Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 833
Filter
1.
Chin Clin Oncol ; 13(3): 34, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38984487

ABSTRACT

BACKGROUND: Breast cancer has become one of the leading causes of cancer deaths and is the most frequently diagnosed cancer among females worldwide. Despite advances in breast cancer therapy, metastatic disease in most patients will eventually progress due to the development of de novo or secondary resistance. Thus, it is extremely important to seek novel drugs with high effectiveness and low toxicity for systematic therapy. METHODS: We applied a 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in this study to analyze and evaluate the cytotoxic activity of oleanolic acid (OA) and its derivatives in three types of breast cancer cell lines (MDA-MB-231, MCF-7, and MDA-MB-453). A flow cytometry assay was performed to access the mechanisms of apoptosis and cell cycle analysis in SZC010 in MDA-MB-453 cells. Apoptosis- and cyclin-related proteins were evaluated by western blot. The key proteins of the NF-κB and PI3K-Akt-mTOR signaling pathway were also evaluated by western blot. RESULTS: Our results revealed that all OA derivatives were more effective than OA in three types of breast cancer cell lines (MCF-7, MDA-MB-231, and MDA-MB-453). Among these seven OA derivatives, SZC010 exhibited the most potent cytotoxicity in MDA-MB-453 cells. Additionally, we observed that SZC010 treatment induced dose-and time-dependent growth inhibition in MDA-MB-453 cells. Furthermore, we demonstrated that SZC010 induced growth arrest in the G2/M phase and apoptosis by inhibition of NF-κB activation via the PI3K/Akt/mTOR signaling pathway. CONCLUSIONS: Our data indicate that the novel OA derivative, SZC010, has great potential in breast cancer therapy.


Subject(s)
Apoptosis , Breast Neoplasms , NF-kappa B , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Humans , Breast Neoplasms/drug therapy , Female , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Oleanolic Acid/pharmacology , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/therapeutic use , Cell Proliferation/drug effects , MCF-7 Cells
2.
Eur J Med Chem ; 276: 116625, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38991300

ABSTRACT

The rapid emergence of antibiotic resistance and the scarcity of novel antibacterial agents have necessitated an urgent pursuit for the discovery and development of novel antibacterial agents against multidrug-resistant bacteria. This study involved the design and synthesis of series of novel indole-benzosulfonamide oleanolic acid (OA) derivatives, in which the indole and benzosulfonamide pharmacophores were introduced into the OA skeleton semisynthetically. These target OA derivatives show antibacterial activity against Staphylococcus strains in vitro and in vivo. Among them, derivative c17 was the most promising antibacterial agent while compared with the positive control of norfloxacin, especially against methicillin-resistant Staphylococcus aureus (MRSA) in vitro. In addition, derivative c17 also showed remarkable efficacy against MRSA-infected murine skin model, leading to a significant reduction of bacterial counts during this in vivo study. Furthermore, some preliminary studies indicated that derivative c17 could effectively inhibit and eradicate the biofilm formation, disrupt the integrity of the bacterial cell membrane. Moreover, derivative c17 showed low hemolytic activity and low toxicity to mammalian cells of NIH 3T3 and HEK 293T. These aforementioned findings strongly support the potential of novel indole-benzosulfonamide OA derivatives as anti-MRSA agents.

3.
Int Immunopharmacol ; 138: 112617, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38972213

ABSTRACT

Severe steatosis in donor livers is contraindicated for transplantation due to the high risk of ischemia-reperfusion injury (IRI). Although Ho-1 gene-modified bone marrow mesenchymal stem cells (HO-1/BMMSCs) can mitigate IRI, the role of gut microbiota and metabolites in this protection remains unclear. This study aimed to explore how gut microbiota and metabolites contribute to HO-1/BMMSCs-mediated protection against IRI in severe steatotic livers. Using rat models and cellular models (IAR20 and THLE-2 cells) of steatotic liver IRI, this study revealed that ischemia-reperfusion led to significant liver and intestinal damage, heightened immune responses, impaired liver function, and altered gut microbiota and metabolite profiles in rats with severe steatosis, which were partially reversed by HO-1/BMMSCs transplantation. Integrated microbiome and metabolome analyses identified gut microbial metabolite oleanolic acid as a potential protective agent against IRI. Experimental validation showed that oleanolic acid administration alone alleviated IRI and inhibited ferroptosis in both rat and cellular models. Network pharmacology and molecular docking implicated KEAP1/NRF2 pathway as a potential target of oleanolic acid. Indeed, OA experimentally upregulated NRF2 activity, which underlies its inhibition of ferroptosis and protection against IRI. The gut microbial metabolite OA protects against IRI in severe steatotic liver by promoting NRF2 expression and activity, thereby inhibiting ferroptosis.

4.
Phytochemistry ; : 114204, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971498

ABSTRACT

From the root barks of a Central African tree Millettia dubia De Wild. (Fabaceae), ten previously undescribed oleanane-type glycosides were isolated by various chromatographic protocols. Their structures were elucidated by spectroscopic methods, mainly 2D NMR experiments and mass spectrometry, as mono- and bidesmosidic glycosides of mesembryanthemoidigenic acid, hederagenin and oleanolic acid. The stimulation of the sweet taste receptor TAS1R2/TAS1R3 by these glycosides was evaluated, and structure/activity relationships were proposed. Two of them showed an agonist effect on TAS1R2/TAS1R3.

5.
Int J Nanomedicine ; 19: 5953-5972, 2024.
Article in English | MEDLINE | ID: mdl-38895147

ABSTRACT

Background and Purpose: Natural products are potential sources of anticancer components. Among various species, the lipophilic extract of the Viscum album subsp. austriacum (Wiesb.) Vollm. (VALE) has shown promising therapeutic potential. The present work aimed to qualify the plant source and characterize the extract's chemical profile. In addition, a self-nanoemulsifying drug delivery system (SNEDDS) containing VALE (SNEDDS-VALE) was developed. Methods: V. album subsp. austriacum histochemistry was performed, and the chemical profile of VALE was analyzed by GC-MS. After the SNEEDS-VALE development, its morphology was visualized by transmission electron microscopy (TEM), while its stability was evaluated by the average droplet size, polydispersity index (PdI) and pH. Lastly, SNEDDS-VALE chemical stability was evaluated by LC-DAD-MS. Results: The histochemical analysis showed the presence of lipophilic compounds in the leaves and stems. The major compound in the VALE was oleanolic acid, followed by lupeol acetate and ursolic acid. SNEDDS was composed of medium chain triglyceride and Kolliphor® RH 40 (PEG-40 hydrogenated castor oil). A homogeneous, isotropic and stable nanoemulsion was obtained, with an average size of 36.87 ± 1.04 nm and PdI of 0.14 ± 0.02, for 14 weeks. Conclusion: This is the first histochemistry analysis of V. album subsp. austriacum growing on Pinus sylvestris L. which provided detailed information regarding its lipophilic compounds. A homogeneous, isotropic and stable SNEDDS-VALE was obtained to improve the low water solubility of VALE. Further, in vitro and in vivo experiments should be performed, in order to evaluate the antitumoral potential of SNEDDS-VALE.


Subject(s)
Emulsions , Plant Extracts , Viscum album , Plant Extracts/chemistry , Plant Extracts/administration & dosage , Viscum album/chemistry , Emulsions/chemistry , Plant Leaves/chemistry , Drug Delivery Systems/methods , Particle Size , Nanoparticle Drug Delivery System/chemistry , Nanoparticles/chemistry
6.
Heliyon ; 10(11): e31303, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38845938

ABSTRACT

Background: Patients with type 2 diabetes mellitus (T2DM) experience a decline in cardiac function, resulting in poor prognosis. Therefore, restoration of cardiac function and improvement of myocardial fibrosis is an important treatment goal for patients with T2DM. Material and methods: The chemical structure of oleanolic acid(OA) was downloaded from PubChem and uploaded to PharmMapper. GeneCards and OMIM databases were searched for genes related to OA and disease and plotted into a Venn diagram. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed using R software. Then, a mouse model of diabetes mellitus was established, and ELISA, echocardiographic analysis of cardiac function, TUNEL assay, and reactive oxygen species assay were performed. Results: Network pharmacology analysis identified the related targets and potential molecular mechanisms underlying the effects of OA in T2DM. ELISA, echocardiographic analysis of cardiac function, and TUNEL assay results showed that OA inhibits apoptosis and improves apoptotic indexes in mice with T2DM-induced myocardial injury. Conclusion: The results demonstrate the myocardial protective effect of OA in this mouse model.

7.
Toxicology ; 506: 153867, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906242

ABSTRACT

Methylmercury (MeHg) is widely distributed in nature and is known to cause neurotoxic effects. This study aimed to examine the anti-MeHg activity of oleanolic acid-3-glucoside (OA3Glu), a synthetic oleanane-type saponin derivative, by evaluating its effects on motor function, pathology, and electrophysiological properties in a mouse model of MeHg poisoning. Mice were orally administered 2 or 4 mg·kg-1·d-1 MeHg with or without 100 µg·kg-1·d-1 OA3Glu 5x/week for four weeks. Motor function was evaluated using beam-walking and dynamic weight-bearing (DWB) tests. High-dose MeHg exposure significantly increased the frequency of stepping off the hind leg while crossing the beam in the beam-walking test, and increased weight on forelegs when moving freely in the DWB test. OA3Glu treatment alleviated motor abnormality caused by high-dose MeHg exposure in both motor function tests. Additionally, OA3Glu treatment reduced the number of contracted Purkinje cells frequently observed in the cerebellum of MeHg-treated groups, although cerebrum histology was similar in all experimental groups. The synaptic potential amplitude in the cerebellum decreased as MeHg exposure increased, which was restored by OA3Glu treatment. Even in the cerebrum, where the effects of MeHg were not observed, the amplitude of the field potential was suppressed with increasing MeHg exposure but was restored with OA3Glu treatment. Taken together, the study findings suggest that OA3Glu improves neurotransmission and movement disorders associated with MeHg exposure via protection of Purkinje cells in the cerebellum while ameliorating pre/post-synaptic deficits in the cerebral cortex in which no changes were observed at the tissue level, potentially providing a treatment to mitigate MeHg toxicity.

8.
J Control Release ; 372: 331-346, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38844176

ABSTRACT

Bone is one of the most prevalent sites of metastases in various epithelial malignancies, including breast cancer and this metastasis to bone often leads to severe skeletal complications in women due to its osteolytic nature. To address this, we devised a novel drug delivery approach using an Alendronate (ALN) functionalized self-assembled porous crystalsomes for concurrent targeting of Oleanolic acid (OA) and ALN (ALN + OA@NCs) to bone metastasis. Initially, the conjugation of both PEG-OA and OA-PEG-ALN with ALN and OA was achieved, and this conjugation was then self-assembled into porous crystalsomes (ALN + OA@NCs) by nanoemulsion crystallization. The reconstruction of a 3D single particle using transmission electron microscopy ensured the crystalline porous structure of ALN + OA@NCs, was well aligned with characteristic nanoparticle attributes including size distribution, polydispersity, and zeta potential. Further, ALN + OA@NCs showed enhanced efficacy in comparison to OA@NCs suggesting the cytotoxic roles of ALN towards cancer cells, followed by augmentation ROS generation (40.81%), mitochondrial membrane depolarization (57.20%), and induction of apoptosis (40.43%). We found that ALN + OA@NCs facilitated inhibiting osteoclastogenesis and bone resorption followed by inhibited osteolysis. In vivo activity of ALN + OA@NCs in the 4 T1 cell-induced tibia model rendered a reduced bone loss in the treated mice followed by restoring bone morphometric markers which were further corroborated bone-targeting effects of ALN + OA@NCs to reduce RANKL-stimulated osteoclastogenesis. Further, In vivo intravenous pharmacokinetics showed the improved therapeutic profile of the ALN + OA@NCs in comparison to the free drug, prolonging the levels of the drug in the systemic compartment by reducing the clearance culminating the higher accumulation at the tumor site. Our finding proposed that ALN + OA@NCs can effectively target and treat breast cancer metastasis to bone and its associated complications.

9.
Int J Mol Sci ; 25(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892215

ABSTRACT

In our previous study, two oleanane-type pentacyclic triterpenoids (oleanolic acid and maslinic acid) were reported to affect the N-glycosylation and intracellular trafficking of intercellular adhesion molecule-1 (ICAM-1). The present study was aimed at investigating the structure-activity relationship of 13 oleanane-type natural triterpenoids with respect to the nuclear factor κB (NF-κB) signaling pathway and the expression, intracellular trafficking, and N-glycosylation of the ICAM-1 protein in human lung adenocarcinoma A549 cells. Hederagenin, echinocystic acid, erythrodiol, and maslinic acid, which all possess two hydroxyl groups, decreased the viability of A549 cells. Celastrol and pristimerin, both of which possess an α,ß-unsaturated carbonyl group, decreased cell viability but more strongly inhibited the interleukin-1α-induced NF-κB signaling pathway. Oleanolic acid, moronic acid, and glycyrrhetinic acid interfered with N-glycosylation without affecting the cell surface expression of the ICAM-1 protein. In contrast, α-boswellic acid and maslinic acid interfered with the N-glycosylation of the ICAM-1 protein, which resulted in the accumulation of high-mannose-type N-glycans. Among the oleanane-type triterpenoids tested, α-boswellic acid and maslinic acid uniquely interfered with the intracellular trafficking and N-glycosylation of glycoproteins.


Subject(s)
Intercellular Adhesion Molecule-1 , NF-kappa B , Oleanolic Acid , Pentacyclic Triterpenes , Protein Transport , Triterpenes , Humans , Intercellular Adhesion Molecule-1/metabolism , Glycosylation , NF-kappa B/metabolism , Structure-Activity Relationship , Oleanolic Acid/pharmacology , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/chemistry , A549 Cells , Protein Transport/drug effects , Pentacyclic Triterpenes/pharmacology , Pentacyclic Triterpenes/chemistry , Triterpenes/pharmacology , Triterpenes/chemistry , Signal Transduction/drug effects , Cell Survival/drug effects
10.
Antioxidants (Basel) ; 13(6)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38929141

ABSTRACT

Repetitive motion or exercise is associated with oxidative stress and muscle inflammation, which can lead to declining grip strength and muscle damage. Oleanolic acid and ursolic acid have anti-inflammatory and antioxidant properties and can be extracted from Chaenomeles speciosa through ultrasonic sonication. We investigated the association between grip strength declines and muscle damage induced by lambda carrageenan (LC) injection and exercise exposure in rats. We also assessed the reparative effects of transdermal pretreatment and post-treatment with C. speciosa extracts (CSEs) by using a supersonic atomizer. The half-maximal inhibitory concentration (IC50) of CSEs for cells was 10.5 mg/mL. CSEs significantly reduced the generation of reactive oxygen species and inflammatory factors (interleukin [IL]-6 and IL-1ß) in in vitro cell tests. Rats subjected to LC injection and 6 weeks of exercise exhibited significantly increased inflammatory cytokine levels (IL-1ß, TNF-α, and IL-6). Hematoxylin and eosin staining revealed inflammatory cell infiltration and evident muscle damage in the gastrocnemius muscle, which exhibited splitting and the appearance of the endomysium and perimysium. The treated rats' grip strength significantly declined. Following treatment with CSEs, the damaged muscles exhibited decreased IL-1ß, TNF-α, and IL-6 levels and normal morphologies. Moreover, grip strength significantly recovered. Pretreatment with CSEs yielded an immediate and significant increase in grip strength, with an increase of 180% and 165% occurring in the rats exposed to LC injection and exercise within the initial 12 h period, respectively, compared with the control group. Pretreatment with CSEs delivered transdermally using a supersonic atomizer may have applications in sports medicine and training or competitions.

11.
Pharmaceutics ; 16(6)2024 May 21.
Article in English | MEDLINE | ID: mdl-38931816

ABSTRACT

The growing interest in oleanolic acid (OA) as a triterpenoid with remarkable health benefits prompts an emphasis on its efficient use in pharmaceutical research. OA exhibits a range of pharmacological effects, including antidiabetic, anti-inflammatory, immune-enhancing, gastroprotective, hepatoprotective, antitumor, and antiviral properties. While OA demonstrates diverse pharmacological effects, optimizing its therapeutic potential requires overcoming significant challenges. In the field of pharmaceutical research, the exploration of efficient drug delivery systems is essential to maximizing the therapeutic potential of bioactive compounds. Efficiently delivering OA faces challenges, such as poor aqueous solubility and restricted bioavailability, and to unlock its full therapeutic efficacy, novel formulation strategies are imperative. This discussion thoroughly investigates different approaches and advancements in OA drug delivery systems with the aim of enhancing the biopharmaceutical features and overall efficacy in diverse therapeutic contexts.

12.
Microorganisms ; 12(6)2024 May 29.
Article in English | MEDLINE | ID: mdl-38930479

ABSTRACT

Probiotic biofilms have been beneficial in the fight against infections, restoring the equilibrium of the host's gut microbiota, and enhancing host health. They are considered a novel strategy for probiotic gut colonization. In this case, we evaluated the effects of various active substances from traditional Chinese medicine on Escherichia coli Nissle 1917 (EcN) to determine if they promote biofilm formation. It was shown that 8-64 µg/mL of oleanolic acid increased the development of EcN biofilm. Additionally, we observed that oleanolic acid can effectively suppress biofilm formation in pathogenic bacteria such as Salmonella and Staphylococcus aureus. Next, we assessed the amount of EcN extracellular polysaccharides, the number of live bacteria, their metabolic activity, the hydrophobicity of their surface, and the shape of their biofilms using laser confocal microscopy. Through transcriptome analysis, a total of 349 differentially expressed genes were identified, comprising 134 upregulated and 215 downregulated genes. GO functional enrichment analysis and KEGG pathway enrichment analysis revealed that oleanolic acid functions are through the regulation of bacterial motility, the iron absorption system, the two-component system, and adhesion pathways. These findings suggest that the main effects of oleanolic acid are to prevent bacterial motility, increase initial adhesion, and encourage the development of EcN biofilms. In addition, oleanolic acid interacts with iron absorption to cooperatively control the production of EcN biofilms within an optimal concentration range. Taking these results together, this study suggests that oleanolic acid may enhance probiotic biofilm formation in the intestines, presenting new avenues for probiotic product development.

13.
Acta Pharm Sin B ; 14(6): 2598-2612, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828149

ABSTRACT

Src homology 2 domain-containing tyrosine phosphatase 2 (SHP2) is an essential tyrosine phosphatase that is pivotal in regulating various cellular signaling pathways such as cell growth, differentiation, and survival. The activation of SHP2 has been shown to have a therapeutic effect in colitis and Parkinson's disease. Thus, the identification of SHP2 activators and a complete understanding of their mechanism is required. We used a two-step screening assay to determine a novel allosteric activator of SHP2 that stabilizes it in an open conformation. Oleanolic acid was identified as a suitable candidate. By binding to R362, K364, and K366 in the active center of the PTP domain, oleanolic acid maintained the active open state of SHP2, which facilitated the binding between SHP2 and its substrate. This oleanolic acid-activated SHP2 hindered Th17 differentiation by disturbing the interaction between STAT3 and IL-6Rα and inhibiting the activation of STAT3. Furthermore, via the activation of SHP2 and subsequent attenuation of the STAT3-Th17 axis, oleanolic acid effectively mitigated colitis in mice. This protective effect was abrogated by SHP2 knockout or administration of the SHP2 inhibitor SHP099. These findings underscore the potential of oleanolic acid as a promising therapeutic agent for treating inflammatory bowel diseases.

14.
EPMA J ; 15(2): 163-205, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38841620

ABSTRACT

Despite their subordination in humans, to a great extent, mitochondria maintain their independent status but tightly cooperate with the "host" on protecting the joint life quality and minimizing health risks. Under oxidative stress conditions, healthy mitochondria promptly increase mitophagy level to remove damaged "fellows" rejuvenating the mitochondrial population and sending fragments of mtDNA as SOS signals to all systems in the human body. As long as metabolic pathways are under systemic control and well-concerted together, adaptive mechanisms become triggered increasing systemic protection, activating antioxidant defense and repair machinery. Contextually, all attributes of mitochondrial patho-/physiology are instrumental for predictive medical approach and cost-effective treatments tailored to individualized patient profiles in primary (to protect vulnerable individuals again the health-to-disease transition) and secondary (to protect affected individuals again disease progression) care. Nutraceuticals are naturally occurring bioactive compounds demonstrating health-promoting, illness-preventing, and other health-related benefits. Keeping in mind health-promoting properties of nutraceuticals along with their great therapeutic potential and safety profile, there is a permanently growing demand on the application of mitochondria-relevant nutraceuticals. Application of nutraceuticals is beneficial only if meeting needs at individual level. Therefore, health risk assessment and creation of individualized patient profiles are of pivotal importance followed by adapted nutraceutical sets meeting individual needs. Based on the scientific evidence available for mitochondria-relevant nutraceuticals, this article presents examples of frequent medical conditions, which require protective measures targeted on mitochondria as a holistic approach following advanced concepts of predictive, preventive, and personalized medicine (PPPM/3PM) in primary and secondary care.

15.
Heliyon ; 10(9): e30547, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38726163

ABSTRACT

The present article describes the muscle relaxant and antipyretic effects of pentacyclic triterpenes, oleanolic acid (OA), ursolic acid (UA) and betulinic acid (BA) isolated from roots of Diospyros lotus in animal models. The muscle relaxant effects of isolated pentacyclic triterpenes were determined by chimney and inclined plane tests. In the chimney test, pretreatment of pentacyclic triterpenes evoked significant dose dependent influence on muscle coordination. When administered intraperitoneally (i.p.) to mice at 10 mg/kg for 90 min, OA, UA, and BA exhibited muscle relaxant effects of 66.72 %, 60.21 %, and 50.77 %, respectively. Similarly, OA, UA, and BA (at 10 mg/kg) illustrated 65.74 %, 59.84 % and 51.40 % muscle relaxant effects in the inclined plane test. In the antipyretic test, significant amelioration was caused by pretreatment of all compounds in dose dependent manner. OA, UA, and BA (at 5 mg/kg) showed 39.32 %, 34.32 % and 29.99 % anti-hyperthermic effects, respectively 4 h post-treatment, while at 10 mg/kg, OA, UA, and BA exhibited 71.59 %, 60.99 % and 52.44 % impact, respectively. The muscle relaxant effect of benzodiazepines is well known for enhancement of GABA receptors. There may exist a similar mechanism for muscle relaxant effect of pentacyclic triterpenes. The in-silico predicted binding pattern of all the compounds reflects good affinity of compounds with GABAA receptor and COX-2. These results indicate that the muscle relaxant and antipyretic activities of these molecules can be further improved by structural optimization.

16.
J Anim Sci Biotechnol ; 15(1): 79, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38760843

ABSTRACT

BACKGROUND: Infection with pathogenic bacteria during nonantibiotic breeding is one of the main causes of animal intestinal diseases. Oleanolic acid (OA) is a pentacyclic triterpene that is ubiquitous in plants. Our previous work demonstrated the protective effect of OA on intestinal health, but the underlying molecular mechanisms remain unclear. This study investigated whether dietary supplementation with OA can prevent diarrhea and intestinal immune dysregulation caused by enterotoxigenic Escherichia coli (ETEC) in piglets. The key molecular role of bile acid receptor signaling in this process has also been explored. RESULTS: Our results demonstrated that OA supplementation alleviated the disturbance of bile acid metabolism in ETEC-infected piglets (P < 0.05). OA supplementation stabilized the composition of the bile acid pool in piglets by regulating the enterohepatic circulation of bile acids and significantly increased the contents of UDCA and CDCA in the ileum and cecum (P < 0.05). This may also explain why OA can maintain the stability of the intestinal microbiota structure in ETEC-challenged piglets. In addition, as a natural ligand of bile acid receptors, OA can reduce the severity of intestinal inflammation and enhance the strength of intestinal epithelial cell antimicrobial programs through the bile acid receptors TGR5 and FXR (P < 0.05). Specifically, OA inhibited NF-κB-mediated intestinal inflammation by directly activating TGR5 and its downstream cAMP-PKA-CREB signaling pathway (P < 0.05). Furthermore, OA enhanced CDCA-mediated MEK-ERK signaling in intestinal epithelial cells by upregulating the expression of FXR (P < 0.05), thereby upregulating the expression of endogenous defense molecules in intestinal epithelial cells. CONCLUSIONS: In conclusion, our findings suggest that OA-mediated regulation of bile acid metabolism plays an important role in the innate immune response, which provides a new diet-based intervention for intestinal diseases caused by pathogenic bacterial infections in piglets.

17.
Dent J (Basel) ; 12(5)2024 May 08.
Article in English | MEDLINE | ID: mdl-38786531

ABSTRACT

Periodontal disease is caused by oral pathogenic bacteria and is associated with systemic disease and frailty. Therefore, its prevention is crucial in extending healthy life expectancy. This study aimed to evaluate the effect of orally administered oleanolic acid, extracted from wine pomace, on periodontopathic bacterial growth in healthy individuals. In this randomized, placebo-controlled, double-blind, parallel-group comparison study, 84 healthy adults were assigned to a placebo (n = 29), low-dose (n = 29, 9 mg oleanolic acid), or high-dose (n = 26, 27 mg oleanolic acid) groups. The number of oral bacteria in their saliva, collected before and 5 h after administration, was determined using the polymerase chain reaction-invader technique. The proportion of periodontopathic bacteria among the total oral bacteria in the saliva was calculated. Oleanolic acid significantly decreased the proportion of Porphyromonas gingivalis among the total oral bacteria in a dose-dependent manner (p = 0.005 (low-dose) and p = 0.003 (high-dose) vs. placebo, Williams' test). Moreover, high-dose oleanolic acid decreased the proportion of Tannerella forsythia (p = 0.064 vs. placebo, Williams' test). Periodontopathic bacteria are closely associated with the development and progression of periodontal disease; thus, the continuous daily intake of oleanolic acid derived from pomace may be helpful in maintaining a healthy oral microbiome by controlling the proportion of periodontopathic bacteria.

18.
Chin Med ; 19(1): 74, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816880

ABSTRACT

Kidney diseases pose a significant threat to human health due to their high prevalence and mortality rates. Worryingly, the clinical use of drugs for kidney diseases is associated with more side effects, so more effective and safer treatments are urgently needed. Oleanolic acid (OA) is a common pentacyclic triterpenoid that is widely available in nature and has been shown to have protective effects in kidney disease. However, comprehensive studies on its role in kidney diseases are still lacking. Therefore, this article first explores the botanical sources, pharmacokinetics, derivatives, and safety of OA, followed by a summary of the anti-inflammatory, immunomodulatory, anti-oxidative stress, autophagy-enhancing, and antifibrotic effects of OA and its analogues in renal diseases, and an analysis of the molecular mechanisms, aiming to provide further insights for the development of novel drugs for the treatment of kidney diseases.

19.
Toxics ; 12(4)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38668524

ABSTRACT

Cisplatin is a widely used anti-cancer drug for treating solid tumors, but it is associated with severe side effects, including nephrotoxicity. Various studies have suggested that the nephrotoxicity of cisplatin could be overcome; nonetheless, an effective adjuvant drug has not yet been established. Oleanolic acid acetate (OAA), a triterpenoid isolated from Vigna angularis, is commonly used to treat inflammatory and allergic diseases. This study aimed to investigate the protective effects of OAA against cisplatin-induced apoptosis and necroptosis using TCMK-1 cells and a mouse model. In cisplatin-treated TCMK-1 cells, OAA treatment significantly reduced Bax and cleaved-caspase3 expression, whereas it increased Bcl-2 expression. Moreover, in a cisplatin-induced kidney injury mouse model, OAA treatment alleviated weight loss in the body and major organs and also relieved cisplatin-induced nephrotoxicity symptoms. RNA sequencing analysis of kidney tissues identified lipocalin-2 as the most upregulated gene by cisplatin. Additionally, necroptosis-related genes such as receptor-interacting protein kinase (RIPK) and mixed lineage kinase domain-like (MLKL) were identified. In an in vitro study, the phosphorylation of RIPKs and MLKL was reduced by OAA pretreatment in both cisplatin-treated cells and cells boosted via co-treatment with z-VAD-FMK. In conclusion, OAA could protect the kidney from cisplatin-induced nephrotoxicity and may serve as an anti-cancer adjuvant.

20.
Food Chem ; 451: 139482, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38688096

ABSTRACT

Natural terpenoid carriers, such as oleanolic acid (OA), can enhance the water solubility and stability of hydrophobic compounds such as curcumin (Cur). However, improving the colloidal stability of nanoparticle emulsions and resolving the redispersion problem of freeze-dried nanoparticle powders remain significant challenges. In this study, we fabricated coassembled oleanolic acid-curcumin nanoparticles (OA/Cur NPs) and applied a polysaccharide surface coating method to improve their colloidal stability and water solubility. The results showed that the optimal ratio of Cur/OA for preparing OA/Cur NPs was 4:10, resulting in a high encapsulation efficiency (EE) of Cur (75.2%). Additionally, TEM, contact angle tests, Turbiscan TOWER optical stability analysis of the polysaccharide-coated OA/Cur NP emulsions and redispersion tests of their lyophilized powders verified the advantages of carboxymethyl chitosan/ß-cyclodextrin (CMC/ß-CD) coating over other polysaccharides. This study indicated that polysaccharide coating is an effective method for enhancing the colloidal stability, water solubility, and redispersibility of OA/Cur NPs.


Subject(s)
Colloids , Curcumin , Nanoparticles , Oleanolic Acid , Polysaccharides , Solubility , Curcumin/chemistry , Nanoparticles/chemistry , Oleanolic Acid/chemistry , Colloids/chemistry , Polysaccharides/chemistry , Particle Size , Water/chemistry , Drug Carriers/chemistry , Drug Stability
SELECTION OF CITATIONS
SEARCH DETAIL
...