are used in the food industry but are also known for inhibiting certain food spoilage microorganisms, especially fungi. Sources of nitrogen (N) for culture media are generally organic and expensive. Many attempts have been made to formulate economical culture media with alternative N sources obtained from agricultural and industrial byproducts. This study describes the design and optimization of an inexpensive culture medium for Lactiplantibacillus plantarum (formerly Lactobacillus plantarum) MZ809351 strain B31. The culture medium was optimized using statistical experimental designs to identify the factors with the most significant effects on biomass concentration to reduce the overall cost, aiming to obtain a biomass concentration similar to that obtained with the reference LAB culture medium (de Man, Rogosa and Sharpe; MRS). Sodium acetate and magnesium sulfate were the most significant factors (p < 0.005), and their contents were reduced by 22 % and 40 %, respectively, without affecting biomass concentration. Malt germ extract (MGE) was used as an alternative nitrogen source to replace meat extract (ME) and proteose peptone (PP). Through these experiments, the composition of a culture medium that is less expensive than MRS broth was defined, which produced a biomass concentration (3.8 g/L) similar to that obtained with MRS medium. The inhibitory effects of two LAB strains isolated from the Ivory Coast and Mexico on the growth and production of ochratoxin A (OTA) in an ochratoxigenic fungus was tested. The minimum cellular concentration of the LAB to prevent the development of Aspergillus carbonarius Ac 089 and the production of OTA was determined in a model assay in Petri dishes. The conditions to inhibit the germination of A. carbonarius Ac 089 and the production of OTA were found. Using the optimized medium and a ratio of 2 × 104 LAB/spore (1 × 108 CFU/mL) strain B7 (L. plantarum MZ809351) and 2 × 103 LAB/spore (1 × 107 CFU/mL) strain B31 (L. plantarum MN922335) completely inhibited the growth of the fungus. A ratio of 2 × 105 LAB/spore (1 × 109 CFU/mL) was required to inhibit OTA production with strains B7 and B31. This study indicates the potential of cultivating LAB in an optimized and inexpensive culture medium for use as a biological control agent against ochratoxigenic fungi in food.
Subject(s)
Lactobacillales , Ochratoxins , Humans , Culture Media , Nitrogen/pharmacology , Plant ExtractsABSTRACT
The microalga Chlorella sorokiniana and the microalgae growth-promoting bacteria (MGPB) Azospirillum brasilense have a mutualistic interaction that can begin within the first hours of co-incubation; however, the metabolites participating in this initial interaction are not yet identified. Nuclear magnetic resonance (NMR) was used in the present study to characterize the metabolites exuded by two strains of C. sorokiniana (UTEX 2714 and UTEX 2805) and A. brasilense Cd when grown together in an oligotrophic medium. Lactate and myo-inositol were identified as carbon metabolites exuded by the two strains of C. sorokiniana; however, only the UTEX 2714 strain exuded glycerol as the main carbon compound. In turn, A. brasilense exuded uracil when grown on the exudates of either microalga, and both microalga strains were able to utilize uracil as a nitrogen source. Interestingly, although the total carbohydrate content was higher in exudates from C. sorokiniana UTEX 2805 than from C. sorokiniana UTEX 2714, the growth of A. brasilense was greater in the exudates from the UTEX 2714 strain. These results highlight the fact that in the exuded carbon compounds differ between strains of the same species of microalgae and suggest that the type, rather than the quantity, of carbon source is more important for sustaining the growth of the partner bacteria.
Subject(s)
Azospirillum brasilense , Chlorella , Microalgae , Symbiosis , Exudates and TransudatesABSTRACT
Bacterial cellulose (BC) is a biopolymer mainly produced by acetic acid bacteria (AAB) that has several applications in the medical, pharmaceutical, and food industries. As other living organisms, AAB require sources of chemical elements and nutrients, which are essential for their multiplication and metabolite production. So, the knowledge of the nutritional needs of microorganisms that have important industrial applications is necessary for the nutrients to be supplied in the appropriate form and amount. Considering that the choice of different nutrients as nitrogen source can result in different metabolic effects, this work aimed to verify the effects of amino acid supplementation in the culture media for BC production by an AAB strain (Komagataeibacter intermedius V-05). For this, nineteen amino acids were tested, selected, and optimized through a Plackett and Burman factorial design and central composite design to determine the optimal concentrations of each required amino acid. Membranes produced under optimal conditions were characterized in relation to chemical structure and properties by X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), infrared spectroscopy (FT-IR), and hydrophilic properties. Three amino acids had a significant positive effect and were required: aspartic acid (1.5 g L-1), phenylalanine (1.5 g L-1), and serine (3.0 g L-1). Conversely, all sulfur and positively charged amino acids had a negative effect and reduced the production yield. After optimization and validation steps, a production level of 3.02 g L-1 was achieved. Membranes produced from optimized media by this strain presented lower crystallinity index but greater thermal and hydrophilic properties than those produced from standard HS medium.
Subject(s)
Acetobacteraceae , Cellulose , Cellulose/chemistry , Spectroscopy, Fourier Transform Infrared , Amino Acids/metabolism , Aspartic Acid/metabolism , Biopolymers/metabolism , Culture Media/metabolism , Dietary Supplements , Sulfur , Nitrogen/metabolism , Phenylalanine , Serine/metabolism , Pharmaceutical Preparations , FermentationABSTRACT
Augmenting bacterial growth is of great interest to the biotechnological industry. Hence, the effect of poly (caprolactone) fibrous scaffolds to promote the growth of different bacterial strains of biological and industrial interest was evaluated. Furthermore, different types of carbon (glucose, fructose, lactose and galactose) and nitrogen sources (yeast extract, glycine, peptone and urea) were added to the scaffold to determinate their influence in bacterial growth. Bacterial growth was observed by scanning electron microscopy; thermal characteristics were also evaluated; bacterial cell growth was measured by ultraviolet-visible spectrophotometry at 600-nm. Fibers produced have an average diameter between 313 to 766 nm, with 44% superficial porosity of the scaffolds, a glass transition around ~64 °C and a critical temperature of ~338 °C. The fibrous scaffold increased the cell growth of Escherichia coli by 23% at 72 h, while Pseudomonas aeruginosa and Staphylococcus aureus increased by 36% and 95% respectively at 48 h, when compared to the normal growth of their respective bacterial cultures. However, no significant difference in bacterial growth between the scaffolds and the casted films could be observed. Cell growth depended on a combination of several factors: type of bacteria, carbon or nitrogen sources, casted films or 3D scaffolds. Microscopy showed traces of a biofilm formation around 3 h in culture of P. aeruginosa. Water bioremediation studies showed that P. aeruginosa on poly (caprolactone)/Glucose fibers was effective in removing 87% of chromium in 8 h.
ABSTRACT
The aim of this work was to evaluate the growth and the proximate compositionof the mycelium-based bocaiuva pulp with the edible mushroom Pleurotusostreatuson green bocaiuva flour added with different sources of nitrogen (urea, ammonium nitrate and sulfate ammonia). Growth was monitored by kinectics. At the end, the proximate composition of the best three treatments (dehydrated green bocaiuva pulp and water, T1; dehydrated green bocaiuva pulp and ammonium nitrate, T3; and green bocaiuva pulp/wheat bran and ammonium nitrate, T7) was determined. Ammonium nitrate was the nitrogen source that showed the greatest growth in both substrates (T3:8.33 cm and T7:7.67 cm) in relation to the other treatments (4.67 to 7.17 cm), with emphasis on the green bocaiuva pulp. The substrate with green bocaiuva pulp and water was the one that showed the highest growth (7.50 cm), which was close to the treatment with mixed substrate and ammonium nitrate (7.67 cm). The treatment with the green bocaiuva pulp and ammonium nitrate (T3) was highlighted due to its significant increase in proteins (9.42 g 100 g-1) and fibers (5.21 g 100 g-1), and decrease in carbohydrates (9.52 g 100 g-1), in comparison to the other treatments T7 (8.94, 2.16, and 5.99 g 100 g-1, respectively) and T1 (2.78, 4.33, and 2.28 g 100 g-1, respectively). The product obtained from the growth of P. ostreatusin green bocaiuva pulp presents promising perspectives to be utilized as raw material for the development of new food products with added nutritional value.(AU)
Subject(s)
Pleurotus/genetics , Substrates for Biological Treatment/analysis , NitrogenABSTRACT
The aim of this work was to evaluate the growth and the proximate compositionof the mycelium-based bocaiuva pulp with the edible mushroom Pleurotusostreatuson green bocaiuva flour added with different sources of nitrogen (urea, ammonium nitrate and sulfate ammonia). Growth was monitored by kinectics. At the end, the proximate composition of the best three treatments (dehydrated green bocaiuva pulp and water, T1; dehydrated green bocaiuva pulp and ammonium nitrate, T3; and green bocaiuva pulp/wheat bran and ammonium nitrate, T7) was determined. Ammonium nitrate was the nitrogen source that showed the greatest growth in both substrates (T3:8.33 cm and T7:7.67 cm) in relation to the other treatments (4.67 to 7.17 cm), with emphasis on the green bocaiuva pulp. The substrate with green bocaiuva pulp and water was the one that showed the highest growth (7.50 cm), which was close to the treatment with mixed substrate and ammonium nitrate (7.67 cm). The treatment with the green bocaiuva pulp and ammonium nitrate (T3) was highlighted due to its significant increase in proteins (9.42 g 100 g-1) and fibers (5.21 g 100 g-1), and decrease in carbohydrates (9.52 g 100 g-1), in comparison to the other treatments T7 (8.94, 2.16, and 5.99 g 100 g-1, respectively) and T1 (2.78, 4.33, and 2.28 g 100 g-1, respectively). The product obtained from the growth of P. ostreatusin green bocaiuva pulp presents promising perspectives to be utilized as raw material for the development of new food products with added nutritional value.
Subject(s)
Nitrogen , Pleurotus/genetics , Substrates for Biological Treatment/analysisABSTRACT
n-Butanol is a renewable resource with a wide range of applications. Its physicochemical properties make it a potential substitute for gasoline. Saccharomyces cerevisiae can produce n-butanol via amino acid catabolic pathways, but the use of pure amino acids is economically unfeasible for large-scale production. The aim of this study was to optimize the production of n-butanol by S. cerevisiae from protein-rich agro-industrial by-products (sunflower and poultry offal meals). By-products were characterized according to their total protein and free amino acid contents and subjected to enzymatic hydrolysis. Protein hydrolysates were used as nitrogen sources for the production of n-butanol by S. cerevisiae, but only poultry offal meal hydrolysate (POMH) afforded detectable levels of n-butanol. Under optimized conditions (carbon/nitrogen ratio of 2 and working volume of 60%), 59.94 mg/L of n-butanol was produced using POMH and glucose as substrates. The low-cost agro-industrial by-product showed great potential to be used in the production of n-butanol by S. cerevisiae. Other protein-rich residues may also find application in biofuel production by yeasts.
Subject(s)
1-Butanol/metabolism , Agriculture , Industrial Waste , Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acids/analysis , Amino Acids/metabolism , Biofuels , Fermentation , Hydrolysis , Industrial Waste/analysis , Proteins/analysis , Refuse DisposalABSTRACT
The initial stimulation of photosynthesis under elevated CO2 concentrations (eCO2) is often followed by a decline in photosynthesis, known as CO2 acclimation. Changes in N levels under eCO2 can have different effects in plants fertilized with nitrate (NO3-) or ammonium (NH4+) as the N source. NO3- assimilation consumes approximately 25% of the energy produced by an expanded leaf, whereas NH4+ requires less energy to be incorporated into organic compounds. Although plant-N interactions are important for the productivity and nutritional value of food crops worldwide, most studies have not compared the performance of plants supplied with different forms of N. Therefore, this study aims to go beyond treating N as the total N in the soil or the plant because the specific N compounds formed from the available N forms become highly engaged in all aspects of plant metabolism. To this end, plant N metabolism was analyzed through an experiment with eCO2 and fertigation with NO3- and/or NH4+ as N sources for tobacco (Nicotiana tabacum) plants. The results showed that the plants that received only NO3- as a source of N grew more slowly when exposed to a CO2 concentration of 760 µmol mol-1 than when they were exposed to ambient CO2 conditions. On the other hand, in plants fertigated with only NH4+, eCO2 enhanced photosynthesis. This was essential for the maintenance of the metabolic pathways responsible for N assimilation and distribution in growing tissues. These data show that the physiological performance of tobacco plants exposed to eCO2 depends on the form of inorganic N that is absorbed and assimilated.
Subject(s)
Carbon Dioxide/metabolism , Nicotiana/physiology , Nitrogen/metabolism , Photosynthesis , Ammonium Compounds/metabolism , Nitrates/metabolism , Soil/chemistry , Nicotiana/growth & developmentABSTRACT
Gene regulation in yeast occurs at the transcription level, i.e. the basal level of expression is very low and increased transcription requires gene-specific transcription factors allowing the recruitment of basal transcriptional machinery. Saccharomyces cerevisiae BAP2 gene encodes the permease responsible for most uptake of leucine, valine and isoleucine, amino acids that this yeast can use as nitrogen sources. Moreover, BAP2 expression is known to be induced by the presence of amino acids such as leucine. In this context, the results presented in this paper show that BAP2 is an inducible gene in the presence of nitrogen-non-preferred source proline but exhibits high constitutive non-inducible expression in nitrogen-preferred source ammonium. BAP2 expression is regulated by the SPS sensor system and transcription factors Leu3, Gcn4 and Dal81. This can be achieved or not through a direct binding to the promoter depending on the quality of the nitrogen source. We further demonstrate here that an interaction occurs in vivo between Uga3 â the transcriptional activator responsible for γ-aminobutyric acid (GABA)-dependent induction of the GABA genes â and the regulatory region of the BAP2 gene, which leads to an increase in BAP2 transcription.
Subject(s)
Amino Acid Transport Systems/genetics , DNA-Binding Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Transcription Factors/metabolism , Amino Acid Transport Systems/metabolism , Amino Acids, Branched-Chain/metabolism , DNA-Binding Proteins/genetics , Gene Expression Regulation, Fungal , Nitrogen/metabolism , Promoter Regions, Genetic , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/geneticsABSTRACT
Ethanol is currently the most successful biofuel and can be produced from microalgal biomass (third-generation). Ethanol from microalgal biomass has advantages because it does not use arable land and reduces environmental impacts through the sequestration of CO2 from the atmosphere. In this way, micro and macroalgal starch, which is structurally similar to that from higher plants can be considered a promise raw material for the production of bioethanol. Thus, strategies can be used to intensify the carbohydrate concentration in the microalgal biomass enabling the production of third-generation bioethanol. The microalgae biomass can be destined to biorefineries so that the residual biomass generated from the extraction processes is used for the production of high value-added products. Therefore, the process will have an impact on reducing the production costs and the generation of waste. In this context, this review aims to bring concepts and perspectives on the production of third-generation bioethanol, demonstrating the microalgal biomass potential as a carbon source to produce bioethanol and supply part of the world energy demand. The main factors that influence the microalgal cultivation and fermentation process, as well as the processes of transformation of biomass into the easily fermentable substrate are also discussed.
Subject(s)
Biofuels , Ethanol/metabolism , Microalgae/metabolism , Starch/metabolism , Bioengineering , Biomass , Carbon/metabolism , Fermentation , Microalgae/growth & developmentABSTRACT
Background: Prodigiosin has been demonstrated to be an important candidate in investigating anticancer drugs and in many other applications in recent years. However, industrial production of prodigiosin has not been achieved. In this study, we found a prodigiosin-producing strain, Serratia marcescens FZSF02, and its fermentation strategies were studied to achieve the maximum yield of prodigiosin. Results: When the culture medium consisted of 16.97 g/L of peanut powder, 16.02 g/L of beef extract, and 11.29 mL/L of olive oil, prodigiosin reached a yield of 13.622 ± 236 mg/L after culturing at 26 °C for 72 h. Furthermore, when 10 mL/L olive oil was added to the fermentation broth at the 24th hour of fermentation, the maximum prodigiosin production of 15,420.9 mg/L was obtained, which was 9.3-fold higher than the initial level before medium optimization. More than 60% of the prodigiosin produced with this optimized fermentation strategy was in the form of pigment pellets. To the best of our knowledge, this is the first report on this phenomenon of pigment pellet formation, which made it much easier to extract prodigiosin at low cost. Prodigiosin was then purified and identified by absorption spectroscopy, HPLC, and LCMS. Purified prodigiosin obtained in this study showed anticancer activity in separate experiments on several human cell cultures: A549, K562, HL60, HepG2, and HCT116. Conclusions: This is a promising strain for producing prodigiosin. The prodigiosin has potential in anticancer medicine studies.
Subject(s)
Prodigiosin/biosynthesis , Prodigiosin/pharmacology , Serratia marcescens/metabolism , Antineoplastic Agents/pharmacology , Arachis/chemistry , Powders , Prodigiosin/isolation & purification , Mass Spectrometry , Tumor Cells, Cultured/drug effects , Chromatography, High Pressure Liquid , Chromatography, Liquid , Cell Culture Techniques , Fermentation , Olive Oil/chemistry , Acetates , NitrogenABSTRACT
INTRODUCTION: The use of urea as a nitrogen (N) source by Chlorophytes usually enhances biomass and lipid production when compared to ammonium (NH4+). However, the metabolic shifts displayed by Chlamydomonas reinhardtii growing with this organic N source are not known. OBJECTIVES: This study aimed: (i) to characterize the metabolism of C. reinhardtii cultivated in media containing only urea as N source as well as combined with different NH4+ ratios; (ii) to understand how metabolism respond to urea availability. METHODS: Specific quantification of metabolites using 96-well microplates, and high-performance liquid chromatography combined with non-targeted metabolite profiling by gas chromatography (GC)-time-of-flight (TOF)-mass spectrometry (MS) were used in this study. In addition, GC analysis was used to determine fatty acid profiling. RESULTS: The use of urea did not alter the growth rate in comparison with NH4+. Interestingly, the cell number decreased and the cell size increased proportionally with urea availability. Furthermore, chlorophyll, protein and lipid contents increased with the amount of urea. Regarding the fatty acid profile, oleic acid (C18:1 w8) decreased with amount of urea, while linoleic acid (C18:2 w6) doubled in urea-containing medium. CONCLUSIONS: These results indicate that urea promotes remarkable adjustments in metabolism, without drastic changes in biomass, promoting changes in carbohydrate and amino acid metabolism, as well as in lipids production and fatty acid profile.
Subject(s)
Chlamydomonas reinhardtii/growth & development , Chlamydomonas reinhardtii/metabolism , Urea/metabolism , Biomass , Carbon/metabolism , Fatty Acids/analysis , Gas Chromatography-Mass Spectrometry , Lipid Metabolism/physiology , Lipids/biosynthesis , Nitrogen/metabolismABSTRACT
Alanine mother liquor, a type of industrial waste from alanine fermentation, was used as a nitrogen source to produce docosahexaenoic acid (DHA) by Schizochytrium sp. B4D1. The results indicated that yeast extract could trigger the utilization of the alanine mother liquor. Additionally, the alanine can be quenched during the culture, which aids in DHA accumulation. The medium components were optimized via response surface methodology as follows: 99.98-g/L glucose, 0.05-g/L yeast extract and a 183.17 dilution factor of the alanine mother liquid (v/v, with an alanine content of 0.72 g/L) and 17.98% inoculum concentration (v/v). Finally, in a 50-mL shake-flask fermentation, the DHA yield was 2.29 g/L.
Subject(s)
Docosahexaenoic Acids/biosynthesis , Alanine/metabolism , Stramenopiles/metabolism , Yeasts , Intercellular Signaling Peptides and Proteins/isolation & purification , Alanine/analysis , Fermentation , Glucose , Industrial WasteABSTRACT
ABSTRACT Objectives. The aim of this study was to evaluate the effect of the hydropolymer TerraCottem on soil microbial activity by measuring soil respiration and leaching of mineral nitrogen. Materials and methods. The incubation experiment contained control variants with natural soil of Nerja area (South Spain, inside the Sierra Tejeda, Almijara and Alhama Natural Park, 36.7985173° N 3.8511693° W; WCGS84), variants with the addition of easy available nitrogen compounds (kg N ha-1), easy accessible carbon compounds (1% glucose solution) and a combinations of both. Within each variant, the recommended amount of control hydropolymers (1.5 kg/m3) and a double dose of 3.0 kg/m3 were compared. Results. Showed that respiration activity of the soil in this Mediterranean area was not eliminated by the lack of ready available nitrogen or carbon substrates. Furthermore, differences in CO2 production between the variants containing different amounts of hydropolymers were not significant. A statistically significant difference in the CO2 production was found in the first week compared to longer time periods. Conclusions. The mineral nitrogen leaching measurement showed that the biological activity of the studied is not affected by nitrogen dynamics which is balanced regardless of the amount of applied hydropolymer. On the other hand, leaching processes occurred when soil was doped only with nitrogen compounds or only carbonaceous, a problem that can appear after fertilizers application.
RESUMEN Objetivo. El objetivo de este estudio pasa por evaluar el efecto del-Terracottem- en la actividad microbiana del suelo mediante la medida de la respiración edáfica y la pérdida de nitrógeno mineral por lixiviación. El ensayo se ha realizado en condiciones de laboratorio controladas y con suelos naturales. Materiales y métodos. Para el experimento, se han diseñado varios tratamientos: i) suelos naturales a los que se les ha adicionado compuestos nitrogenados de libre disponibilidad (Kg N ha-1); ii) suelos naturales a los que se les ha adicionado carbohidratos de libre disponibilidad (1% de solución de glucosa); iii) suelos naturales a los que se les ha adicionado una mezcla de compuestos nitrogenados de libre disponibilidad (Kg N ha-1) con carbohidratos (1% de solución de glucosa). En cada variante se han testeado diferentes dosis del polímero. Resultados. Los resultados han demostrado que la actividad respiratoria del suelo es independiente de la disponibilidad de compuestos como el nitrógeno o carbono. Tampoco se han observado diferencias significativas entre las diferentes dosis del polímero. Por el contrario, si se observaron diferencias en la producción de CO2. Conclusiones. La lixiviación únicamente se producía cuando los suelos eran enmendados con compuestos únicamente nitrogenados o únicamente sólo carbonosos.
ABSTRACT
Cellulose is mainly produced by plants, although many bacteria, especially those belonging to the genus Gluconacetobacter, produce a very peculiar form of cellulose with mechanical and structural properties that can be exploited in numerous applications. However, the production cost of bacterial cellulose (BC) is very high to the use of expensive culture media, poor yields, downstream processing, and operating costs. Thus, the purpose of this work was to evaluate the use of industrial residues as nutrients for the production of BC by Gluconacetobacter hansenii UCP1619. BC pellicles were synthesized using the Hestrin-Schramm (HS) medium and alternative media formulated with different carbon (sugarcane molasses and acetylated glucose) and nitrogen sources [yeast extract, peptone, and corn steep liquor (CSL)]. A jeans laundry was also tested. None of the tested sources (beside CSL) worked as carbon and nutrient substitute. The alternative medium formulated with 1.5% glucose and 2.5% CSL led to the highest yield in terms of dry and hydrated mass. The BC mass produced in the alternative culture medium corresponded to 73% of that achieved with the HS culture medium. The BC pellicles demonstrated a high concentration of microfibrils and nanofibrils forming a homogenous, compact, and three-dimensional structure. The biopolymer produced in the alternative medium had greater thermal stability, as degradation began at 240°C, while degradation of the biopolymer produced in the HS medium began at 195°C. Both biopolymers exhibited high crystallinity. The mechanical tensile test revealed the maximum breaking strength and the elongation of the break of hydrated and dry pellicles. The dry BC film supported up to 48 MPa of the breaking strength and exhibited greater than 96.98% stiffness in comparison with the hydrated film. The dry film supported up to 48 MPa of the breaking strength and exhibited greater than 96.98% stiffness in comparison with the hydrated film. The values obtained for the Young's modulus in the mechanical tests in the hydrated samples indicated low values for the variable rigidity. The presence of water in the interior and between the nanofibers of the hydrated BC only favored the results for the elasticity, which was 56.37% higher when compared to the dry biomaterial.
ABSTRACT
Background: During salt stress, the yeast Debaryomyces hansenii synthesizes tyrosine as a strategy to avoid the oxidation of proteins. Tyrosine reacts with nitrogen radicals to form 3-nitrotyrosine. 3-nitrotyrosine prevents the effects of associated oxidative stress and thus contributes to the high halotolerace of the yeast. However, the mechanism of how D. hansenii counteracts the presence of this toxic compound is unclear. In this work, we evaluated D. hansenii's capacity to assimilate 3-nitrotyrosine as a unique nitrogen source and measured its denitrase activity under salt stress. To identify putative genes related to the assimilation of 3-nitrotyrosine, we performed an in silico search in the promoter regions of D. hansenii genome. Results: We identified 15 genes whose promoters had binding site sequences for transcriptional factors of sodium, nitrogen, and oxidative stress with oxidoreductase and monooxygenase GO annotations. Two of these genes, DEHA2E24178g and DEHA2C00286g, coding for putative denitrases and having GATA sequences, were evaluated by RT-PCR and showed high expression under salt and nitrogen stress. Conclusions: D. hansenii can grow in the presence of 3-nitrotyrosine as the only nitrogen source and has a high specific denitrase activity to degrade 3-nitrotyrosine in 1 and 2 M NaCl stress conditions. The results suggest that given the lack of information on transcriptional factors in D. hansenii, the genes identified in our in silico analysis may help explain 3-nitrotyrosine assimilation mechanisms.
Subject(s)
Tyrosine/analogs & derivatives , Tyrosine/metabolism , Debaryomyces/genetics , Debaryomyces/metabolism , Tyrosine/genetics , Transcription, Genetic , Yeasts , Regulatory Sequences, Nucleic Acid , Promoter Regions, Genetic , Oxidative Stress , Real-Time Polymerase Chain Reaction , Osmoregulation , Extremophiles , Salt Stress , Nitrogen/metabolismABSTRACT
The high costs and environmental concerns associated with using marine resources as sources of oils rich in polyunsaturated fatty acids have prompted searches for alternative sources of such oils. Some microorganisms, among them members of the genus Aurantiochytrium, can synthesize large amounts of these biocompounds. However, various parameters that affect the polyunsaturated fatty acids production of these organisms, such as the carbon and nitrogen sources supplied during their cultivation, require further elucidation. The objective of this investigation was to study the effect of different concentrations of carbon and total nitrogen on the production of polyunsaturated fatty acids, particularly docosahexaenoic acid, by Aurantiochytrium sp. ATCC PRA-276. We performed batch system experiments using an initial glucose concentration of 30 g/L and three different concentrations of total nitrogen, including 3.0, 0.44, and 0.22 g/L, and fed-batch system experiments in which 0.14 g/L of glucose and 0.0014 g/L of total nitrogen were supplied hourly. To assess the effects of these different treatments, we determined the biomass, glucose, total nitrogen and polyunsaturated fatty acids concentration. The maximum cell concentration (23.9 g/L) was obtained after 96 h of cultivation in the batch system using initial concentrations of 0.22 g/L total nitrogen and 30 g/L glucose. Under these conditions, we observed the highest level of polyunsaturated fatty acids production (3.6 g/L), with docosahexaenoic acid and docosapentaenoic acid 6 concentrations reaching 2.54 and 0.80 g/L, respectively.(AU)
Subject(s)
Docosahexaenoic Acids/biosynthesis , Fatty Acids, Unsaturated , Fatty Acids, Omega-3 , Fatty Acids, Omega-6 , MicroalgaeABSTRACT
Abstract The high costs and environmental concerns associated with using marine resources as sources of oils rich in polyunsaturated fatty acids have prompted searches for alternative sources of such oils. Some microorganisms, among them members of the genus Aurantiochytrium, can synthesize large amounts of these biocompounds. However, various parameters that affect the polyunsaturated fatty acids production of these organisms, such as the carbon and nitrogen sources supplied during their cultivation, require further elucidation. The objective of this investigation was to study the effect of different concentrations of carbon and total nitrogen on the production of polyunsaturated fatty acids, particularly docosahexaenoic acid, by Aurantiochytrium sp. ATCC PRA-276. We performed batch system experiments using an initial glucose concentration of 30 g/L and three different concentrations of total nitrogen, including 3.0, 0.44, and 0.22 g/L, and fed-batch system experiments in which 0.14 g/L of glucose and 0.0014 g/L of total nitrogen were supplied hourly. To assess the effects of these different treatments, we determined the biomass, glucose, total nitrogen and polyunsaturated fatty acids concentration. The maximum cell concentration (23.9 g/L) was obtained after 96 h of cultivation in the batch system using initial concentrations of 0.22 g/L total nitrogen and 30 g/L glucose. Under these conditions, we observed the highest level of polyunsaturated fatty acids production (3.6 g/L), with docosahexaenoic acid and docosapentaenoic acid ω6 concentrations reaching 2.54 and 0.80 g/L, respectively.