Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Environ Manage ; 73(3): 646-656, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38103092

ABSTRACT

Marine Citizen Science (MCS) has emerged as a promising tool to enhance conservation efforts. Although the quality of volunteer data has been questioned, the design of specific protocols, effective training programs, and data validation by experts have enabled us to overcome these quality concerns, thus ensuring data reliability. Here, we validated the effectiveness of volunteer training in assessing the conservation status of Mediterranean coral species. We conducted a comparative analysis of data collected by volunteers with different levels of expertise, demonstrating improvements in data precision and accuracy with only one training session, thereby achieving values equivalent to those obtained by scientists. These outcomes align with the feedback received from volunteers through a qualitative survey. Finally, we analysed the data generated by volunteers and validated by experts using the developed protocol in the Coral Alert project from the Observadores del Mar MCS initiative. Our findings highlight the importance of proper training, expert validation, robust sampling protocols, and a well-structured platform to ensure the success of long-term MCS projects. Overall, our results stress the key role MCS plays in enhancing the conservation and management strategies designed to mitigate the ongoing environmental crisis.


Subject(s)
Anthozoa , Citizen Science , Animals , Humans , Reproducibility of Results , Volunteers , Surveys and Questionnaires
2.
Mol Phylogenet Evol ; 188: 107910, 2023 11.
Article in English | MEDLINE | ID: mdl-37640170

ABSTRACT

Keratoisididae is a globally distributed, and exclusively deep-sea, family of octocorals that contains species and genera that are polyphyletic. An alphanumeric system, based on a three-gene-region phylogeny, is widely used to describe the biodiversity within this family. That phylogeny identified 12 major groups although it did not have enough signal to explore the relationships among groups. Using increased phylogenomic resolution generated from Ultraconserved Elements and exons (i.e. conserved elements), we aim to resolve deeper nodes within the family and investigate the relationships among those predefined groups. In total, 109 libraries of conserved elements were generated from individuals representing both the genetic and morphological diversity of our keratoisidids. In addition, the conserved element data of 12 individuals from previous studies were included. Our taxon sampling included 11 of the 12 keratoisidid groups. We present two phylogenies, constructed from a 75% (231 loci) and 50% (1729 loci) taxon occupancy matrix respectively, using both Maximum Likelihood and Multiple Species Coalescence methods. These trees were congruent at deep nodes. As expected, S1 keratoisidids were recovered as a well-supported sister clade to the rest of the bamboo corals. S1 corals do not share the same mitochondrial gene arrangement found in other members of Keratoisididae. All other bamboo corals were recovered within two major clades. Clade I comprises individuals assigned to alphanumeric groups B1, C1, D1&D2, F1, H1, I4, and J3 while Clade II contains representatives from A1, I1, and M1. By combining genomics with already published morphological data, we provide evidence that group H1 is not monophyletic, and that the division between other groups - D1 and D2, and A1 and M1 - needs to be reconsidered. Overall, there is a lack of robust morphological markers within Keratoisididae, but subtle characters such as sclerite microstructure and ornamentation seem to be shared within groups and warrant further investigation as taxonomically diagnostic characters.


Subject(s)
Anthozoa , Animals , Phylogeny , Anthozoa/genetics , Biological Evolution , Biodiversity , Exons
3.
Vet Pathol ; 60(5): 640-651, 2023 09.
Article in English | MEDLINE | ID: mdl-37218467

ABSTRACT

Aspergillosis of gorgonian sea fans is a Caribbean-wide disease characterized by focal, annular purple pigmentation with central tissue loss. We applied a holistic diagnostic approach including histopathology and a combination of culture and direct molecular identification of fungi to evaluate these lesions with the goal of determining the diversity of associated micro-organisms and pathology. Biopsies were collected from 14 sea fans without gross lesions and 44 sea fans with lesions grossly consistent with aspergillosis in shallow fringing reefs of St. Kitts. Histologically, the tissue loss margin had exposure of the axis and amoebocyte encapsulation with abundant mixed micro-organisms. Polyp loss, gastrodermal necrosis, and coenenchymal amoebocytosis were at the lesion interface (purpled area transitioning to grossly normal tissue) with algae (n = 21), fungus-like hyphae (n = 20), ciliate protists (n = 16), cyanobacteria (n = 15), labyrinthulomycetes (n = 5), or no micro-organisms (n = 8). Slender, septate hyaline hyphae predominated over other morphological categories, but were confined to the axis with little host response other than periaxial melanization. Hyphae were absent in 6 lesioned sea fans and present in 5 control biopsies, questioning their pathogenicity and necessary role in lesion causation. From cultivation, different fungi were isolated and identified by sequencing of the nuclear ribosomal internal transcribed spacer region. In addition, 2 primer pairs were used in a nested format to increase the sensitivity for direct amplification and identification of fungi from lesions, thereby circumventing cultivation. Results suggest mixed and opportunistic infections in sea fans with these lesions, requiring longitudinal or experimental studies to better determine the pathogenesis.


Subject(s)
Anthozoa , Aspergillosis , Cyanobacteria , Animals , Anthozoa/microbiology , Anthozoa/physiology , Caribbean Region , Aspergillosis/diagnosis , Aspergillosis/veterinary , Hyphae
4.
PeerJ ; 11: e14812, 2023.
Article in English | MEDLINE | ID: mdl-36814959

ABSTRACT

Dissolved organic carbon (DOC) enrichment and ocean warming both negatively affect hard corals, but studies on their combined effects on other reef organisms are scarce. Octocorals are likely to become key players in future reef communities, but they are still highly under-investigated with regard to their responses to global and local environmental changes. Thus, we evaluated the individual and combined effects of DOC enrichment (10, 20 and 40 mg L-1 DOC, added as glucose) and warming (stepwise from 26 to 32 °C) on the widespread Indo-Pacific gorgonian Pinnigorgia flava in a 45-day laboratory experiment. Oxygen fluxes (net photosynthesis and respiration), as well as Symbiodiniaceae cell density and coral growth were assessed. Our results highlight a differential ecophysiological response to DOC enrichment and warming as well as their combination. Individual DOC addition did not significantly affect oxygen fluxes nor Symbiodiniaceae cell density and growth, while warming significantly decreased photosynthesis rates and Symbiodiniaceae cell density. When DOC enrichment and warming were combined, no effect on P. flava oxygen fluxes was observed while growth responded to certain DOC conditions depending on the temperature. Our findings indicate that P. flava is insensitive to the individual effect of DOC enrichment, but not to warming and the two stressors combined. This suggests that, if temperature remains below certain thresholds, this gorgonian species may gain a competitive advantage over coral species that are reportedly more affected by DOC eutrophication. However, under the expected increasing temperature scenarios, it is also likely that this octocoral species will be negatively affected, with potential consequences on community structure. This study contributes to our understanding of the conditions that drive phase shift dynamics in coastal coral reef ecosystemds.


Subject(s)
Anthozoa , Dinoflagellida , Animals , Dissolved Organic Matter , Seawater/chemistry , Eutrophication , Oxygen/pharmacology , Oceans and Seas
5.
Bioessays ; 45(2): e2200190, 2023 02.
Article in English | MEDLINE | ID: mdl-36412071

ABSTRACT

In contrast to bilaterian animals, non-bilaterian mitochondrial genomes contain atypical genes, often attributed to horizontal gene transfer (HGT) as an ad hoc explanation. Although prevalent in plants, HGT into animal mitochondrial genomes is rare, lacking suitable explanatory models for their occurrence. HGT of the mismatch DNA repair gene (mtMutS) from giant viruses to octocoral (soft corals and their kin) mitochondrial genomes provides a model for how barriers to HGT to animal mitochondria may be overcome. A review of the available literature suggests that this HGT was mediated by an alveolate endosymbiont infected with a lysogenic phycodnavirus that enabled insertion of the homing endonuclease containing mtMutS into octocoral mitochondrial genomes. We posit that homing endonuclease domains and similar selfish elements play a crucial role in such inter-domain gene transfers. Understanding the role of selfish genetic elements in HGT has the potential to aid development of tools for manipulating animal mitochondrial DNA.


Subject(s)
Genome, Mitochondrial , Animals , Genome, Mitochondrial/genetics , Gene Transfer, Horizontal/genetics , DNA, Mitochondrial/genetics , Mitochondria/genetics , Repetitive Sequences, Nucleic Acid/genetics , Phylogeny , Evolution, Molecular
6.
Biol Open ; 11(10)2022 10 15.
Article in English | MEDLINE | ID: mdl-36178163

ABSTRACT

Skeleton formation in corals is a biologically controlled process in which an extracellular organic matrix (OM) is entrapped inside the calcified structure. The analysis of OM requires a time-consuming and tedious extraction that includes grinding, demineralization, multiple rinsing and concentration steps. Here we present an alternative and straightforward method for the red coral Corallium rubrum that requires little equipment and saves steps. The entire skeleton is directly demineralized to produce a tractable material called ghost, which is further rinsed and melted at 80°C in water. The comparative analysis of the standard and alternative methods by electrophoresis, western blot, and FTIR of C. rubrum OM, shows that the 'alternative OM' is of higher quality. Advantages and limitations of both methods are discussed.


Subject(s)
Anthozoa , Animals , Extracellular Matrix , Water
7.
Sci Total Environ ; 823: 153701, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35134420

ABSTRACT

Global warming is causing the increase in intensity and frequency of heatwaves, which are often associated with mass mortality events of marine organisms from shallow and mesophotic rocky habitats, including gorgonians and other sessile organisms. We investigated the microbiome responses of the gorgonians Paramuricea clavata, Eunicella cavolini, and the red coral Corallium rubrum to the episodic temperature anomalies detected in the North Western Mediterranean, during August 2011. Although the investigated corals showed no signs of visible necrosis, the abundance of associated Bacteria and Archaea increased with increasing seawater temperature, suggesting their temperature-dependent proliferation. Coral microbiomes were highly sensitive to thermal anomaly amplitude and exhibited increased bacterial diversity to greater thermal shifts. This effect was explained by the decline of dominant bacterial members and the increase of new, rare and opportunistic taxa, including pathogens, revealing a direct effect of heatwave-induced alteration of the microbiomes and not a secondary consequence of coral necrosis.


Subject(s)
Anthozoa , Microbiota , Animals , Anthozoa/physiology , Bacteria , Coral Reefs , Ecosystem , Forests , Seawater/microbiology
8.
Mol Ecol ; 31(3): 798-810, 2022 02.
Article in English | MEDLINE | ID: mdl-34748669

ABSTRACT

Up to one-third of all described marine species inhabit coral reefs, but the future of these hyperdiverse ecosystems is insecure due to local and global threats, such as overfishing, eutrophication, ocean warming and acidification. Although these impacts are expected to have a net detrimental effect on reefs, it has been shown that some organisms such as octocorals may remain unaffected, or benefit from, anthropogenically induced environmental change, and may replace stony corals in future reefs. Despite their potential importance in future shallow-water coastal environments, the molecular mechanisms leading to the resilience to anthropogenically induced stress observed in octocorals remain unknown. Here, we use manipulative experiments, proteomics and transcriptomics to show that the molecular toolkit used by Pinnigorgia flava, a common Indo-Pacific gorgonian octocoral, to deposit its calcium carbonate skeleton is resilient to heat and seawater acidification stress. Sublethal heat stress triggered a stress response in P. flava but did not affect the expression of 27 transcripts encoding skeletal organic matrix (SOM) proteins. Exposure to seawater acidification did not cause a stress response but triggered the downregulation of many transcripts, including an osteonidogen homologue present in the SOM. The observed transcriptional decoupling of the skeletogenic and stress-response toolkits provides insights into the mechanisms of resilience to anthropogenically driven environmental change observed in octocorals.


Subject(s)
Anthozoa , Ecosystem , Animals , Anthozoa/genetics , Calcification, Physiologic/genetics , Conservation of Natural Resources , Coral Reefs , Fisheries , Hydrogen-Ion Concentration , Seawater
9.
PeerJ ; 9: e12032, 2021.
Article in English | MEDLINE | ID: mdl-34721953

ABSTRACT

The ecological physiology of anthozoans, as well as their resistance to stressors, are strongly influenced by environmental factors and the availability of resources. The energy budget of anthozoans can vary seasonally in order to find an equilibrium between the available resources and respiration, polyp activity, growth, and reproduction processes. The variation in the biochemical composition of the animal tissues in these organisms results from a combination of the productivity processes of the water column coupled with the reproductive effort and potential starvation periods of the anthozoans. Here, the seasonal variation in the polyp activity of a slow-growing passive suspension feeder, the octocoral Alcyonium acaule, as well as their carbohydrate, protein and lipid contents, was investigated in a warm temperate environment using in-situ observations and biochemical analyses. Polyp activity exhibited a significant variability that was moderately dependent on season, while an aestivation phenomenon in A. acaule (i.e., a resting period in which the anthozoan is not capable of any polyp activity) during the warmer months is clearly observed. Carbohydrate concentrations in the coral species showed a significant increase in the late winter and spring seasons, and the lipid content increased during the spring. A higher abundance of lipids and carbohydrates coincided with a higher primary productivity in the water column, as well as with the octocoral reproduction period. In late autumn, there was a depletion of these biomolecules, with protein levels exhibiting great variability across sampling times. Complex alterations driven by climate change could affect the energy fluxes that depend on the dead or alive particles that are intercepted by marine animal forests. The obtained findings show a food shortage in late summer and autumn of the benthic suspension feeder A. acaule through the integrative descriptors of the ecophysiology of these anthozoans. This research contributes to the knowledge of energy storage capabilities in benthic suspension feeders in general, highlighting the importance of understanding the limits of resistance to starvation periods through these indicators.

10.
Genome Biol Evol ; 13(9)2021 09 01.
Article in English | MEDLINE | ID: mdl-34402879

ABSTRACT

MutS is a key component of the mismatch repair (MMR) pathway. Members of the MutS protein family are present in prokaryotes, eukaryotes, and viruses. Six MutS homologs (MSH1-6) have been identified in yeast, of which three function in nuclear MMR, while MSH1 functions in mitochondrial DNA repair. MSH proteins are believed to be well conserved in animals, except for MSH1-which is thought to be lost. Two intriguing exceptions to this general picture have been found, both in the class Anthozoa within the phylum Cnidaria. First, an ortholog of the yeast-MSH1 was reported in one hexacoral species. Second, a MutS homolog (mtMutS) has been found in the mitochondrial genome of all octocorals. To understand the origin and potential functional implications of these exceptions, we investigated the evolution of the MutS family both in Cnidaria and in animals in general. Our study confirmed the acquisition of octocoral mtMutS by horizontal gene transfer from a giant virus. Surprisingly, we identified MSH1 in all hexacorals and several sponges and placozoans. By contrast, MSH1 orthologs were lacking in other cnidarians, ctenophores, and bilaterian animals. Furthermore, while we identified MSH2 and MSH6 in nearly all animals, MSH4, MSH5, and, especially, MSH3 were missing in multiple species. Overall, our analysis revealed a dynamic evolution of the MutS family in animals, with multiple losses of MSH1, MSH3, some losses of MSH4 and MSH5, and a gain of the octocoral mtMutS. We propose that octocoral mtMutS functionally replaced MSH1 that was present in the common ancestor of Anthozoa.


Subject(s)
Saccharomyces cerevisiae Proteins , Animals , DNA Repair , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Fungal Proteins/genetics , MutS DNA Mismatch-Binding Protein/genetics , MutS DNA Mismatch-Binding Protein/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
11.
Sci Total Environ ; 799: 149324, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34371395

ABSTRACT

Biofouling prevention is one of the biggest challenges faced by the maritime industry, but antifouling agents commonly impact marine ecosystems. Advances in antifouling technology include the use of nanomaterials. Herein we test an antifouling nano-additive based on the encapsulation of the biocide 4,5-dichloro-2-octyl-4-isothiazolin-3-one (DCOIT) in engineered silica nanocontainers (SiNC). The work aims to assess the biochemical and physiological effects on the symbiotic coral Sarcophyton cf. glaucum caused by (1) thermal stress and (2) DCOIT exposure (free or nanoencapsulated forms), in a climate change scenario. Accordingly, the following hypotheses were addressed: (H1) ocean warming can cause toxicity on S. cf. glaucum; (H2) the nanoencapsulation process decreases DCOIT toxicity towards this species; (H3) the biocide toxicity, free or encapsulated forms, can be affected by ocean warming. Coral fragments were exposed for seven days to DCOIT in both free and encapsulated forms, SiNC and negative controls, under two water temperature regimes (26 °C and 30.5 °C). Coral polyp behavior and photosynthetic efficiency were determined in the holobiont, while biochemical markers were assessed individually in the endosymbiont and coral host. Results showed transient coral polyp retraction and diminished photosynthetic efficiency in the presence of heat stress or free DCOIT, with effects being magnified in the presence of both stressors. The activity of catalase and glutathione-S-transferase were modulated by temperature in each partner of the symbiosis. The shifts in enzymatic activity were more pronounced in the presence of free DCOIT, but to a lower extent for encapsulated DCOIT. Increased levels of oxidative damage were detected under heat conditions. The findings highlight the physiological constrains elicited by the increase of seawater temperature to symbiotic corals and demonstrate that DCOIT toxicity can be minimized through encapsulation in SiNC. The presence of both stressors magnifies toxicity and confirm that ocean warming enhances the vulnerability of tropical photosynthetic corals to local stressors.


Subject(s)
Anthozoa , Biofouling , Disinfectants , Nanostructures , Animals , Biofouling/prevention & control , Coral Reefs , Disinfectants/toxicity , Ecosystem , Nanostructures/toxicity , Thiazoles
12.
Microbiome ; 9(1): 43, 2021 02 14.
Article in English | MEDLINE | ID: mdl-33583433

ABSTRACT

BACKGROUND: Chitin ranks as the most abundant polysaccharide in the oceans yet knowledge of shifts in structure and diversity of chitin-degrading communities across marine niches is scarce. Here, we integrate cultivation-dependent and -independent approaches to shed light on the chitin processing potential within the microbiomes of marine sponges, octocorals, sediments, and seawater. RESULTS: We found that cultivatable host-associated bacteria in the genera Aquimarina, Enterovibrio, Microbulbifer, Pseudoalteromonas, Shewanella, and Vibrio were able to degrade colloidal chitin in vitro. Congruent with enzymatic activity bioassays, genome-wide inspection of cultivated symbionts revealed that Vibrio and Aquimarina species, particularly, possess several endo- and exo-chitinase-encoding genes underlying their ability to cleave the large chitin polymer into oligomers and dimers. Conversely, Alphaproteobacteria species were found to specialize in the utilization of the chitin monomer N-acetylglucosamine more often. Phylogenetic assessments uncovered a high degree of within-genome diversification of multiple, full-length endo-chitinase genes for Aquimarina and Vibrio strains, suggestive of a versatile chitin catabolism aptitude. We then analyzed the abundance distributions of chitin metabolism-related genes across 30 Illumina-sequenced microbial metagenomes and found that the endosymbiotic consortium of Spongia officinalis is enriched in polysaccharide deacetylases, suggesting the ability of the marine sponge microbiome to convert chitin into its deacetylated-and biotechnologically versatile-form chitosan. Instead, the abundance of endo-chitinase and chitin-binding protein-encoding genes in healthy octocorals leveled up with those from the surrounding environment but was found to be depleted in necrotic octocoral tissue. Using cultivation-independent, taxonomic assignments of endo-chitinase encoding genes, we unveiled previously unsuspected richness and divergent structures of chitinolytic communities across host-associated and free-living biotopes, revealing putative roles for uncultivated Gammaproteobacteria and Chloroflexi symbionts in chitin processing within sessile marine invertebrates. CONCLUSIONS: Our findings suggest that differential chitin degradation pathways, utilization, and turnover dictate the processing of chitin across marine micro-niches and support the hypothesis that inter-species cross-feeding could facilitate the co-existence of chitin utilizers within marine invertebrate microbiomes. We further identified chitin metabolism functions which may serve as indicators of microbiome integrity/dysbiosis in corals and reveal putative novel chitinolytic enzymes in the genus Aquimarina that may find applications in the blue biotechnology sector. Video abstract.


Subject(s)
Aquatic Organisms/microbiology , Bacteria/metabolism , Chitin/metabolism , Geologic Sediments/microbiology , Metagenomics , Microbiota , Seawater/microbiology , Animals , Anthozoa/microbiology , Bacteria/enzymology , Bacteria/genetics , Chitinases/genetics , Chitinases/metabolism , Microbiota/genetics , Oceans and Seas , Phylogeny , Porifera/microbiology , Symbiosis
13.
Adv Mar Biol ; 87(1): 411-441, 2020.
Article in English | MEDLINE | ID: mdl-33293018

ABSTRACT

Octocorals are important zoobenthic organisms, contributing to structural heterogeneity and species diversity on hardgrounds. Their persistence amidst global coral reef degradation and ocean acidification, has prompted renewed interest in this taxon. Octocoral assemblages at 52 sites in continental Ecuador and Galápagos (23 species, 3742 colonies) were examined for composition, size distributions within and among populations, and connectivity patterns based on ocean current models. Species richness varied from 1 to 14 species per site, with the richest sites on the continent. Three assemblage clusters were recognised based on species richness and population size, one with a mix of sites from the mainland and Galápagos (defined by Muricea fruticosa and Leptogorgia alba, Muricea plantaginea and Pacifigorgia darwinii), the second from Santa Elena in southern Ecuador (defined by M. plantaginea and L. alba) and the third from the northernmost sites on the continent, in Esmeraldas (defined by Muricea fruticosa, Heterogorgia hickmani, Leptogorgia manabiensis). Based on biophysical larval flow models with 30, 60, 90-day Pelagic Larval Duration, good connectivity existed along the South American mainland, and from the continent to Galápagos. Connectivity between Galápagos, Cocos, Malpelo and the Colombian mainland may explain the wide distribution of L. alba. Muricea plantaginea had the densest populations with the largest colonies and therewith was an important habitat provider both in continental Ecuador and Galápagos. Continental Ecuador harbours the most speciose populations of octocorals so far recorded in the southern Eastern Tropical Pacific (ETP). Most species were uncommon and possibly vulnerable to local extirpation. The present study may serve as a base line to determine local and regional impacts of future disturbances on ETP octocorals.


Subject(s)
Anthozoa , Coral Reefs , Animals , Ecuador , Seawater
14.
PeerJ ; 8: e10315, 2020.
Article in English | MEDLINE | ID: mdl-33240641

ABSTRACT

Since about the turn of the millennium, octocorals have been increasing in abundance on Caribbean reefs. The mechanisms underlying this trend have not been resolved, but the emergent species assemblage appears to be more resilient than the scleractinians they are replacing. The sea fan Gorgonia ventalina is an iconic species in the contemporary octocoral fauna, and here its population dynamics are described from St. John, US Virgin Islands, from 2013 to 2019. Mean densities of G. ventalina at Yawzi Point (9-m depth) varied from 1.4-1.5 colonies m-2, and their mean heights from 24-30 cm; nearby at Tektite (14-m depth), they varied from 0.6-0.8 colonies m-2 and from 25-33 cm. These reefs were impacted by two Category 5 hurricanes in 2017, but neither the density of G. ventalina, the density of their recruits (< 5-cm tall), nor the height of colonies, differed among years, although growth was depressed after the hurricanes. Nevertheless, at Tektite, colony height trended upwards over time, in part because colonies 10.1-20 cm tall were reduced in abundance after the hurricanes. These trends were sustained without density-associated effects mediating recruitment or self-thinning of adults. The dynamics of G. ventalina over seven years reveals the high resilience of this species that will contribute to the persistence of octocorals as a dominant state on Caribbean reefs.

15.
Data Brief ; 31: 105790, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32566700

ABSTRACT

This dataset accompanies "Spatio temporal variation in octocoral assemblages along a water quality gradient in the northwestern region of Cuba" [1]. Sampling units were quadrats of 1 m2 (each 1 x 1 m), positioned by a random-systematic design at 10 m depth on the rocky-coral substrate. The number of colonies of octocoral species in thirteen fore reefs was counted to determine the composition, richness and abundance (expressed as density) of octocorals for the period from 2008-2015. Density of six species that most influenced spatial variation of octocoral assemblage structure was compared [1]. Species richness of octocorals was determined in each reef and for the 2008-2015 period. The accumulated species richness was calculated based on 100 randomizations without replacement. This dataset can be used in meta-analysis studies on spatial variations of the structure of octocoral assemblages related to anthropogenic activities and climate variability in the Caribbean Sea, as well as, experimental studies on thresholds to specific pollutants.

16.
Mar Drugs ; 18(3)2020 Feb 27.
Article in English | MEDLINE | ID: mdl-32121035

ABSTRACT

Prostaglandin A2-AcMe (1) and Prostaglandin A2 (2) were isolated from the octocoral Plexaura homomalla and three semisynthetic derivatives (3-5) were then obtained using a reduction protocol. All compounds were identified through one- and two-dimensional (1D and 2D) nuclear magnetic resonance (NMR) experiments. Additionally, evaluation of in vitro cytotoxic activity against the breast (MDA-MB-213) and lung (A549) cancer cell lines, in combination with enzymatic activity and molecular docking studies with the enzymes p38α-kinase, Src-kinase, and topoisomerase IIα, were carried out for compounds 1-5 in order to explore their potential as inhibitors of cancer-related molecular targets. Results showed that prostaglandin A2 (2) was the most potent compound with an IC50 of 16.46 and 25.20 µg/mL against MDA-MB-213 and A549 cell lines, respectively. In addition, this compound also inhibited p38α-kinase in 49% and Src-kinase in 59% at 2.5 µM, whereas topoisomerase IIα was inhibited in 64% at 10 µM. Enzymatic activity was found to be consistent with molecular docking simulations, since compound 2 also showed the lowest docking scores against the topoisomerase IIα and Src-kinase (-8.7 and -8.9 kcal/mol, respectively). Thus, molecular docking led to establish some insights into the predicted binding modes. Results suggest that prostaglandin 2 can be considered as a potential lead for development inhibitors against some enzymes present in cancer processes.


Subject(s)
Anthozoa , Antineoplastic Agents/pharmacology , Prostaglandins/pharmacology , A549 Cells/drug effects , Animals , Cell Line, Tumor/drug effects , Humans , Inhibitory Concentration 50 , Oceans and Seas
17.
Glob Chang Biol ; 26(4): 2181-2202, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32077217

ABSTRACT

The deep sea plays a critical role in global climate regulation through uptake and storage of heat and carbon dioxide. However, this regulating service causes warming, acidification and deoxygenation of deep waters, leading to decreased food availability at the seafloor. These changes and their projections are likely to affect productivity, biodiversity and distributions of deep-sea fauna, thereby compromising key ecosystem services. Understanding how climate change can lead to shifts in deep-sea species distributions is critically important in developing management measures. We used environmental niche modelling along with the best available species occurrence data and environmental parameters to model habitat suitability for key cold-water coral and commercially important deep-sea fish species under present-day (1951-2000) environmental conditions and to project changes under severe, high emissions future (2081-2100) climate projections (RCP8.5 scenario) for the North Atlantic Ocean. Our models projected a decrease of 28%-100% in suitable habitat for cold-water corals and a shift in suitable habitat for deep-sea fishes of 2.0°-9.9° towards higher latitudes. The largest reductions in suitable habitat were projected for the scleractinian coral Lophelia pertusa and the octocoral Paragorgia arborea, with declines of at least 79% and 99% respectively. We projected the expansion of suitable habitat by 2100 only for the fishes Helicolenus dactylopterus and Sebastes mentella (20%-30%), mostly through northern latitudinal range expansion. Our results projected limited climate refugia locations in the North Atlantic by 2100 for scleractinian corals (30%-42% of present-day suitable habitat), even smaller refugia locations for the octocorals Acanella arbuscula and Acanthogorgia armata (6%-14%), and almost no refugia for P. arborea. Our results emphasize the need to understand how anticipated climate change will affect the distribution of deep-sea species including commercially important fishes and foundation species, and highlight the importance of identifying and preserving climate refugia for a range of area-based planning and management tools.

18.
Zootaxa ; 4571(1): zootaxa.4571.1.1, 2019 Mar 25.
Article in English | MEDLINE | ID: mdl-31715827

ABSTRACT

Octocorals of the Acanthogorgiid genus Calcigorgia have been examined, from Japan, Sea of Okhotsk, and Bering Sea. The four known species are re-described and scanning electron microscopy (SEM) images of sclerites presented. Three other species are described and depicted, bringing the total number of Calcigorgia species to seven. Calcigorgia simushiri, Dautova 2018 is synonymized with C. spiculifera Broch, 1935. A neotype for C. spiculifera has been designated.


Subject(s)
Anthozoa , Animals , Japan
19.
PeerJ ; 7: e7076, 2019.
Article in English | MEDLINE | ID: mdl-31328027

ABSTRACT

Polyp activity in passive suspension feeders has been considered to be affected by several environmental factors such as hydrodynamics, water temperature and food concentration. To better elucidate the driving forces controlling polyp expansion in these organisms and the potential role of particle concentration, the octocoral Corallium rubrum was investigated in accordance with two approaches: (1) high-frequency in-situ observations examining various environmental and biological variables affecting the water column, and (2) video-recorded flume-controlled laboratory experiments performed under a range of environmental and biological conditions, in terms of water temperature, flow speed, chemical signals and zooplankton. In the field, C. rubrum polyp expansion correlated positively with particle (seston and zooplankton) concentration and current speed. This observation was confirmed by the flume video records of the laboratory experiments, which showed differences in polyp activity due to changes in temperature and current speed, but especially in response to increasing nutritional stimuli. The maximum activity was observed at the highest level of nutritional stimulus consisting of zooplankton. Zooplankton and water movement appeared to be the main factors controlling polyp expansion. These results suggest that the energy budget of passive suspension feeders (and probably the benthic community as a whole) may rely on their ability to maximise prey capture during food pulses. The latter, which may be described as discontinuous organic matter (dead or alive) input, may be the key to a better understanding of benthic-pelagic coupling processes and trophic impacts on animal forests composed of sessile suspension feeders.

20.
Results Probl Cell Differ ; 65: 377-421, 2018.
Article in English | MEDLINE | ID: mdl-30083929

ABSTRACT

Tropical scleractinian corals are dependent to varying degrees on their photosymbiotic partners. Under normal levels of temperature and irradiance, they can provide most, but not all, of the host's nutritional requirements. Heterotrophy is required to adequately supply critical nutrients, especially nitrogen and phosphorus. Scleractinian corals are known as mesozooplankton predators, and most employ tentacle capture. The ability to trap nano- and picoplankton has been demonstrated by several coral species and appears to fulfill a substantial proportion of their daily metabolic requirements. The mechanism of capture likely involves mucociliary activity or extracoelenteric digestion, but the relative contribution of these avenues have not been evaluated. Many corals employ mesenterial filaments to procure food in various forms, but the functional morphology and chemical activities of these structures have been poorly documented. Corals are capable of acquiring nutrition from particulate and dissolved organic matter, although the degree of reliance on these sources generally has not been established. Corals, including tropical, deep- and cold-water species, are known as a major source of carbon and other nutrients for benthic communities through the secretion of mucus, despite wide variation in chemical composition. Mucus is cycled through the planktonic microbial loop, the benthos, and the microbial community within the sediments. The consensus indicates that the dissolved organic fraction of mucus usually exceeds the insoluble portion, and both serve as sources for the growth of nano- and picoplankton. As many corals employ mucus to trap food, a portion is taken back during feeding. The net gain or loss has not been evaluated, although production is generally thought to exceed consumption. The same is true for the net uptake and loss of dissolved organic matter by mucus secretion. Octocorals are thought not to employ mucus capture or mesenterial filaments during feeding and generally rely on tentacular filtration of weakly swimming mesozooplankton, particulates, dissolved organic matter, and picoplankton. Nonsymbiotic species in the tropics favor phytoplankton and weakly swimming zooplankton. Azooxanthellate soft corals are opportunistic feeders and shift their diet according to the season from phyto- and nanoplankton in summer to primarily particulate organic matter (POM) in winter. Cold-water species favor POM, phytodetritus, microplankton, and larger zooplankton when available. Antipatharians apparently feed on mesozooplankton but also use mucus nets, possibly for capture of POM. Feeding modes in this group are poorly known.


Subject(s)
Anthozoa/metabolism , Animals , Nitrogen/metabolism , Phosphorus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...