Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
1.
J Appl Clin Med Phys ; : e14510, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39287562

ABSTRACT

PURPOSE: The aim of this study was to assess the accuracy of a surface-guided radiotherapy (SGRT) system for setup and intra-fraction motion control in frameless non-coplanar stereotactic radiosurgery (fSRS) using actual patient data immobilized with two different types of open-faced masks and employing a novel SGRT systems settings. METHODS AND MATERIALS: Forty-four SRS patients were immobilized with two types of open-faced masks. Sixty lesions were treated, involving the analysis of 68 cone-beam scans (CBCT), 157 megavoltage (MV) images, and 521 SGRT monitoring sessions. The average SGRT translations/rotations and 3D vectors (MAG-Trasl and MAG-Rot) were compared with CBCT or antero-posterior MV images for 0° table or non-coplanar beams, respectively. The intrafraction control was evaluated based on the average shifts obtained from each monitoring session. To assess the association between the SGRT system and the CBCT, the two types of masks and the 3D vectors, a generalized estimating equations (GEE) regression analysis was performed. The Wilcoxon singed-rank test for paired samples was performed to detect differences in couch rotation with longitudinal (LNG) and lateral (LAT) translations and/or yaw. RESULTS: The average SGRT corrections were smaller than those detected by CBCT (≤0.5 mm and 0.1°), with largest differences in LNG and yaw. The GEE analysis indicated that the average MAG-Trasl, obtained by the SGRT system, was not statistically different (p = 0.09) for both mask types, while, the MAG-Rot was different (p = 0.01). For non-coplanar beams, the Wilcoxon singed-rank test demonstrated no significantly differences for the corrections (LNG, LAT, and yaw) for any table rotation except for LNG corrections at 65° (p = 0.04) and 75° (p = 0.03) table angle position; LAT shifts at 65° (p = 0.03) and 270° (p < 0.001) table angle position, and yaw rotation at 30° (p = 0.02) table angle position. The average intrafraction motion was < 0.1 mm and 0.1° for any table angle. CONCLUSION: The SGRT system used, along with the novel workflow performed, can achieve the setup and intra-fraction motion control accuracy required to perform non-coplanar fSRS treatments. Both masks ensure the accuracy required for fSRS while providing a suitable surface for monitoring.

2.
Cureus ; 16(8): e67265, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39301366

ABSTRACT

Introduction In linac-based stereotactic radiosurgery (SRS) leveraging a multileaf collimator (MLC) for brain metastasis (BM), volumetric-modulated arcs (VMAs) enable the generation of a suitable dose distribution with efficient planning and delivery. However, the arc arrangement, including the number of arcs, allocation, and rotation ranges, varies substantially among devices and facilities. Some modalities allow coplanar arc(s) (CA(s)) or beam(s) alone, and some facilities only use them intentionally despite the availability of non-coplanar arcs (NCAs). The study was conducted to examine the significance of NCAs and the optimal arc rotation ranges in VMA-based SRS for a single BM. Materials and methods This was a planning study for the clinical scenario of a single BM, including 20 clinical cases with a gross tumor volume (GTV) of 0.72-44.30 cc. Three different arc arrangements were compared: 1) reciprocating double CA alone of each 360º rotation with different collimator angles of 0 and 90º, 2) one CA and two NCAs of each 120º rotation with the shortest beam path lengths to the irradiation isocenter (NCA_L), and 3) one CA of 360º rotation and two NCAs of each 180º rotation (NCA_F). The three arcs were allocated similarly to equally divide the cranial hemisphere with different collimator angles of 0, 45, and 90º. Three VMA-based SRS plans were generated for each GTV using a 5 mm leaf-width MLC with the identical optimization method that prioritized the steepness of dose gradient outside the GTV boundary without any constraints to the GTV internal dose. A prescribed dose was uniformly assigned to the GTV D V-0.01 cc, the minimum dose of GTV minus 0.01 cc. The GTV dose conformity, the steepness of dose gradients both outside and inside the GTV boundary, the degree of concentric lamellarity of the dose gradients, and the appropriateness of the dose attenuation margin outside the GTV boundary were evaluated using metrics appropriate for each. Results The arc arrangements including NCAs showed significantly steeper dose gradients both outside and inside the GTV boundary with smaller dose attenuation margins than the CAs alone, while NCAs showed no significant advantage on the GTV dose conformity. In the NCA-involved arc arrangements, the NCA_F was significantly superior to the NCA_L in terms of the GTV dose conformity, the steepness of dose gradient outside the GTV, the degree of concentric lamellarity of the dose gradients outside and inside the GTV boundary, and the appropriateness of dose attenuation margin. However, the NCA_F showed no significant advantage on the steepness of dose increase inside the GTV boundary over the NCA_L. The dose increase just inside the prescribed isodose surface to the GTV boundary was significantly steeper with the NCA_L than the NCA_F. Conclusions In VMA-based SRS for a single BM, an arc arrangement including NCAs is indispensable, and sufficient arc rotations are suitable for achieving a dose distribution that maximizes therapeutic efficacy and safety in comparison to limited ones which are appropriate for dynamic conformal arcs. Although VMA with CAs alone can provide a non-inferior GTV dose conformity to NCAs, CA(s) alone should be applied only to situations where shorter irradiation time is prioritized over efficacy and safety.

3.
Phys Med Biol ; 69(18)2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39214138

ABSTRACT

Objective.Non-isocentric dynamic trajectory radiotherapy (DTRT) involves dynamic table translations in synchrony with intensity modulation and dynamic gantry, table, and/or collimator rotation. This work aims to develop and evaluate a novel dosimetrically motivated path determination technique for non-isocentric DTRT.Approach.The path determination considers all available beam directions, given on a user-specified grid of gantry angle, table angle, and longitudinal, vertical, and lateral table position. Additionally, the source-to-target distance of all beam directions can be extended by moving the table away from the gantry along the central beam axis to increase the collision-free space. The path determination uses a column generation algorithm to iteratively add beam directions to paths until a user-defined total path length is reached. A subsequent direct aperture optimization of the intensity modulation along the paths creates deliverable plans. Non-isocentric DTRT plans using the path determination and using a manual path setup were created for a craniospinal and a spinal irradiation case. Furthermore, VMAT, isocentric DTRT, and non-isocentric DTRT plans are created for a breast, head and neck (H&N), and esophagus case. Additionally, a HyperArc plan is created for the H&N case. The plans are compared in terms of the dosimetric treatment plan quality and estimated delivery time.Main results.For the craniospinal and spinal irradiation case, using path determination results in dose distributions with improved conformity but a slightly worse target homogeneity compared to manual path setup. The non-isocentric DTRT plans maintained target coverage while reducing the mean dose to organs-at-risk on average by 1.7 Gy (breast), 1.0 Gy (H&N), and 1.6 Gy (esophagus) compared to the VMAT plans and by 0.8 Gy (breast), 0.6 Gy (H&N), and 0.8 Gy (esophagus) compared to the isocentric DTRT plans.Significance.A general dosimetrically motivated path determination applicable to non-isocentric DTRT plans is successfully developed, further advancing the treatment planning for non-isocentric DTRT.


Subject(s)
Radiometry , Radiotherapy Planning, Computer-Assisted , Humans , Radiotherapy Planning, Computer-Assisted/methods , Head and Neck Neoplasms/radiotherapy , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods , Breast Neoplasms/radiotherapy , Algorithms , Female
4.
J Appl Clin Med Phys ; 25(10): e14487, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39186746

ABSTRACT

PURPOSE: To develop a non-coplanar cone-beam computed tomography (CBCT) image reconstruction method using projections within a limited angle range for non-coplanar radiotherapy. METHODS: A generative adversarial network (GAN) was utilized to reconstruct non-coplanar CBCT images. Data from 40 patients with brain tumors and two head phantoms were used in this study. In the training stage, the generator of the GAN used coplanar CBCT and non-coplanar projections as the input, and an encoder with a dual-branch structure was utilized to extract features from the coplanar CBCT and non-coplanar projections separately. Non-coplanar CBCT images were then reconstructed using a decoder by combining the extracted features. To improve the reconstruction accuracy of the image details, the generator was adversarially trained using a patch-based convolutional neural network as the discriminator. A newly designed joint loss was used to improve the global structure consistency rather than the conventional GAN loss. The proposed model was evaluated using data from eight patients and two phantoms at four couch angles (±45°, ±90°) that are most commonly used for brain non-coplanar radiotherapy in our department. The reconstructed accuracy was evaluated by calculating the root mean square error (RMSE) and an overall registration error ε, computed by integrating the rigid transformation parameters. RESULTS: In both patient data and phantom data studies, the qualitative and quantitative metrics results indicated that ± 45° couch angle models performed better than ±90° couch angle models and had statistical differences. In the patient data study, the mean RMSE and ε values of couch angle at 45°, -45°, 90°, and -90° were 58.5 HU and 0.42 mm, 56.8 HU and 0.41 mm, 73.6 HU and 0.48 mm, and 65.3 HU and 0.46 mm, respectively. In the phantom data study, the mean RMSE and ε values of couch angle at 45°, -45°, 90°, and -90° were 91.2 HU and 0.46 mm, 95.0 HU and 0.45 mm, 114.6 HU and 0.58 mm, and 102.9 HU and 0.52 mm, respectively. CONCLUSIONS: The results show that the reconstructed non-coplanar CBCT images can potentially enable intra-treatment three-dimensional position verification for non-coplanar radiotherapy.


Subject(s)
Algorithms , Brain Neoplasms , Cone-Beam Computed Tomography , Image Processing, Computer-Assisted , Neural Networks, Computer , Phantoms, Imaging , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Humans , Cone-Beam Computed Tomography/methods , Radiotherapy Planning, Computer-Assisted/methods , Image Processing, Computer-Assisted/methods , Brain Neoplasms/radiotherapy , Brain Neoplasms/diagnostic imaging , Radiotherapy, Intensity-Modulated/methods , Organs at Risk/radiation effects , Radiotherapy, Image-Guided/methods
5.
Adv Mater ; 36(35): e2305916, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39004883

ABSTRACT

A topological magnetic material showcases a multitude of intriguing properties resulting from the compelling interplay between topology and magnetism. These include notable phenomena such as a large anomalous Nernst effect (ANE), an anomalous Hall effect (AHE), and a topological Hall effect (THE). In most cases, topological transport phenomena are prevalent at temperatures considerably lower than room temperature, presenting a challenge for practical applications. However, the noncollinear ferromagnetic (FM) LaMn2Ge2, characterized by a Mn square-net lattice and a notably high Curie temperature (TC) of approximately 325 K, defies this trend as a topological semimetal. This work observes a giant topological Hall resistivity, ρ y x T $\rho _{yx}^T$ , of ≈4.5 µΩ cm at room temperature when the angle between the applied field and the c-axis is 75°, which is significantly higher than state-of-the-art materials with noncoplanar spin structures. The single crystal neutron diffraction measurements agree with an incommensurate conical magnetic structure as the ground state. This observation suggests the enhanced spin chirality resulting from the noncoplanar spin configuration when the applied field is away from the magnetic easy axis as the origin of a large contribution to the observed THE. The findings unequivocally demonstrate that the FM LaMn2Ge2 holds great promise as a potential topological semimetal for spintronic applications even at room temperature.

6.
J Appl Clin Med Phys ; : e14396, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38894588

ABSTRACT

Noncoplanar arc optimization has been shown to reduce OAR doses in SRS/SRT and has the potential to reduce doses to OARs in SBRT. Extracranial targets have additional considerations, including large OARs and, in the case of the liver, volume constraints on the healthy liver. Considering pathlengths through OARs that encompass target volumes may lead to specific dose reductions as in the encompassing healthy liver tissue. These optimizations must also leverage delivery efficiency and trajectory sampling to ensure ease of clinical translation. The purpose of this research is to generate optimized static-couch arcs that separately consider serial and parallel OARs and arc delivery efficiency, with a trajectory sampling metric, towards the aim of reducing dose to OARs and the surrounding healthy liver tissue. Separate BEV cost maps were created for parallel, and serial OARs by means of a fast ray-triangle intersection algorithm. An additional BEV cost map was created for the liver which, by definition, encompasses the liver tumors. The individual costs of these maps were summed and combined with the sampling metric for 100 000 random combinations of arc trajectories. A search algorithm was applied to find an arc trajectory solution that satisfied BEV cost and sampling optimization, while also ensuring an efficient delivery was possible with a low number of arcs. This method of arc selection was evaluated for 16 liver SBRT patients characterized by small and large target volumes. Comparisons were made with a clinical arc template of coplanar arcs. Dosimetric plan quality was evaluated using published guidelines and metrics from RTOG1112. Four of five plan quality metrics for the liver were significantly reduced when planned with optimized noncoplanar arcs. Median (range) reductions of the volumes receiving 10, 18, and 21 Gy were found of 140.4 (295.8) cc (p = 0.001), 28.2 (230.6) cc (p = 0.002) and 18.5 (155.5) cc (p = 0.04). A significant increase in median (range) dose to the right kidney of 0.2 ± 0.9 Gy (p = 0.03) was also found using optimized noncoplanar arcs, which was below the tolerance of 10 Gy for all cases. The average number of arcs chosen was 4 ± 1. Optimizing serial and parallel OARs separately during static couch noncoplanar arc selection significantly reduced the dose to the liver during SBRT using a moderate number of arcs.

7.
Asian Pac J Cancer Prev ; 25(4): 1383-1390, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38680000

ABSTRACT

BACKGROUND: The study aims to investigate potential dosimetric benefits between non-coplanar and coplanar beam arrangements of Volumetric-Modulated Arc Therapy (VMAT) plans for liver stereotactic body radiotherapy (SBRT). METHODS: Thirteen patients who had undergone liver SBRT treatment in our department were chosen retrospectively for the study. Two sets of SBRT-VMAT plans namely, non-coplanar (NC-VMAT) and Coplanar (C-VMAT) were generated in Monaco(v5.11) planning system for Elekta Versa HD Linac using unflatten 6MV photon. The NC-VMAT plans were created by two/three non-coplanar partial arcs with couch rotation of ±150 and had an arc span of 1300 to 1600 whereas the C-VMAT plans consisted of a full arc. Both plans were compared by statistically analyzing various dosimetric and technical parameters. RESULTS: There is no statistically significant difference observed between the C-VMAT and NC-VMAT plans for planning target volume (PTV) coverage. However, the spine dose (D1cc) was much less in the NC-VMAT plan compared to the C-VMAT plan, with mean values of 6.127 ± 3.08Gy and 9.058 ± 4.76Gy, respectively (p-value=0.002). The low dose spillage to the healthy tissue was compared by the volume receiving 5Gy (V5Gy) and 10Gy (V10Gy). V5Gy of the NC-VMAT plan was 2399.23±1870.76cc while that of C-VMAT plans was 2835.36±1930.20cc with the p-value <0.001. Moreover, the monitor units(MU) were less with NC-VMAT than with C-VMAT SBRT plans (p=0.015). CONCLUSION: The plan quality of NC-VMAT plans was favorable compared to C-VMAT plans for liver SBRT especially in reducing spine dose, low dose spillage to healthy tissue, and MU.


Subject(s)
Liver Neoplasms , Organs at Risk , Radiosurgery , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Humans , Radiosurgery/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Liver Neoplasms/radiotherapy , Liver Neoplasms/surgery , Retrospective Studies , Organs at Risk/radiation effects , Prognosis , Male , Female , Follow-Up Studies , Aged , Middle Aged
8.
J Appl Clin Med Phys ; 25(7): e14317, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38439583

ABSTRACT

PURPOSE: Patient setup errors have been a primary concern impacting the dose delivery accuracy in radiation therapy. A robust treatment plan might mitigate the effects of patient setup errors. In this reported study, we aimed to evaluate the impact of translational and rotational errors on the robustness of linac-based, single-isocenter, coplanar, and non-coplanar volumetric modulated arc therapy treatment plans for multiple brain metastases. METHODS: Fifteen patients were retrospectively selected for this study with a combined total of 49 gross tumor volumes (GTVs). Single-isocenter coplanar and non-coplanar plans were generated first with a prescribed dose of 40 Gy in 5 fractions or 42 Gy in 7 fractions to cover 95% of planning target volume (PTV). Next, four setup errors (+1  and +2 mm translation, and +1° and +2° rotation) were applied individually to generate modified plans. Different plan quality evaluation metrics were compared between coplanar and non-coplanar plans. 3D gamma analysis (3%/2 mm) was performed to compare the modified plans (+2 mm and +2° only) and the original plans. Paired t-test was conducted for statistical analysis. RESULTS: After applying setup errors, variations of all plan evaluation metrics were similar (p > 0.05). The worst case for V100% to GTV was 92.07% ± 6.13% in the case of +2 mm translational error. 3D gamma pass rates were > 90% for both coplanar (+2 mm and +2°) and the +2 mm non-coplanar groups but was 87.40% ± 6.89% for the +2° non-coplanar group. CONCLUSION: Translational errors have a greater impact on PTV and GTV dose coverage for both planning methods. Rotational errors have a greater negative impact on gamma pass rates of non-coplanar plans. Plan evaluation metrics after applying setup errors showed that both coplanar and non-coplanar plans were robust and clinically acceptable.


Subject(s)
Brain Neoplasms , Organs at Risk , Particle Accelerators , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy Setup Errors , Radiotherapy, Intensity-Modulated , Humans , Radiotherapy Planning, Computer-Assisted/methods , Brain Neoplasms/radiotherapy , Brain Neoplasms/secondary , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Setup Errors/prevention & control , Retrospective Studies , Particle Accelerators/instrumentation , Organs at Risk/radiation effects , Prognosis , Patient Positioning
9.
Biomed Phys Eng Express ; 10(3)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38442730

ABSTRACT

Purpose. To evaluate the performance of an automated 2D-3D bone registration algorithm incorporating a grayscale compression method for quantifying patient position errors in non-coplanar radiotherapy.Methods. An automated 2D-3D registration incorporating a grayscale compression method to segment bone structures was proposed. Portal images containing only bone structures (Portalbone) and digitally reconstructed radiographs containing only bone structures (DRRbone) were used for registration. First, the portal image was filtered by a high-pass finite impulse response (FIR) filter. Then the grayscale range of the filtered portal image was compressed. Thresholds were determined based on the difference in gray values of bone structures in the filtered and compressed portal image to obtainPortalbone.Another threshold was applied to generateDRRbonewhen the CT image uses the ray-casting algorithm to generate DRR images. The compression performance was assessed by registering theDRRbonewith thePortalboneobtained by compressing the portal image into various grayscale ranges. The proposed registration method was quantitatively and visually validated using (1) a CT image of an anthropomorphic head phantom and its portal images obtained in different poses and (2) CT images and pre-treatment portal images of 20 patients treated with non-coplanar radiotherapy.Results. Mean absolute registration errors for the best compression grayscale range test were 0.642 mm, 0.574 mm, and 0.643 mm, with calculation times of 50.6 min, 42.2 min, and 49.6 min for grayscale ranges of 0-127, 0-63 and 0-31, respectively. For the accuracy validation (1), the mean absolute registration errors for couch angles 0°, 45°, 90°, 270°, and 315° were 0.694 mm, 0.839 mm, 0.726 mm, 0.833 mm, and 0.873 mm, respectively. Among the six transformation parameters, the translation error in the vertical direction contributed the most to the registration errors. Visual inspection of the patient registration results revealed success in every instance.Conclusions. The implemented grayscale compression method successfully enhances and segments bone structures in portal images, allowing for accurate determination of patient setup errors in non-coplanar radiotherapy.


Subject(s)
Algorithms , Radiotherapy Planning, Computer-Assisted , Humans , Radiography , Radiotherapy Planning, Computer-Assisted/methods
10.
Phys Med Biol ; 69(2)2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38035372

ABSTRACT

Objective.To create two non-coplanar, stereotactic ablative radiotherapy (SABR) lung patient treatment plans compliant with the radiation therapy oncology group (RTOG) 0813 dosimetric criteria using a simple, isocentric, therapy with kilovoltage arcs (SITKA) system designed to provide low cost external radiotherapy treatments for low- and middle-income countries (LMICs).Approach.A treatment machine design has been proposed featuring a 320 kVp x-ray tube mounted on a gantry. A deep learning cone-beam CT (CBCT) to synthetic CT (sCT) method was employed to remove the additional cost of planning CTs. A novel inverse treatment planning approach using GPU backprojection was used to create a highly non-coplanar treatment plan with circular beam shapes generated by an iris collimator. Treatments were planned and simulated using the TOPAS Monte Carlo (MC) code for two lung patients. Dose distributions were compared to 6 MV volumetric modulated arc therapy (VMAT) planned in Eclipse on the same cases for a Truebeam linac as well as obeying the RTOG 0813 protocols for lung SABR treatments with a prescribed dose of 50 Gy.Main results.The low-cost SITKA treatments were compliant with all RTOG 0813 dosimetric criteria. SITKA treatments showed, on average, a 6.7 and 4.9 Gy reduction of the maximum dose in soft tissue organs at risk (OARs) as compared to VMAT, for the two patients respectively. This was accompanied by a small increase in the mean dose of 0.17 and 0.30 Gy in soft tissue OARs.Significance.The proposed SITKA system offers a maximally low-cost, effective alternative to conventional radiotherapy systems for lung cancer patients, particularly in low-income countries. The system's non-coplanar, isocentric approach, coupled with the deep learning CBCT to sCT and GPU backprojection-based inverse treatment planning, offers lower maximum doses in OARs and comparable conformity to VMAT plans at a fraction of the cost of conventional radiotherapy.


Subject(s)
Lung Neoplasms , Radiosurgery , Radiotherapy, Intensity-Modulated , Humans , Radiotherapy Dosage , X-Rays , Radiotherapy Planning, Computer-Assisted/methods , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Radiosurgery/methods , Radiotherapy, Intensity-Modulated/methods , Organs at Risk , Lung/diagnostic imaging
11.
J Appl Clin Med Phys ; 25(2): e14186, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37974385

ABSTRACT

PURPOSE: Noncoplanar plans (NCPs) are commonly used for proton treatment of bilateral head and neck (HN) malignancies. NCP requires additional verification setup imaging between beams to correct residual errors of robotic couch motion, which increases imaging dose and total treatment time. This study compared the quality and robustness of NCPs with those of coplanar plans (CPs). METHODS AND MATERIALS: Under an IRB-approved study, CPs were created retrospectively for 10 bilateral HN patients previously treated with NCPs maintaining identical beam geometry of the original plan but excluding couch rotations. Plan robustness to the inter-fractional variation (IV) of both plans was evaluated through the Dose Volume Histograms (DVH) of weekly quality assurance CT (QACT) sets (39 total). In addition, delivery efficiency for both plans was compared using total treatment time (TTT) and beam-on time (BOT). RESULTS: No significant differences in plan quality were observed in terms of clinical target volume (CTV) coverage (D95) or organ-at-risk (OAR) doses (p > 0.4 for all CTVs and OARs). No significant advantage of NCPs in the robustness to IV was found over CP, either. Changes in D95 of QA plans showed a linear correlation (slope = 1.006, R2  > 0.99) between NCP and CP for three CTV data points (CTV1, CTV2, and CTV3) in each QA plan (117 data points for 39 QA plans). NCPs showed significantly higher beam delivery time than CPs for TTT (539 ± 50 vs. 897 ± 142 s; p < 0.001); however, no significant differences were observed for BOT. CONCLUSION: NCPs are not more robust to IV than CPs when treating bilateral HN tumors with pencil-beam scanning proton beams. CPs showed plan quality and robustness similar to NCPs while reduced treatment time (∼6 min). This suggests that CPs may be a more efficient planning technique for bilateral HN cancer proton therapy.


Subject(s)
Head and Neck Neoplasms , Proton Therapy , Radiotherapy, Intensity-Modulated , Humans , Protons , Proton Therapy/methods , Retrospective Studies , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods , Organs at Risk
12.
J Appl Clin Med Phys ; 25(2): e14189, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37917885

ABSTRACT

PURPOSE: We performed scalp-avoidance whole-brain irradiation with volumetric-modulated arc therapy (SAWB-VMAT) as a component of craniospinal irradiation. In SAWB-VMAT with two coplanar arcs, radiation oncologists and medical physicists sometimes experience difficulty in reducing the dose to the scalp to below the cut-off equivalent dose in 2 Gy per fraction (assuming α/ß = 2) to 50% (EQD50%scalp ). To investigate the advantage of adding coplanar or non-coplanar arcs in reducing the dose to the scalp in SAWB-VMAT, we conducted a planning study to compare the EQD50%scalp , the dose to other organs at risk (OARs), and target coverage in VMAT with two coplanar arcs (Co2arcVMAT), VMAT with three coplanar arcs (Co3arcVMAT), and VMAT with two coplanar and two non-coplanar arcs (NcVMAT). METHODS: Co2arcVMAT, Co3arcVMAT, and NcVMAT plans were created for 10 pediatric patients with medulloblastoma. The planned target volume (PTV) included the regions of the whole brain, cervical spinal cord, cerebrospinal fluid space, and intervertebral foramen. The EQD50%scalp was evaluated separately for four areas (top, back, left, and right) in each case. The prescribed dose for the PTV was 35.2 Gy in 22 fractions. RESULTS: The median EQD50%scalp of the top area was 21.9 , 22.1 , and 18.3 Gy for Co2arcVMAT, Co3arcVMAT, and NcVMAT, respectively. The EQD50%scalp of the top area was significantly reduced in NcVMAT compared to those in Co2arcVMAT and Co3arcVMAT (p < 0.05). The median EQD50%scalp of the top area for NcVMAT was < 19.9 Gy, which is the cut-off dose for severe permanent alopecia. There were no significant differences in EQD50%scalp in the three other areas, the dose to other OARs, or the dose coverage of PTV among the three techniques. CONCLUSION: NcVMAT could reduce the EQD50%scalp of the top area below the cut-off dose of 19.9 Gy. NcVMAT appears to be a promising treatment technique for SAWB-VMAT.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Radiotherapy, Intensity-Modulated , Humans , Child , Medulloblastoma/radiotherapy , Medulloblastoma/etiology , Radiotherapy Dosage , Drug Tapering , Scalp , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Organs at Risk/radiation effects , Brain , Cerebellar Neoplasms/etiology
13.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1027469

ABSTRACT

Objective:To evaluate the accuracy of the optical surface imaging system (OSI) using stereotactic radiosurgery (SRS) algorithm in single-center non-coplanar treatment of multiple brain metastases.Methods:Data of phantom and 15 patients with multiple brain metastases who underwent single-center non-coplanar radiotherapy in West China Hospital of Sichuan University from February to April 2022 were retrospectively analyzed. kV/MV and OSI imaging were used for imaging of the patients and phantoms under the same non-coplanar couch angle, respectively. The accuracy of OSI imaging of the phantoms and patients was evaluated using kV/MV imaging as reference image. The difference between the OSI and kV/MV systems is defined as accuracy, and the percentage of the absolute difference ≤1.00 mm in the translational direction or ≤0.50° in the rotational direction is defined as the threshold pass rate. Origin software was used to draw radar maps and Bland-Altman plots for statistical analysis.Results:When OSI images were used for the phantom imaging, the average differences in six-dimensional directions of lateral, long, vertical, rotational, roll and pitch were 0.03 mm, -0.09 mm, -0.27 mm, 0.04°, 0.17° and -0.19°, respectively. The maximum values were -2.20 mm, -2.30 mm, -1.20 mm, 0.60°, -1.00°, and -1.00°, respectively. When OSI system was utilized for the imaging of 15 patients, the average differences in six-dimensional directions were 0.44 mm, 0.16 mm, -0.20 mm, -0.11°, 0.10°, and -0.12°, respectively. The maximum values were -1.80 mm, 2.00 mm, 0.90 mm, -0.90°, -0.70°, and 0.80°, respectively. The translational errors mainly occurred in the lateral and long directions. The qualified rates of the threshold values of the phantoms and patients were 77% and 75% in the lateral direction, 82% and 89% in the long direction, respectively. In addition, 57% and 56% of patients met the threshold conditions of ±1.00 mm and ±0.50° in the six-dimensional directions, respectively.Conclusions:The OSI system using new SRS algorithm cannot meet the high accuracy requirements of single-center non-coplanar radiotherapy for multiple brain metastasis, especially in the lateral and long directions. It is not recommended for non-coplanar image guidance.

14.
Med Phys ; 51(2): 1326-1339, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38131614

ABSTRACT

BACKGROUND: Non-coplanar techniques have shown to improve the achievable dose distribution compared to standard coplanar techniques for multiple treatment sites but finding optimal beam directions is challenging. Dynamic collimator trajectory radiotherapy (colli-DTRT) is a new intensity modulated radiotherapy technique that uses non-coplanar partial arcs and dynamic collimator rotation. PURPOSE: To solve the beam angle optimization (BAO) problem for colli-DTRT and non-coplanar VMAT (NC-VMAT) by determining the table-angle and the gantry-angle ranges of the partial arcs through iterative 4π fluence map optimization (FMO) and beam direction elimination. METHODS: BAO considers all available beam directions sampled on a gantry-table map with the collimator angle aligned to the superior-inferior axis (colli-DTRT) or static (NC-VMAT). First, FMO is performed, and beam directions are scored based on their contributions to the objective function. The map is thresholded to remove the least contributing beam directions, and arc candidates are formed by adjacent beam directions with the same table angle. Next, FMO and arc candidate trimming, based on objective function penalty score, is performed iteratively until a desired total gantry angle range is reached. Direct aperture optimization on the final set of colli-DTRT or NC-VMAT arcs generates deliverable plans. colli-DTRT and NC-VMAT plans were created for seven clinically-motivated cases with targets in the head and neck (two cases), brain, esophagus, lung, breast, and prostate. colli-DTRT and NC-VMAT were compared to coplanar VMAT plans as well as to class-solution non-coplanar VMAT plans for the brain and head and neck cases. Dosimetric validation was performed for one colli-DTRT (head and neck) and one NC-VMAT (breast) plan using film measurements. RESULTS: Target coverage and conformity was similar for all techniques. colli-DTRT and NC-VMAT plans had improved dosimetric performance compared to coplanar VMAT for all treatment sites except prostate where all techniques were equivalent. For the head and neck and brain cases, mean dose reduction-in percentage of the prescription dose-to parallel organs was on average 0.7% (colli-DTRT), 0.8% (NC-VMAT) and 0.4% (class-solution) compared to VMAT. The reduction in D2% for the serial organs was on average 1.7% (colli-DTRT), 2.0% (NC-VMAT) and 0.9% (class-solution). For the esophagus, lung, and breast cases, mean dose reduction to parallel organs was on average 0.2% (colli-DTRT) and 0.3% (NC-VMAT) compared to VMAT. The reduction in D2% for the serial organs was on average 1.3% (colli-DTRT) and 0.9% (NC-VMAT). Estimated delivery times for colli-DTRT and NC-VMAT were below 4 min for a full gantry angle range of 720°, including transitions between arcs, except for the brain case where multiple arcs covered the whole table angle range. These times are in the same order as the class-solution for the head and neck and brain cases. Total optimization times were 25%-107% longer for colli-DTRT, including BAO, compared to VMAT. CONCLUSIONS: We successfully developed dosimetrically motivated BAO for colli-DTRT and NC-VMAT treatment planning. colli-DTRT and NC-VMAT are applicable to multiple treatment sites, including body sites, with beneficial or equivalent dosimetric performances compared to coplanar VMAT and reasonable delivery times.


Subject(s)
Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Humans , Male , Brain , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Rotation , Female
15.
Quant Imaging Med Surg ; 13(12): 8094-8106, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38106274

ABSTRACT

Background: Single-isocenter (SI) noncoplanar volumetric modulated arc therapy (NC-VMAT) has been widely used in stereotactic radiosurgery (SRS) or hypofractionated stereotactic radiotherapy (HSRT) for multiple brain metastases (BMs). However, it is critical to verify patient positioning at a noncoplanar couch angle. This study aimed to compare the noncoplanar setup discrepancies between kilo-voltage/mega-voltage image (kV/MV) orthogonal image pairs with a 2-dimensional/3-dimensional (2D/3D) matching mode and noncoplanar cone-beam computed tomography (NC-CBCT) with a 3D/3D matching mode in SI NC-VMAT HSRT for multiple BMs. Methods: Twenty patients with multiple BMs [2-5] who underwent SI NC-VMAT HSRT were enrolled in this study. Prior to each noncoplanar field delivery, both kV/MV orthogonal image pairs and NC-CBCT were used to determine setup errors. The setup error values reported by NC-CBCT were defined as the gold standard and compared to those reported by kV/MV orthogonal image pairs. The Bland-Altman analysis method was utilized to assess the agreement of the two positioning modalities. Results: In total, 104 kV/MV image pairs and NC-CBCT scans were acquired. The mean setup error differences (SEDs; absolute values) between the two positioning systems were 0.17 mm, 0.21 mm, 0.16 mm, 0.22°, 0.18°, and 0.17° in the vertical, longitudinal, lateral, yaw, pitch, and roll directions, respectively. The maximum SEDs regarding translation and rotation occurred in the longitudinal and yaw directions at 0.60 mm and 0.8°, respectively. Bland-Altman analysis showed excellent agreement between the two positioning modalities, and the 95% limits of agreement (LOAs) never exceeded 0.6 mm and 0.6° in the translational and rotational directions, respectively. Only 4.80% of SEDs exceeded the tolerance of 0.5 mm/0.5°. Conclusions: Orthogonal kV/MV image pairs with 2D/3D matching mode could provide comparable accuracy for noncoplanar positioning as NC-CBCT with 3D/3D matching mode.

16.
J Med Phys ; 48(3): 252-258, 2023.
Article in English | MEDLINE | ID: mdl-37969151

ABSTRACT

Introduction: The purpose of this study was to compare the dosimetric parameters of volumetric modulated arc therapy (VMAT) treatment plans using coplanar and noncoplanar beams in patients with bilateral breast cancer/s (BBCs) in terms of organ at risk sparing and target volume coverage. The hypothesis was to test whether VMAT with noncoplanar beams can result in lesser dose delivery to critical organs such as heart and lung, which will result in lesser overall toxicity. Materials and Methods: Data of nine BBC cases treated at our hospital were retrieved. Computed tomography simulation data of these cases was used to generate noncoplanar VMAT plans and the parameters were compared with standard VMAT coplanar plans. Contouring was done using radiation therapy oncology group guidelines. Forty-five Gray in 25 fractions was planned followed by 10 Gy in five fractions boost in breast conservation cases. Results: No significant difference in planning target volume (PTV) coverage was found for the right breast/chestwall (P = 0.940), left breast/chestwall (P = 0.872), and in the total PTV (P = 0.929). Noncoplanar beams resulted in better cardiac sparing in terms of Dmean heart. The difference in mean dose was >1 Gy (8.80 ± 0.28 - 7.28 ± 0.33, P < 0.001). The Dmean, V20 and V30 values for total lung slightly favor noncoplanar beams, although there was no statistically significant difference. The average monitor units (MUs) were similar for coplanar plans (1515 MU) and noncoplanar plans (1455 MU), but the overall treatment time was higher in noncoplanar plans due to more complex setup and beam arrangement. For noncoplanar VMAT plans, the mean conformity index was slightly better although the homogeneity indices were similar. Conclusion: VMAT plans with noncoplanar beam arrangements had significant dosimetric advantages in terms of sparing of critical organs, that is Dmean of heart doses with almost equivalent lung doses and equally good target coverage. Larger studies with clinical implications need to be considered to validate this data.

17.
Front Oncol ; 13: 1174470, 2023.
Article in English | MEDLINE | ID: mdl-37954084

ABSTRACT

Introduction: The prognosis of patients with non-central recurrent cervical cancer (NRCC) remains poor, and treatment options are limited. We aimed to explore the accuracy and safety of the 3D-printed non-coplanar template (3D-PNCT)-assisted 192Ir interstitial brachytherapy (ISBT) in the treatment of NRCC. Material and methods: A total of 36 patients with NRCC who received 3D-PNCT-guided 192Ir ISBT in the First Affiliated Hospital of Zhengzhou University from January 2021 to July 2022 were included in this study. There were 36 3D-PNCTs that were designed and printed. The prescribed dose was 30-36 Gy, divided into five to six times, once a week. To evaluate whether the actual parameters were consistent with the preoperative design, the dosimetric parameters of pre- and postoperative treatment plans were compared, including dose of 90% high-risk clinical target volume (HR-CTV D90), volume percentage of 100% and 150% prescribed dose V100% and V150%, homogeneity index (HI), conformal index (CI), external index (EI), and dose received by 2 cm3 (D2cm3) of the rectum, colon, bladder, and ileum. The safety parameters including occurrence of bleeding, infection, pain, radiation enteritis, and radiation cystitis within 3 months after operation were recorded. Results: All patients successfully completed the treatment and achieved the goals of the preoperative plan. There was no significant difference in the accuracy (HRCTVD90, V100%, EI, CI, and HI) and safety (D2cm3 of rectum, colon, bladder, and ileum) parameters of the postoperative plan compared with the preoperative plan (all p>0.05). Major side effects included bleeding at the puncture site (13.9%), postoperative pain (8.3%), acute radiation cystitis (13.9%), and radiation enteritis (19.4%). There were no serious perioperative complications and no grade 3-4 acute radiotherapy side effects. Conclusion: 3D-PNCT-assisted 192Ir ISBT can be accurately and safely applied in the treatment of patients with NRCC.

18.
Med Dosim ; 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38016886

ABSTRACT

Whole brain radiation therapy with hippocampal-sparing (HS-WBRT) is a novel treatment of brain metastases, which can relieve symptoms reduce recurrence in the central nervous system, and spare the hippocampus without compromising target coverage. This study aims to find out the superior combination of the treatment planning system and linear accelerator between Eclipse (version 15.6) with TrueBeam and uRT-TPOIS (vision R001.4) with uRT-linac 506c in HS-WBRT. The coplanar and noncoplanar volumetric modulated arc therapy (VMAT) for HS-WBRT plans were evaluated and compared on both combinations, respectively. Twenty patients for HS-WBRT were retrospectively selected at Peking Union Medical College Hospital (PUMCH) from 2021 to 2022. The coplanar and noncoplanar HS-WBRT treatment plans were designed by Eclipse and uRT-TPOIS referring to RTOG 0933 dose criteria, and their dosimetry parameters were compared. In addition, the plan complexity, monitor units, and beam-on time were recorded for Eclipse plans delivered on TrueBeam and uRT-TPOIS plans delivered on uRT-linac 506c. The results demonstrated that the dosimetric criteria of 4 types of HS-WBRT plans could meet the requirements of RTOG 0933. In terms of target coverage, dosimetric indexes of Eclipse plans and uRT-TPOIS plans were comparable, and the former is slightly better. As for metrics of organs-at-risk protection, coplanar and noncoplanar plans conducted by uRT-TPOIS were greatly superior to those by Eclipse. For coplanar and noncoplanar plans designed by the same treatment planning system, most of the dosimetric indexes had no significant difference. The monitor units of uRT-TPOIS plans was higher than that of Eclipse plans, but the modulation complexity of them were close, and uRT-TPOIS with uRT-linac 506c significantly reduced beam-on-time consumption by 9% on average for coplanar plans and 26% for noncoplanar plans compared to Eclipse with TrueBeam. This study firstly compared the coplanar and noncoplanar HS-WBRT treatment plans between Eclipse with TrueBeam and uRT-TPOIS with uRT-linac 506c in terms of dosimetry indexes, modulation complexity, and time consumption. It is shown that the radiation treatment solution of uRT-TPOIS with uRT-linac 506c is comparable with Eclipse with TrueBeam in terms of planning design, and significantly reduced the delivery time, which can be applied in clinical practice and promoted as a treatment format.

19.
Clin Oncol (R Coll Radiol) ; 35(12): e657-e665, 2023 12.
Article in English | MEDLINE | ID: mdl-37778972

ABSTRACT

AIMS: To conduct a direct comparison regarding the non-coplanar positioning accuracy between the optical surface imaging system Catalyst HDTM and non-coplanar cone-beam computed tomography (NC-CBCT) in intracranial single-isocentre non-coplanar stereotactic radiosurgery (SRS) and hypofractionated stereotactic radiotherapy (HSRT). MATERIALS AND METHODS: Twenty patients with between one and five brain metastases who underwent single-isocentre non-coplanar volumetric modulated arc therapy (NC-VMAT) SRS or HSRT were enrolled in this study. For each non-zero couch angle, both Catalyst HDTM and NC-CBCT were used for set-up verification prior to beam delivery. The set-up error reported by Catalyst HDTM was compared with the set-up error derived from NC-CBCT, which was defined as the gold standard. Additionally, the dose delivery accuracy of each non-coplanar field after using Catalyst HDTM and NC-CBCT for set-up correction was measured with SRS MapCHECKTM. RESULTS: The median set-up error differences (absolute values) between the two positioning methods were 0.30 mm, 0.40 mm, 0.50 mm, 0.15°, 0.10° and 0.10° in the vertical, longitudinal, lateral, yaw, pitch and roll directions, respectively. The largest absolute set-up error differences regarding translation and rotation were 1.5 mm and 1.1°, which occurred in the longitudinal and yaw directions, respectively. Only 35.71% of the pairs of measurements were within the tolerance of 0.5 mm and 0.5° simultaneously. In addition, the non-coplanar field with NC-CBCT correction yielded a higher gamma passing rate than that with Catalyst HDTM correction (P < 0.05), especially for evaluation criteria of 1%/1 mm with a median increase of 12.8%. CONCLUSIONS: Catalyst HDTM may not replace NC-CBCT for non-coplanar set-up corrections in single-isocentre NC-VMAT SRS and HSRT for single and multiple brain metastases. The potential role of Catalyst HDTM in intracranial SRS/HSRT needs to be further studied in the future.


Subject(s)
Brain Neoplasms , Radiosurgery , Humans , Radiosurgery/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/radiotherapy , Brain Neoplasms/surgery , Cone-Beam Computed Tomography , Carmustine , Etoposide , Radiotherapy Planning, Computer-Assisted/methods
20.
Sensors (Basel) ; 23(20)2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37896558

ABSTRACT

Traditional non-coplanar calibration methods, represented by Tsai's method, are difficult to apply in multi-camera-based stereo vision measurements because of insufficient calibration accuracy, inconvenient operation, etc. Based on projective theory and matrix transformation theory, a novel mathematical model is established to characterize the transformation from targets' 3D affine coordinates to cameras' image coordinates. Then, novel non-coplanar calibration methods for both monocular and binocular camera systems are proposed in this paper. To further improve the stability and accuracy of calibration methods, a novel circular feature points extraction method based on region Otsu algorithm and radial section scanning method is proposed to precisely extract the circular feature points. Experiments verify that our novel calibration methods are easy to operate, and have better accuracy than several classical methods, including Tsai's and Zhang's methods. Intrinsic and extrinsic parameters of multi-camera-systems can be calibrated simultaneously by our methods. Our novel circular feature points extraction algorithm is stable, and with high precision can effectively improve calibration accuracy for coplanar and non-coplanar methods. Real stereo measurement experiments demonstrate that the proposed calibration method and feature extraction method have high accuracy and stability, and can further serve for complicated shape and deformation measurements, for instance, stereo-DIC measurements, etc.

SELECTION OF CITATIONS
SEARCH DETAIL