Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.132
Filter
1.
J Virol Methods ; 329: 114995, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38972641

ABSTRACT

Diagnostics employing multiple modalities have been essential for controlling and managing COVID-19, caused by SARS-CoV-2. However, scaling up Reverse Transcription-Quantitative Polymerase Chain Reaction (RT-qPCR), the gold standard for SARS-CoV-2 detection, remains challenging in low and middle-income countries. Cost-effective and high-throughput alternatives like enzyme-linked immunosorbent assay (ELISA) could address this issue. We developed an in-house SARS-CoV-2 nucleocapsid capture ELISA, and validated on 271 nasopharyngeal swab samples from humans (n = 252), bovines (n = 10), and dogs (n = 9). This ELISA has a detection limit of 195 pg/100 µL of nucleocapsid protein and does not cross-react with related coronaviruses, ensuring high specificity to SARS-CoV-2. Diagnostic performance was evaluated using receiver operating characteristic curve analysis, showing a diagnostic sensitivity of 67.78 % and specificity of 100 %. Sensitivity improved to 74.32 % when excluding positive clinical samples with RT-qPCR Ct values > 25. Furthermore, inter-rater reliability analysis demonstrated substantial agreement (κ values = 0.73-0.80) with the VIRALDTECT II Multiplex RT-qPCR kit and perfect agreement with the CoVeasy™ COVID-19 rapid antigen self-test (κ values = 0.89-0.93). Our findings demonstrated that the in-house nucleocapsid capture ELISA is suitable for SARS-CoV-2 testing in humans and animals, meeting the necessary sensitivity and specificity thresholds for cost-effective, large-scale screening.

2.
Cell Rep Methods ; : 100818, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38986614

ABSTRACT

Protein-protein interactions play an important biological role in every aspect of cellular homeostasis and functioning. Proximity labeling mass spectrometry-based proteomics overcomes challenges typically associated with other methods and has quickly become the current state of the art in the field. Nevertheless, tight control of proximity-labeling enzymatic activity and expression levels is crucial to accurately identify protein interactors. Here, we leverage a T2A self-cleaving peptide and a non-cleaving mutant to accommodate the protein of interest in the experimental and control TurboID setup. To allow easy and streamlined plasmid assembly, we built a Golden Gate modular cloning system to generate plasmids for transient expression and stable integration. To highlight our T2A Split/link design, we applied it to identify protein interactions of the glucocorticoid receptor and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid and non-structural protein 7 (NSP7) proteins by TurboID proximity labeling. Our results demonstrate that our T2A split/link provides an opportune control that builds upon previously established control requirements in the field.

3.
Virology ; 597: 110163, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38959724

ABSTRACT

To gain insight into the functional relationship between the nucleocapsid (NC) domains of the Gag polyproteins of feline and simian immunodeficiency viruses, FIV and SIV, respectively, we generated two FIV Gag chimeric proteins containing different SIV NC and gag sequences. A chimeric FIV Gag protein (NC1) containing the SIV two zinc fingers motifs was incapable of assembling into virus-like particles. By contrast, another Gag chimera (NC2) differing from NC1 by the replacement of the C-terminal region of the FIV NC with SIV SP2 produced particles as efficiently as wild-type FIV Gag. Of note, when the chimeric NC2 Gag polyprotein was expressed in the context of the proviral DNA in feline CrFK cells, wild-type levels of virions were produced which encapsidated 50% of genomic RNA when compared to the wild-type virus.

4.
Front Cell Infect Microbiol ; 14: 1415885, 2024.
Article in English | MEDLINE | ID: mdl-38846351

ABSTRACT

Corona Virus Disease 2019 (COVID-19) is a highly prevalent and potent infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Until now, the world is still endeavoring to develop new ways to diagnose and treat COVID-19. At present, the clinical prevention and treatment of COVID-19 mainly targets the spike protein on the surface of SRAS-CoV-2. However, with the continuous emergence of SARS-CoV-2 Variants of concern (VOC), targeting the spike protein therapy shows a high degree of limitation. The Nucleocapsid Protein (N protein) of SARS-CoV-2 is highly conserved in virus evolution and is involved in the key process of viral infection and assembly. It is the most expressed viral structural protein after SARS-CoV-2 infection in humans and has high immunogenicity. Therefore, N protein as the key factor of virus infection and replication in basic research and clinical application has great potential research value. This article reviews the research progress on the structure and biological function of SARS-CoV-2 N protein, the diagnosis and drug research of targeting N protein, in order to promote researchers' further understanding of SARS-CoV-2 N protein, and lay a theoretical foundation for the possible outbreak of new and sudden coronavirus infectious diseases in the future.


Subject(s)
COVID-19 , Coronavirus Nucleocapsid Proteins , Phosphoproteins , SARS-CoV-2 , SARS-CoV-2/genetics , Humans , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/metabolism , COVID-19/virology , COVID-19/diagnosis , Phosphoproteins/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Nucleocapsid Proteins/metabolism , Nucleocapsid Proteins/genetics
5.
Microbiol Spectr ; : e0012324, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869287

ABSTRACT

We estimated monthly cross-sectional seroprevalence rates of anti-nucleocapsid (anti-N) and anti-spike (anti-S) antibodies to severe acute respiratory syndrome coronavirus 2 in two U.S. nationwide studies. The nationwide blood donor seroprevalence (NBDS) study included specimens from blood donors, while the nationwide commercial laboratory seroprevalence (NCLS) study included residual serum specimens tested in commercial laboratories for reasons unrelated to the assessment of coronavirus disease 2019 infection. In September-December 2021, specimens collected from both nationwide studies were tested for anti-N antibodies. In September-October 2021, specimens from both studies within a five-state area were tested for anti-S antibodies. We used raking methods to adjust all seroprevalence estimates by the population distribution of key demographics in included states. Seroprevalence estimates of each antibody type were compared across the two studies for specimens drawn in the same U.S. states during the same time period. Our analysis revealed that over a 4-month period, national NCLS monthly anti-N estimates were 0.5-1.9 percentage points higher than NBDS estimates. In contrast, across five states during a 2-month period, NBDS anti-S estimates were 7.6 and 8.2 percentage points higher than NCLS estimates. The observed differences in seroprevalence estimates between the NBDS and NCLS studies may be attributed to variations in the characteristics of the study sample populations, particularly with respect to health status, health behaviors, and vaccination status. These differences should be considered in the interpretation of seroprevalence study results based on blood donors or commercial lab residual specimens. IMPORTANCE: This study was the first systematic comparison between two nationwide severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) studies which estimated seroprevalence, or the proportion of the population with antibodies to the virus, using differing convenience sample populations. One study tested blood donor specimens; the other study tested specimens left over from clinical blood tests. The seroprevalence of anti-nucleocapsid and anti-spike antibodies was compared in the same states during the same months with statistical adjustments based on state demographics. Similar anti-nucleocapsid antibody seroprevalence estimates produced by two independent studies using differing convenience samples build confidence in the generalizability of their anti-nucleocapsid findings. Due to high blood donor vaccine rates, blood donor SARS-CoV-2 anti-spike antibody estimates might overestimate general population seroprevalence, an important consideration for interpreting national seroprevalence study results. Furthermore, because laboratory residuals and blood donations are two common sources of specimens for seroprevalence studies, study findings may be informative for other respiratory virus seroepidemiology studies.

6.
Viruses ; 16(6)2024 May 29.
Article in English | MEDLINE | ID: mdl-38932164

ABSTRACT

The HIV-1 nucleocapsid protein (NC) is a multifunctional viral protein necessary for HIV-1 replication. Recent studies have demonstrated that reverse transcription (RT) completes in the intact viral capsid, and the timing of RT and uncoating are correlated. How the small viral core stably contains the ~10 kbp double stranded (ds) DNA product of RT, and the role of NC in this process, are not well understood. We showed previously that NC binds and saturates dsDNA in a non-specific electrostatic binding mode that triggers uniform DNA self-attraction, condensing dsDNA into a tight globule against extending forces up to 10 pN. In this study, we use optical tweezers and atomic force microscopy to characterize the role of NC's basic residues in dsDNA condensation. Basic residue mutations of NC lead to defective interaction with the dsDNA substrate, with the constant force plateau condensation observed with wild-type (WT) NC missing or diminished. These results suggest that NC's high positive charge is essential to its dsDNA condensing activity, and electrostatic interactions involving NC's basic residues are responsible in large part for the conformation, size, and stability of the dsDNA-protein complex inside the viral core. We observe DNA re-solubilization and charge reversal in the presence of excess NC, consistent with the electrostatic nature of NC-induced DNA condensation. Previous studies of HIV-1 replication in the presence of the same cationic residue mutations in NC showed significant defects in both single- and multiple-round viral infectivity. Although NC participates in many stages of viral replication, our results are consistent with the hypothesis that cationic residue mutations inhibit genomic DNA condensation, resulting in increased premature capsid uncoating and contributing to viral replication defects.


Subject(s)
DNA, Viral , HIV-1 , Reverse Transcription , HIV-1/genetics , HIV-1/physiology , HIV-1/chemistry , HIV-1/metabolism , DNA, Viral/genetics , DNA, Viral/metabolism , gag Gene Products, Human Immunodeficiency Virus/metabolism , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/chemistry , Humans , Cations/metabolism , Virus Replication , Microscopy, Atomic Force , Virion/metabolism , Virion/genetics , Virion/chemistry , Mutation
7.
Vaccines (Basel) ; 12(6)2024 May 28.
Article in English | MEDLINE | ID: mdl-38932317

ABSTRACT

A chimeric protein, formed by two fragments of the conserved nucleocapsid (N) and S2 proteins from SARS-CoV-2, was obtained as a recombinant construct in Escherichia coli. The N fragment belongs to the C-terminal domain whereas the S2 fragment spans the fibre structure in the post-fusion conformation of the spike protein. The resultant protein, named S2NDH, was able to form spherical particles of 10 nm, which forms aggregates upon mixture with the CpG ODN-39M. Both preparations were recognized by positive COVID-19 human sera. The S2NDH + ODN-39M formulation administered by the intranasal route resulted highly immunogenic in Balb/c mice. It induced cross-reactive anti-N humoral immunity in both sera and bronchoalveolar fluids, under a Th1 pattern. The cell-mediated immunity (CMI) was also broad, with positive response even against the N protein of SARS-CoV-1. However, neither neutralizing antibodies (NAb) nor CMI against the S2 region were obtained. As alternative, the RBD protein was included in the formulation as inducer of NAb. Upon evaluation in mice by the intranasal route, a clear adjuvant effect was detected for the S2NDH + ODN-39M preparation over RBD. High levels of NAb were induced against SARS-CoV-2 and SARS-CoV-1. The bivalent formulation S2NDH + ODN-39M + RBD, administered by the intranasal route, constitutes an attractive proposal as booster vaccine of sarbecovirus scope.

8.
Sensors (Basel) ; 24(12)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38931556

ABSTRACT

This paper reports a rapid and sensitive sensor for the detection and quantification of the COVID-19 N-protein (N-PROT) via an electrochemical mechanism. Single-frequency electrochemical impedance spectroscopy was used as a transduction method for real-time measurement of the N-PROT in an immunosensor system based on gold-conjugate-modified carbon screen-printed electrodes (Cov-Ag-SPE). The system presents high selectivity attained through an optimal stimulation signal composed of a 0.0 V DC potential and 10 mV RMS-1 AC signal at 100 Hz over 300 s. The Cov-Ag-SPE showed a log response toward N-PROT detection at concentrations from 1.0 ng mL-1 to 10.0 µg mL-1, with a 0.977 correlation coefficient for the phase (θ) variation. An ML-based approach could be created using some aspects observed from the positive and negative samples; hence, it was possible to classify 252 samples, reaching 83.0, 96.2 and 91.3% sensitivity, specificity, and accuracy, respectively, with confidence intervals (CI) ranging from 73.0 to 100.0%. Because impedance spectroscopy measurements can be performed with low-cost portable instruments, the immunosensor proposed here can be applied in point-of-care diagnostics for mass testing, even in places with limited resources, as an alternative to the common diagnostics methods.


Subject(s)
Biosensing Techniques , COVID-19 , Dielectric Spectroscopy , Gold , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/virology , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Humans , SARS-CoV-2/isolation & purification , SARS-CoV-2/immunology , Dielectric Spectroscopy/instrumentation , Dielectric Spectroscopy/methods , Gold/chemistry , Electrodes , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Immunoassay/methods , Immunoassay/instrumentation , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/analysis , Carbon/chemistry , Phosphoproteins/analysis
9.
Int J Biol Macromol ; 273(Pt 2): 133167, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38885868

ABSTRACT

The Nucleocapsid (N) protein of SARS-CoV-2 plays a crucial role in viral replication and pathogenesis, making it an attractive target for developing antiviral therapeutics. In this study, we used differential scanning fluorimetry to establish a high-throughput screening method for identifying high-affinity ligands of N-terminal domain of the N protein (N-NTD). We screened an FDA-approved drug library of 1813 compounds and identified 102 compounds interacting with N-NTD. The screened compounds were further investigated for their ability to inhibit the nucleic-acid binding activity of the N protein using electrophoretic mobility-shift assays. We have identified three inhibitors, Ceftazidime, Sennoside A, and Tannic acid, that disrupt the N protein's interaction with RNA probe. Ceftazidime and Sennoside A exhibited nano-molar range binding affinities with N protein, determined through surface plasmon resonance. The binding sites of Ceftazidime and Sennoside A were investigated using [1H, 15N]-heteronuclear single quantum coherence (HSQC) NMR spectroscopy. Ceftazidime and Sennoside A bind to the putative RNA binding site of the N protein, thus providing insights into the inhibitory mechanism of these compounds. These findings will contribute to the development of novel antiviral agents targeting the N protein of SARS-CoV-2.


Subject(s)
Antiviral Agents , Coronavirus Nucleocapsid Proteins , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/antagonists & inhibitors , Coronavirus Nucleocapsid Proteins/metabolism , Binding Sites , Humans , Protein Binding , Phosphoproteins/metabolism , Phosphoproteins/chemistry , Phosphoproteins/antagonists & inhibitors , Tannins/chemistry , Tannins/pharmacology , COVID-19 Drug Treatment , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/antagonists & inhibitors , Nucleocapsid Proteins/metabolism
10.
J Infect Dis ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38838218

ABSTRACT

BACKGROUND: The kinetics and durability of T-cell responses to SARS-CoV-2 in children are not well-characterized. We studied a cohort of children aged 6 months to 20 years with COVID-19 in whom peripheral blood mononuclear cells (PBMC) and sera were archived at approximately 1, 6, and 12 months post-symptom onset. METHODS: We compared antibody (N = 85) and T-cell responses (N = 26) to nucleocapsid (N) and spike (S) glycoprotein over time across four age strata: 6 months to 5 years, 5-9, 10-14, and 15-20 years. RESULTS: N-specific antibody responses declined over time, becoming undetectable in 26/32 (81%) children by approximately one year post-infection. Functional breadth of anti-N CD4+ T-cell responses also declined over time and were positively correlated with N-antibody responses (Pearson's r = 0.31, p = 0.008). CD4+ T-cell responses to S displayed greater functional breadth than N in unvaccinated children, and, along with neutralization titers, were stable over time and similar across age strata. Functional profiles of CD4+ T-cell responses against S were not significantly modulated by vaccination. CONCLUSIONS: Our data reveal durable, age-independent T-cell immunity to SARS-CoV-2 structural proteins in children over time following COVID-19 infection as well as S-Ab responses overall, in comparison to declining antibody responses to N.

11.
J Virol ; : e0033424, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829137

ABSTRACT

Porcine deltacoronavirus (PDCoV) is an enteric pathogenic coronavirus that causes acute and severe watery diarrhea in piglets and has the ability of cross-species transmission, posing a great threat to swine production and public health. The interferon (IFN)-mediated signal transduction represents an important component of virus-host interactions and plays an essential role in regulating viral infection. Previous studies have suggested that multifunctional viral proteins encoded by coronaviruses antagonize the production of IFN via various means. However, the function of these viral proteins in regulating IFN-mediated signaling pathways is largely unknown. In this study, we demonstrated that PDCoV and its encoded nucleocapsid (N) protein antagonize type I IFN-mediated JAK-STAT signaling pathway. We identified that PDCoV infection stimulated but delayed the production of IFN-stimulated genes (ISGs). In addition, PDCoV inhibited JAK-STAT signal transduction by targeting the nuclear translocation of STAT1 and ISGF3 formation. Further evidence showed that PDCoV N is the essential protein involved in the inhibition of type I IFN signaling by targeting STAT1 nuclear translocation via its C-terminal domain. Mechanistically, PDCoV N targets STAT1 by interacting with it and subsequently inhibiting its nuclear translocation. Furthermore, PDCoV N inhibits STAT1 nuclear translocation by specifically targeting KPNA2 degradation through the lysosomal pathway, thereby inhibiting the activation of downstream sensors in the JAK-STAT signaling pathway. Taken together, our results reveal a novel mechanism by which PDCoV N interferes with the host antiviral response.IMPORTANCEPorcine deltacoronavirus (PDCoV) is a novel enteropathogenic coronavirus that receives increased attention and seriously threatens the pig industry and public health. Understanding the underlying mechanism of PDCoV evading the host defense during infection is essential for developing targeted drugs and effective vaccines against PDCoV. This study demonstrated that PDCoV and its encoded nucleocapsid (N) protein antagonize type I interferon signaling by targeting STAT1, which is a crucial signal sensor in the JAK-STAT signaling pathway. Further experiments suggested that PDCoV N-mediated inhibition of the STAT1 nuclear translocation involves the degradation of KPNA2, and the lysosome plays a role in KPNA2 degradation. This study provides new insights into the regulation of PDCoV N in the JAK-STAT signaling pathway and reveals a novel mechanism by which PDCoV evades the host antiviral response. The novel findings may guide us to discover new therapeutic targets and develop live attenuated vaccines for PDCoV infection.

12.
Future Sci OA ; 10(1): FSO917, 2024.
Article in English | MEDLINE | ID: mdl-38827795

ABSTRACT

Aims: To investigate the role of phosphorylation in SARS-CoV-2 infection, potential therapeutic targets and its harmful genetic sequences. Materials & Methods: Data mining techniques were employed to identify upregulated kinases responsible for proteomic changes induced by SARS-CoV-2. Spike and nucleocapsid proteins' sequences were analyzed using predictive tools, including SNAP2, MutPred2, PhD-SNP, SNPs&Go, MetaSNP, Predict-SNP and PolyPhen-2. Missense variants were identified using ensemble-based algorithms and homology/structure-based models like SIFT, PROVEAN, Predict-SNP and MutPred-2. Results: Eight missense variants were identified in viral sequences. Four damaging variants were found, with SNPs&Go and PolyPhen-2. Promising therapeutic candidates, including gilteritinib, pictilisib, sorafenib, RO5126766 and omipalisib, were identified. Conclusion: This research offers insights into SARS-CoV-2 pathogenicity, highlighting potential treatments and harmful variants in viral proteins.


This study explores the process called phosphorylation, which involves adding phosphate groups to certain proteins, influences the way the SARS-CoV-2 virus causes disease. The virus manipulates host enzymes to help it spread and survive. Researchers used data analysis techniques to identify the proteins that play a role in this process, aiming to find potential targets for treatments. They analyzed genetic sequences of key virus proteins and used various tools to predict harmful mutations. The study found several promising compounds that could be used to target the virus. Further research and experiments are needed to confirm their effectiveness as COVID-19 treatments.


This research explored the process called phosphorylation, which involves adding certain molecules to proteins, affects how the SARS-CoV-2 virus makes people sick. The virus uses our own cell's machinery to help it spread. Researchers used computer analysis to find out which proteins are involved in this process, hoping to find new ways to treat COVID-19. They studied the genetic code of important parts of the virus and used computer programs to predict if there were harmful changes in the code. They found some potential medicines that could be used to fight the virus and reduce its harm, but more research and testing are needed to be sure.

13.
Acta Pharm Sin B ; 14(6): 2505-2519, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828154

ABSTRACT

The nucleocapsid protein (NP) plays a crucial role in SARS-CoV-2 replication and is the most abundant structural protein with a long half-life. Despite its vital role in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) assembly and host inflammatory response, it remains an unexplored target for drug development. In this study, we identified a small-molecule compound (ciclopirox) that promotes NP degradation using an FDA-approved library and a drug-screening cell model. Ciclopirox significantly inhibited SARS-CoV-2 replication both in vitro and in vivo by inducing NP degradation. Ciclopirox induced abnormal NP aggregation through indirect interaction, leading to the formation of condensates with higher viscosity and lower mobility. These condensates were subsequently degraded via the autophagy-lysosomal pathway, ultimately resulting in a shortened NP half-life and reduced NP expression. Our results suggest that NP is a potential drug target, and that ciclopirox holds substantial promise for further development to combat SARS-CoV-2 replication.

14.
Front Bioinform ; 4: 1397968, 2024.
Article in English | MEDLINE | ID: mdl-38855143

ABSTRACT

Understanding the interactions between SARS-CoV-2 and the human immune system is paramount to the characterization of novel variants as the virus co-evolves with the human host. In this study, we employed state-of-the-art molecular docking tools to conduct large-scale virtual screens, predicting the binding affinities between 64 human cytokines against 17 nucleocapsid proteins from six betacoronaviruses. Our comprehensive in silico analyses reveal specific changes in cytokine-nucleocapsid protein interactions, shedding light on potential modulators of the host immune response during infection. These findings offer valuable insights into the molecular mechanisms underlying viral pathogenesis and may guide the future development of targeted interventions. This manuscript serves as insight into the comparison of deep learning based AlphaFold2-Multimer and the semi-physicochemical based HADDOCK for protein-protein docking. We show the two methods are complementary in their predictive capabilities. We also introduce a novel algorithm for rapidly assessing the binding interface of protein-protein docks using graph edit distance: graph-based interface residue assessment function (GIRAF). The high-performance computational framework presented here will not only aid in accelerating the discovery of effective interventions against emerging viral threats, but extend to other applications of high throughput protein-protein screens.

15.
Sci Total Environ ; 939: 173333, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38763199

ABSTRACT

This paper reports on development of an optical biosensor for the detection of antibodies against SARS-CoV-2 virus proteins in blood serum. ZnO nanotetrapods with high surface area and stable room temperature photoluminescence (PL) were selected as transducers. Structure and optical properties of the ZnO tetrapods have been studied by XRD, SEM and Raman spectroscopy. Crystallinity, dimensions and emission peaks of the ZnO tetrapods were determined. The ZnO tetrapods were fixed on glass chip. Silanization of ZnO tetrapods surface resulted in forming of functional surface groups suitable for the immobilization of bioselective layer. Two types of recombinant proteins (rS and rN) have been used to form bioselective layer on the surface of the ZnO tetrapods. Flow through microfluidic system, integrated with optical system, has been used for the determination of antibodies against SARS-CoV-2 virus proteins present in blood samples. The SARS-CoV-2 probes, prepared in PBS solution, have been injected into the measurement chamber with a constant pumping speed. Steady-state photoluminescence spectra and photoluminescence kinetics have been studied before and after injection of the probes. The biosensor signal has been tested to anti-SARS-CoV-2 antibodies in the range of 0.001 nM-1 nM. Control measurements have been performed with blood serum of healthy person. ZnO-SARS-CoV-2-rS and ZnO-SARS-CoV-2-rN biosensors showed high stability and sensitivity to anti-SARS-CoV-2 antibodies in the range of 0.025-0.5 nM (LOD 0.01 nM) and 0.3-1 nM (LOD 0.3 nM), respectively. Gibbs free energy of interaction between ZnO/SARS-CoV-2-rS and ZnO/SARS-CoV-2-rN bioselective layers with anti-SARS-CoV-2 antibodies showed -35.5 and -21.4 kJ/mol, respectively. Average detection time of biosensor integrated within microfluidic system was 15-20 min. The detection time and pumping speed (50 µL/min) were optimized to make detection faster. The developed system and ZnO-SARS-CoV-2-rS nanostructures have good potential for detection of anti-SARS-CoV-2 antibodies from patient's probes.


Subject(s)
Antibodies, Viral , Biosensing Techniques , SARS-CoV-2 , Zinc Oxide , Zinc Oxide/chemistry , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , SARS-CoV-2/immunology , Antibodies, Viral/blood , Humans , COVID-19 , Luminescent Measurements/methods , Microfluidics/methods
16.
Viruses ; 16(5)2024 04 23.
Article in English | MEDLINE | ID: mdl-38793539

ABSTRACT

With the continuous spread of new SARS-CoV-2 variants of concern (VOCs), the monitoring of diagnostic test performances is mandatory. We evaluated the changes in antigen diagnostic tests' (ADTs) accuracy along the Delta to Omicron VOCs transition, exploring the N protein mutations possibly affecting ADT sensitivity and assessing the best sampling site for the diagnosis of Omicron infections. In total, 5175 subjects were enrolled from 1 October 2021 to 15 July 2022. The inclusion criteria were SARS-CoV-2 ADT combined with a same-day RT-PCR swab test. For the sampling site analysis, 61 patients were prospectively recruited during the Omicron period for nasal and oral swab analyses by RT-PCR. Next-Generation Sequencing data were obtained to evaluate the different sublineages. Using RT-PCR as a reference, 387 subjects resulted in becoming infected and the overall sensitivity of the ADT decreased from 63% in the Delta period to 33% in the Omicron period. This decrease was highly statistically significant (p < 0.001), and no decrease in viral load was detected at the RNA level. The nasal site presented a significantly higher viral load than the oral site during the Omicron wave. The reduced detection rate of Omicron infections by ADT should be considered in the global testing strategy to preserve accurate diagnoses across the changing SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Sensitivity and Specificity , Humans , SARS-CoV-2/immunology , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/virology , COVID-19/immunology , Male , Viral Load , Female , Antigens, Viral/immunology , COVID-19 Serological Testing/methods , Mutation , Middle Aged , Adult , Prospective Studies , RNA, Viral/genetics , Aged
17.
Front Immunol ; 15: 1384668, 2024.
Article in English | MEDLINE | ID: mdl-38779677

ABSTRACT

Introduction: The study investigation examined the immune response to the Janssen Ad26.COV2.S COVID-19 vaccine within a Ugandan cohort, specifically targeting antibodies directed against spike (S) and nucleocapsid (N) proteins. We aimed to examine the durability and robustness of the induced antibody response while also assessing occurrences of breakthrough infections and previous anti-Spike seropositivity to SARS-CoV-2. Methods: The study included 319 specimens collected over 12 months from 60 vaccinees aged 18 to 64. Binding antibodies were quantified using a validated ELISA method to measure SARS-CoV-2-specific IgG, IgM, and IgA levels against the S and N proteins. Results: The results showed that baseline seropositivity for S-IgG was high at 67%, increasing to 98% by day 14 and consistently stayed above 95% for up to 12 months. However, S-IgM responses remained suboptimal. A raised S-IgA seropositivity rate was seen that doubled from 40% at baseline to 86% just two weeks following the initial vaccine dose, indicating sustained and robust peripheral immunity. An increase in N-IgG levels at nine months post-vaccination suggested breakthrough infections in eight cases. Baseline cross-reactivity influenced spike-directed antibody responses, with individuals harbouring S-IgG antibodies showing notably higher responses. Discussion: Robust and long lasting vaccine and infection-induced immune responses were observed, with significant implications for regions where administering subsequent doses poses logistical challenges.


Subject(s)
Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunoglobulin G , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Adult , SARS-CoV-2/immunology , Uganda , COVID-19/immunology , COVID-19/prevention & control , Male , Female , Middle Aged , Adolescent , Young Adult , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Cohort Studies , Ad26COVS1/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Coronavirus Nucleocapsid Proteins/immunology
18.
Biochem J ; 481(11): 669-682, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38713013

ABSTRACT

The fundamental biology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid protein (Ncap), its use in diagnostic assays and its potential application as a vaccine component have received considerable attention since the outbreak of the Covid19 pandemic in late 2019. Here we report the scalable expression and purification of soluble, immunologically active, SARS-CoV-2 Ncap in Escherichia coli. Codon-optimised synthetic genes encoding the original Ncap sequence and four common variants with an N-terminal 6His affinity tag (sequence MHHHHHHG) were cloned into an inducible expression vector carrying a regulated bacteriophage T5 synthetic promoter controlled by lac operator binding sites. The constructs were used to express Ncap proteins and protocols developed which allow efficient production of purified Ncap with yields of over 200 mg per litre of culture media. These proteins were deployed in ELISA assays to allow comparison of their responses to human sera. Our results suggest that there was no detectable difference between the 6His-tagged and untagged original Ncap proteins but there may be a slight loss of sensitivity of sera to other Ncap isolates.


Subject(s)
COVID-19 , Coronavirus Nucleocapsid Proteins , Escherichia coli , SARS-CoV-2 , Escherichia coli/genetics , Escherichia coli/metabolism , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/metabolism , Coronavirus Nucleocapsid Proteins/biosynthesis , Coronavirus Nucleocapsid Proteins/isolation & purification , Coronavirus Nucleocapsid Proteins/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Humans , COVID-19/virology , Phosphoproteins/genetics , Phosphoproteins/isolation & purification , Phosphoproteins/metabolism
19.
Biosens Bioelectron ; 259: 116355, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38754196

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a highly contagious illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulting in a global health crisis. The primary diagnostic method for COVID-19 is quantitative reverse transcription PCR, which is time-consuming and requires expensive instrumentation. Here, we developed an electrochemical biosensor for detecting SARS-CoV-2 biomarkers using a 3D porous polyacrylamide/polyaniline hydrogel (PPG) electrode prepared by UV photopolymerization and in situ polymerization. The electrochemical immunosensor for detecting SARS-CoV-2 N protein via the immune sandwich principle demonstrated a lower detection limit of 42 pg/mL and comparable specificity to a commercial enzyme-linked immunosorbent assay, which was additionally validated in pseudoviruses. The electrochemical sensor for hydrogen peroxide showed a low detection limit of 0.5 µM and excellent selectivity, which was further confirmed in cancer cells under oxidative stress. The biomarkers of SARS-CoV-2 were successfully detected due to the signal amplification capability provided by 3D porous electrodes and the high sensitivity of the antigen-antibody specific binding. This study introduces a novel three-dimensional electrode with great potential for the early detection of SARS-CoV-2.


Subject(s)
Biosensing Techniques , COVID-19 , Electrochemical Techniques , Electrodes , Hydrogels , Hydrogen Peroxide , Limit of Detection , SARS-CoV-2 , Hydrogen Peroxide/chemistry , SARS-CoV-2/isolation & purification , SARS-CoV-2/immunology , Humans , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , COVID-19/diagnosis , COVID-19/virology , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Hydrogels/chemistry , Coronavirus Nucleocapsid Proteins/analysis , Coronavirus Nucleocapsid Proteins/immunology , Phosphoproteins/analysis , Immunoassay/instrumentation , Immunoassay/methods
20.
Vaccines (Basel) ; 12(5)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38793722

ABSTRACT

This study follows 99 subjects vaccinated with Pfizer/BioNTech COVID-19 vaccines over two years, with particular focus on the last year of observation (between days 360 and 720). The response to the vaccination was assessed with Diasorin's SARS-CoV-2 TrimericSpike IgG. Screening for SARS-CoV-2 infection was performed with Abbott's SARS-CoV-2 Nucleocapsid IgG immunoassay. Data from questionnaires were also analyzed. Two years after the first vaccine dose administration, 100% of the subjects were positive for anti-spike SARS-CoV-2 IgG and the median antibody level was still high (3600 BAU/mL), dropping insignificantly over the last year. Simultaneously, a substantial increase in seropositivity in anti-nucleocapsid SARS-CoV-2 IgG was noted, reaching 33%. There was no statistically significant agreement between anti-N seropositivity and reported COVID-19. Higher anti-spike concentrations and lower COVID-19 incidence was seen in the older vaccinees. It was noted that only subjects boosted between days 360 and 720 showed an increase in anti-spike IgG concentrations. The higher antibody concentrations (median 7440 BAU/mL) on day 360 were noted in participants not infected over the following year. Vaccination, including booster administrations, and natural, even unrecognized, contact with SARS-CoV-2 entwined two years after the primary vaccination, leading to high anti-spike antibody concentrations.

SELECTION OF CITATIONS
SEARCH DETAIL
...