Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Total Environ ; 807(Pt 2): 150828, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-34627883

ABSTRACT

The rapidly warming Arctic climate is reducing the stability of near-surface permafrost, and the thawing of ice-rich permafrost causes landscape changes known as thermokarst processes. Growing evidence suggests an increasing trend in the frequency and magnitude of thermokarst lake drainage events, which would significantly alter topography and hydrology, affecting ecosystem stability and carbon cycling. Dynamic monitoring of thermokarst lakes through satellite imagery remains a challenging task, as current temporal trend analysis methods have difficulty in accurately detecting when thermokarst lake drainage events occur. In this study, to improve the detection of time series breakpoints, an advanced temporal segmentation and change detection algorithm developed for forest change detection was, for the first time, transposed to monitor thermokarst lake dynamics. Moreover, to filter out spurious signals caused by fluctuations in lake area, we developed a hybrid algorithm to validate the detected thermokarst lake drainage events at the pixel-level and lake object-level, respectively. The method developed in this study demonstrates its effectiveness in detecting thermokarst lake drainage events in Arctic permafrost ecosystems and the potential to monitor the evolution of thermokarst landscapes using Landsat archive. A time-series analysis of changes in the thermokarst lake region of northern Alaska since 2000 using all available Landsat continuous data was performed on the Google Earth Engine platform. In total, 90 drainage lakes larger than 5 ha in size were detected in our study area, nearly a third of which were almost completely drained. As thermokarst lakes drainage represent hotspots of permafrost degradation, we publicly share information on these drained lakes to help select more targeted sites for costly fieldwork and validation activities. This study provides a basis for understanding and quantifying thermokarst lake dynamics in the Arctic permafrost region, which will contribute to the goal of integrating thermokarst processes into earth system models.


Subject(s)
Permafrost , Alaska , Ecosystem , Hydrology , Lakes
2.
Glob Chang Biol ; 27(22): 5865-5876, 2021 11.
Article in English | MEDLINE | ID: mdl-34411382

ABSTRACT

As Arctic warming, permafrost thawing, and thermokarst development intensify, increasing evidence suggests that the frequency and magnitude of thermokarst lake drainage events are increasing. Presently, we lack a quantitative understanding of vegetation dynamics in drained lake basins, which is necessary to assess the extent to which plant growth in thawing ecosystems will offset the carbon released from permafrost. In this study, continuous satellite observations were used to detect thermokarst lake drainage events in northern Alaska over the past 20 years, and an advanced temporal segmentation and change detection algorithm allowed us to determine the year of drainage for each lake. Quantitative analysis showed that the greenness (normalized difference vegetation index [NDVI]) of tundra vegetation growing on wet and nutrient-rich lake sediments increased approximately 10 times faster than that of the peripheral vegetation. It takes approximately 5 years (4-6 years for the 25%-75% range) for the drainage lake area to reach the greenness level of the peripheral vegetation. Eventually, the NDVI values of the drained lake basins were 0.15 (or 25%) higher than those of the surrounding areas. In addition, we found less lush vegetation in the floodplain drained lake basins, possibly due to water logging. We further explored the key environmental drivers affecting vegetation dynamics in and around the drained lake basins. The results showed that our multivariate regression model well simulated the growth dynamics of the drainage lake ecosystem ( Radj2=.73 , p < .001) and peripheral vegetation ( Radj2=.68 , p < .001). Among climate variables, moisture variables were more influential than temperature variables, indicating that vegetation growth in this area is susceptible to water stress. Our study provides valuable information for better modeling of vegetation dynamics in thermokarst lake areas and provides new insights into Arctic greening and carbon balance studies as thermokarst lake drainage intensifies.


Subject(s)
Permafrost , Arctic Regions , Ecosystem , Lakes , Tundra
3.
Am J Bot ; 102(12): 2020-31, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26672012

ABSTRACT

PREMISE OF THE STUDY: Understanding the relationship between plants and changing abiotic factors is necessary to document and anticipate the impacts of climate change. METHODS: We used data from long-term research sites at Barrow and Atqasuk, Alaska, to investigate trends in abiotic factors (snow melt and freeze-up dates, air and soil temperature, thaw depth, and soil moisture) and their relationships with plant traits (inflorescence height, leaf length, reproductive effort, and reproductive phenology) over time. KEY RESULTS: Several abiotic factors, including increasing air and soil temperatures, earlier snowmelt, delayed freeze-up, drier soils, and increasing thaw depths, showed nonsignificant tendencies over time that were consistent with the regional warming pattern observed in the Barrow area. Over the same period, plants showed consistent, although typically nonsignificant tendencies toward increasing inflorescence heights and reproductive efforts. Air and soil temperatures, measured as degree days, were consistently correlated with plant growth and reproductive effort. Reproductive effort was best predicted using abiotic conditions from the previous year. We also found that varying the base temperature used to calculate degree days changed the number of significant relationships between temperature and the trait: in general, reproductive phenologies in colder sites were better predicted using lower base temperatures, but the opposite held for those in warmer sites. CONCLUSIONS: Plant response to changing abiotic factors is complex and varies by species, site, and trait; however, for six plant species, we have strong evidence that climate change will cause significant shifts in their growth and reproductive effort as the region continues to warm.


Subject(s)
Climate Change , Magnoliopsida/physiology , Alaska , Arctic Regions , Magnoliopsida/growth & development , Reproduction , Temperature , Tundra
SELECTION OF CITATIONS
SEARCH DETAIL