Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.267
Filter
1.
Front Microbiol ; 15: 1424330, 2024.
Article in English | MEDLINE | ID: mdl-38989021

ABSTRACT

The transcription factor PsrA regulates fatty acid metabolism, the type III secretion system, and quinolone signaling quorum sensing system in Pseudomonas aeruginosa. To explore additional roles of PsrA in P. aeruginosa, this study engineered a P. aeruginosa PAO1 strain to carry a recombinant plasmid with the psrA gene (pMMBpsrA) and examined the impact of elevated psrA expression to the bacterium. Transcriptomic analysis revealed that PsrA significantly downregulated genes encoding the master quorum-sensing regulators, RhlR and LasR, and influenced many quorum-sensing-associated genes. The role of PsrA in quorum sensing was further corroborated by testing autoinducer synthesis in PAO1 [pMMBpsrA] using two reporter bacteria strains Chromobacterium violaceum CV026 and Escherichia coli [pSB1075], which respond to short- and long-chain acyl homoserine lactones, respectively. Phenotypic comparisons of isogenic ΔpsrA, ΔlasR, and ΔpsrAΔlasR mutants revealed that the reduced elastase, caseinase, and swarming activity in PAO1 [pMMBpsrA] were likely mediated through LasR. Additionally, electrophoretic mobility shift assays demonstrated that recombinant PsrA could bind to the lasR promoter at a 5'-AAACGTTTGCTT-3' sequence, which displays moderate similarity to the previously reported consensus PsrA binding motif. Furthermore, the PsrA effector molecule oleic acid inhibited PsrA binding to the lasR promoter and restored several quorum sensing-related phenotypes to wild-type levels. These findings suggest that PsrA regulates certain quorum-sensing phenotypes by negatively regulating lasR expression, with oleic acid acting as a crucial signaling molecule.

2.
J Pharm Sci ; 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39009347

ABSTRACT

The hydrolysis of polysorbate surfactants in large molecule drug product formulations caused by residual host cell proteins presents numerous stability concerns for pharmaceuticals. The fatty acids (FA) released by polysorbate hydrolysis can nucleate into particulates or challenge the conformational stability of the proteinaceous active pharmaceutical ingredient (API). The loss of intact polysorbate may also leave the Drug Product (DP) vulnerable to interfacial stresses. Polysorbate 20 and 80 are available in several different quality grades (Multi-compendial, Super Refined, Pure Lauric Acid (PLA)/Pure Oleic Acid (POA)). All variations of polysorbate as well as three alternative surfactants: Brij L23, Brij O20 and Poloxamer 188 were compared for their ability to protect against air-water interfacial stresses as well as their risk for developing particulates when in the presence of lipoprotein lipase (LPL) (Pseudomonas). Results show a meaningful difference in the timing and morphology of FA particle formation depending on the type of polysorbate used. All grades of polysorbate, while susceptible to hydrolysis, still offered sufficient protection to interfacial stresses, even when hydrolyzed to concentrations as low as 0.005% (w/v). Alternative surfactants that lack an ester bond were resistant to lipase degradation and showed good protection against shaking stress.

3.
Foods ; 13(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38998508

ABSTRACT

The aim of this study was to analyze the content of fatty acids and tocopherols in various components (pulp, seeds, peel) of avocado (Persea americana), which are often neglected as by-products. In addition, the effects of different drying processes on these components were investigated and the health benefits of the main fatty acids contained in avocados were highlighted. The samples were subjected to three drying processes: hot air (HAD), vacuum (VD), and hot-air microwave (HAMD). In all parts of fresh avocado, oleic acid was the most abundant (41.28-57.93%), followed by palmitic acid (19.90-29.45%) and linoleic acid (8.44-14.95%). Drying led to a significant reduction in the oleic acid content, with palmitic acid showing the greatest stability. HAD resulted in higher levels of oleic acid and linoleic acid in dried pulp and peel samples compared with VD and HAMD, while HAMD had the highest content of α-linolenic acid in all parts. In addition, HAMD had the shortest drying time. HAMD duration was 35 min, which was 76.7% shorter than HAD (150 min) and 82.5% shorter than VD (200 min). Considering fatty acid retention and drying efficiency, HAMD appears to have been the most effective method, especially for the avocado peel. Remarkably, the avocado peel consistently contained higher total tocopherol, with δ-tocopherol generally being the most abundant form. The high content of tocopherols, oleic acid, and linoleic acid in the avocado peel suggests promising health benefits.

4.
Foods ; 13(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38998529

ABSTRACT

Dry bean (Phaseolus vulgaris L.) is a crop of high nutritional interest widespread throughout the world. This research had two objectives. On the one hand, the development and validation of an analytical method to quantify fatty acids in dry beans based on the extraction and derivatization in a single step and later quantification by gas chromatography. On the other, its application to characterize the fatty acid content in a diversity panel consisting of 172 lines. The method was successfully validated in terms of accuracy, precision and robustness. Among the 14 fatty acids that constitute the fatty acid profile of dry bean, the most quantitatively important were linolenic acid, the major fatty acid in all cases, with an average value of 6.7 mg/g, followed by linoleic acid (3.9 mg/g), palmitic acid (2.9 mg/g) and oleic acid (1.5 mg/g). The concentrations of fatty acids in dry bean were influenced by the gene pool, with the Mesoamerican gene pool showing a higher content of palmitic, stearic, linoleic and linolenic acids and the Andean gene pool a higher level of cis-vaccenic acid. Also, the expression of fatty acid content showed high heritability. The information generated constitutes a robust database of interest in food technology, nutrition and breeding programs.

5.
Heliyon ; 10(12): e33379, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39022008

ABSTRACT

Background: Groundnut is one of the world's major food and oil crops. Being sources of nutrition and vegetable oil, rich in affordable and digestible protein, it is a strategic crop in Burkina Faso for food security, nutrition, and cash income. Understanding the nature of gene effect and genetic variation affecting yield and yield component traits will contribute to designing appropriate breeding methods for groundnut improvement and increase selection efficiency in Burkina Faso. Methods: In 2018, a total of 30 F2 progenies were generated through a 6 x 6 full diallel mating using six different and contrasting varieties. In 2019, parents and progenies were evaluated in a lattice square design in 3 replications at ICRISAT-Mali experimental field to assess the general combining ability (GCA) and specific combining ability (SCA) effects, the inheritance and the maternal and reciprocal effects for yield component traits (YCT) and oil content (OC). Results: Significant variabilities were observed among the parental genotypes and their F2 progenies for DTH, PSR, HPW, PL, PWD, SL, SWD, and OAC. Mean performance of the six parents were HPW (117.05g), HSW (57.24 g), PYH (1914.76), SYH (1312.73), PL (2.52), PWD (1,19), SL (1.38), SWD (0.83), OC (49.43), OAC (50.43) and LAC (33.61). Parent QH243C presented the highest value for SWD (1.02 cm) and OAC (60.76) while the parent ICGV09195 had the highest value of OC (50.36). Chalimbana presented the highest value of HPW (169.61 g), PL (2.98 cm), PWD (1. 41 cm), and SL (1.57 cm) while CG7 presented the highest value for HSW (75. 14 g), and SYH (1639.28 kg). Both YCT and OC are controlled by additive and non-additive gene effects with a predominance of additive gene action for HSW, SL, and SWD, whereas HPW, PL, PWD, and OAC were found to be more controlled by non-additive gene effects. Maternal effects as well as nuclear and cytoplasmic interaction effects were observed for both YCT and OC indicating that YCT and OC are influenced by a combination of genetic factors from both the maternal parent and the nuclear genome, as well as cytoplasmic factors such as mitochondrial DNA. Broad sense heritability ranged from 3.76 % to 91.56 %, and higher broad sense heritability values were recorded for pod length (91.56 %), hundred pod weight (83.71 %) and pod width (80.95 %). Conclusion: The study yields valuable insights into the inheritance of YCT and OC. The parents, Chalimbana and CG7, showed promise as good combiners for both yield component traits and oil content when used as male parents while TE3, Sh470P and QH243C can be used as female for the oil content and its components (oleic and linoleic content).

6.
Anim Nutr ; 18: 39-48, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39026601

ABSTRACT

This study evaluated the effects of different proportions of palmitic (C16:0) and oleic (cis-9 C18:1) acids in fat supplements on rumen fermentation, glucose (GLU) and lipid metabolism, antioxidant function, and visceral fat fatty acid (FA) composition in Angus bulls. The design of the experiment was a randomized block design with 3 treatments of 10 animals each. A total of 30 finishing Angus bulls (21 ± 0.5 months) with an initial body weight of 626 ± 69 kg were blocked by weight into 10 blocks, with 3 bulls per block. The bulls in each block were randomly assigned to one of three experimental diets: (1) control diet without additional fat (CON), (2) CON + 2.5% palmitic calcium salt (PA; 90% C16:0), (3) CON + 2.5% mixed FA calcium salts (MA; 60% C16:0 + 30% cis-9 C18:1). Both fat supplements increased C18:0 and cis-9 C18:1 in visceral fat (P < 0.05) and up-regulated the expression of liver FA transport protein 5 (FATP5; P < 0.001). PA increased the insulin concentration (P < 0.001) and aspartate aminotransferase activity (AST; P = 0.030) in bull's blood while reducing the GLU concentration (P = 0.009). PA increased the content of triglycerides (TG; P = 0.014) in the liver, the content of the C16:0 in visceral fat (P = 0.004), and weight gain (P = 0.032), and up-regulated the expression of liver diacylglycerol acyltransferase 2 (DGAT2; P < 0.001) and stearoyl-CoA desaturase 1 (SCD1; P < 0.05). MA increased plasma superoxide dismutase activity (SOD; P = 0.011), reduced the concentration of acetate and total volatile FA (VFA) in rumen fluid (P < 0.05), and tended to increase plasma non-esterified FA (NEFA; P = 0.069) concentrations. Generally, high C16:0 fat supplementation increased weight gain in Angus bulls and triggered the risk of fatty liver, insulin resistance, and reduced antioxidant function. These adverse effects were alleviated by partially replacing C16:0 with cis-9 C18:1.

7.
J Oleo Sci ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39019618

ABSTRACT

Growing evidence indicates that the intake of trans fatty acids (TFAs) increases the risk of numerous diseases, such as cardiovascular diseases. Recently, our group found that certain natural sulfur compounds (allyl isothiocyanate [AITC] and diallyl disulfide [DADS]) promote cis to trans isomerization of fatty acid esters during heat treatment. However, little information is available on the fatty acid isomerization with them. In this study, we investigated the effects of oxygen and α-tocopherol (antioxidant) on isomerization of oleic acid (18:1) methyl ester (OA-ME) in the presence of AITC and DADS. Furthermore, the effect of the simultaneous use of AITC and DADS was evaluated. Our results indicate that oxygen enhances the AITC-induced trans isomerization, and DADS was found to promote trans isomerization but inhibit AITC-induced trans isomerization during heating. Both AITC- and DADS-induced trans isomerization were inhibited by α-tocopherol. These results indicate that the trans isomerization of fatty acids induced by sulfur compounds can be controlled by devising a cooking process and the food ingredients used together.

8.
Nutrients ; 16(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892622

ABSTRACT

Breast milk (BM) plays a crucial role in providing essential fatty acids (FA) and energy for the growing infant. When the mother's own BM is not available, nutritional recommendations suggest donor milk (DM) in clinical and home practices. BM was collected from a variety of donor mothers in different lactation stages. Holder pasteurization (HoP) eliminates potential contaminants to ensure safety. FA content of BM samples from the Breast Milk Collection Center of Pécs, Hungary, were analyzed before and after HoP. HoP decreases the level of C6:0, C8:0, C14:1n-5c, C18:1n-9c, C18:3n-6c, C18:3n-3c, and C20:4n-6c in BM, while C14:0, C16:0, C18:1n-9t, C22:0, C22:1n-9c, C24:0, C24:1n-9c, and C22:6n-3c were found in elevated concentration after HoP. We did not detect time-dependent concentration changes in FAs in the first year of lactation. BM produced for girl infants contains higher C20:2n-6c levels. In the BM of mothers who delivered via cesarean section, C12:0, C15:0, C16:0, C17:0, C18:0, C18:1n-9t, C22:1n-9c levels were higher, while C18:2n-6c, C22:0, C24:0, and C22:6n-3c concentrations were lower compared to mothers who gave birth spontaneously. FAs in BM are constant during the first year of lactation. Although HoP modifies the concentration of different FAs, pasteurized DM provides essential FAs to the developing infant. Current data providing information about the FA profile of BM gives origination to supplementation guidelines.


Subject(s)
Fatty Acids , Milk, Human , Pasteurization , Humans , Milk, Human/chemistry , Female , Pasteurization/methods , Fatty Acids/analysis , Infant , Adult , Infant, Newborn , Sex Factors , Pregnancy , Lactation , Delivery, Obstetric/methods , Hungary , Milk Banks
9.
Materials (Basel) ; 17(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38893884

ABSTRACT

One of the most effective strategies for modifying the surface properties of nano-fillers and enhancing their composite characteristics is through polymer grafting. In this study, a coprecipitation method was employed to modify hydroxyapatite (HAP) with epoxidized soybean oleic acid (ESOA), resulting in ESOA-HAP. Subsequently, oligomeric poly(lactic acid) (OPLA) was grafted onto the surface of ESOA-HAP, yielding OPLA-ESOA-HAP. HAP, ESOA-HAP, and OPLA-ESOA-HAP were comprehensively characterized. The results demonstrate the progressive grafting of ESOA and OPLA onto the surface of HAP, resulting in enhanced hydrophobicity and improved dispersity in organic solvent for OPLA-ESOA-HAP compared to HAP. The vitality and adhesion of Wistar rat mesenchymal stem cells (MSCs) were assessed using HAP and modified HAP materials. Following culture with MSCs for 72 h, the OPLA-ESOA-HAP showed an inhibition rate lower than 23.0% at a relatively high concentration (1.0 mg/mL), which is three times lower compared to HAP under similar condition. The cell number for OPLA-ESOA-HAP was 4.5 times higher compared to HAP, indicating its superior biocompatibility. Furthermore, the mechanical properties of the OPLA-ESOA-HAP/PLLA composite almost remained unaltered ever after undergoing two stages of thermal processing involving melt extrusion and inject molding. The increase in the biocompatibility and relatively high mechanical properties render OPLA-ESOA-HAP/PLLA a potential material for the biodegradable fixation system.

10.
Food Chem ; 457: 140191, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38924913

ABSTRACT

Rice contains abundant starch and contributes to a rapid rise in postprandial blood glucose levels. Hence, it is crucial to directly modify rice grains for resistant starch (RS) content elevation while preserving their morphology. In this study, rice grains were treated with 6%-18% concentrations of oleic acid (OA) and 8-20 h of soaking time to promote the formation of starch-lipid complexes, thereby reducing rice digestibility. In OA-treated rice, the OA molecules exist in three binding states. OA-treated rice exhibited a significantly higher complexation index and OA content than natural rice. RS content increased from 20.50% to 32.46%. X-ray diffraction and NMR spectroscopy revealed the development of amylose-OA complexes within the rice grains and a V-crystalline structure of up to 3.62%. Raman spectroscopy and thermogravimetric analysis showed enhanced molecular ordering and structural stability of rice starch. Overall, OA treatment effectively promotes RS formation within rice grains, consequently reducing rice digestibility.

11.
mSphere ; : e0035124, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38926907

ABSTRACT

Basic leucine zipper domain transcription factors (TFs), of which yeast activator protein (Yap) is a significant class, are crucial for the development of sclerotia, the stress response, vegetative growth, and spore adhesion. Nevertheless, nothing is known about how Yap TFs contribute to the pathogenicity of entomopathogenic fungus. In this work, Beauveria bassiana was used to identify and knock out the yeast gene BbYap1, which is similar to Yap. The BbYap1 gene deletion has an impact on lipid homeostasis of B. bassiana; oleic acid, for example, dropped by 95.69%. The BbYap1 mutant exhibited much less virulence and vegetative development in comparison to the wild strain, while demonstrating a greater sensitivity to chemical stress. It is noteworthy that the physiological abnormalities brought on by BbYap1 deletion were largely repaired by the addition of exogenous oleic acid, as seen by the notable increase in insect survival in the blood cavity injection group. Following infection with the BbYap1 mutant, the host exhibits a considerable down-regulation of the expression of ß-1,3-glucan recognition protein, gallerimycin, gloverin, and moricin-like protein genes. Likewise, the introduction of exogenous oleic acid markedly increased the host's expression of the aforementioned genes. In summary, BbYap1 regulates cellular enzyme lipid homeostasis and fungal virulence by eluding host humoral defense, which contributes to fungal chemical stress and vegetative development. IMPORTANCE: Entomopathogenic fungi (EPF) offer an effective and eco-friendly alternative to curb insect populations in biocontrol strategy. When EPF enter the hemolymph of their host, they encounter a variety of stress reactions, such as immunological and oxidative stress. Basic leucine zipper domain transcription factors, of which yeast activator protein (Yap) is a significant class, have diverse biological functions related to metabolism, development, reproduction, conidiation, stress responses, and pathogenicity. This study demonstrates that BbYap1 of Beauveria bassiana regulates cellular enzyme lipid homeostasis and fungal virulence by eluding host humoral defense, which contributes to fungal chemical stress and vegetative development. These findings offer fresh perspectives for comprehending molecular roles of YAP in EPF.

12.
Nitric Oxide ; 149: 75-84, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38879114

ABSTRACT

Obesity is commonly linked with white adipose tissue (WAT) dysfunction, setting off inflammation and oxidative stress, both key contributors to the cardiometabolic complications associated with obesity. To improve metabolic and cardiovascular health, countering these inflammatory and oxidative signaling processes is crucial. Offering potential in this context, the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) by nitro-fatty acids (NO2-FA) promote diverse anti-inflammatory signaling and counteract oxidative stress. Additionally, we previously highlighted that nitro-oleic acid (NO2-OA) preferentially accumulates in WAT and provides protection against already established high fat diet (HFD)-mediated impaired glucose tolerance. The precise mechanism accounting for these protective effects remained largely unexplored until now. Herein, we reveal that protective effects of improved glucose tolerance by NO2-OA is absent when Nrf2 is specifically ablated in adipocytes (ANKO mice). NO2-OA treatment did not alter body weight between ANKO and littermate controls (Nrf2fl/fl) mice on both the HFD and low-fat diet (LFD). As expected, at day 76 (before NO2-OA treatment) and notably at day 125 (daily treatment of 15 mg/kg NO2-OA for 48 days), both HFD-fed Nrf2fl/fl and ANKO mice exhibited increased fat mass and reduced lean mass compared to LFD controls. However, throughout the NO2-OA treatment, no distinction was observed between Nrf2fl/fl and ANKO in the HFD-fed mice as well as in the Nrf2fl/fl mice fed a LFD. Glucose tolerance tests revealed impaired glucose tolerance in HFD-fed Nrf2fl/fl and ANKO compared to LFD-fed Nrf2fl/fl mice. Notably, NO2-OA treatment improved glucose tolerance in HFD-fed Nrf2fl/fl but did not yield the same improvement in ANKO mice at days 15, 30, and 55 of treatment. Unraveling the pathways linked to NO2-OA's protective effects in obesity-mediated impairment in glucose tolerance is pivotal within the realm of precision medicine, crucially propelling future applications and refining novel drug-based strategies.

13.
J Oleo Sci ; 73(7): 943-952, 2024.
Article in English | MEDLINE | ID: mdl-38945923

ABSTRACT

Eleven kinds of Camellia oleifera seed oils (CSOs) were evaluated in terms of chemical constituents, antioxidant activities, acid value (AV) as well as peroxide value (POV). These CSOs contained abundant ß-sitosterol, squalene, α-tocopherol and phenolics, in which the squalene was the distinct constituent with the content between 45.8±0.8 and 184.1±5.5 mg/kg. The ß-sitosterol ranging from 143.7±4.8 to 1704.6±72.0 mg/kg contributed a considerable content to total accompaniments. Palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid were present in these CSOs, in which the dominant fatty acid was oleic acid with the content between 59.66±0.72 and 82.89±2.16 g/100 g. The AV ranged from 0.1±0.0 to 1.3±0.0 mg KOH/g, and the POV was between 0.1±0.0 and 1.0±0.0 g/100 g. These CSOs showed antioxidant activity based on DPPH and ABTS radical scavenging assay. Both α-tocopherol and ß-sitosterol contents showed a positive correlation with DPPH and ABTS values, respectively, while the α-tocopherol content showed a negative correlation with AV. These results suggested that CSO can be categorized into high oleic acid vegetable oil with abundant active constituents, of which the quality presented variation among different origins. These accompaniments may contribute to the delay of its quality deterioration.


Subject(s)
Antioxidants , Camellia , Oleic Acid , Plant Oils , Seeds , Sitosterols , Squalene , alpha-Tocopherol , Camellia/chemistry , Antioxidants/analysis , Plant Oils/chemistry , Plant Oils/analysis , Sitosterols/analysis , Seeds/chemistry , Squalene/analysis , China , alpha-Tocopherol/analysis , Oleic Acid/analysis , Chemical Phenomena , Fatty Acids/analysis , Palmitic Acid/analysis , Phenols/analysis , Linoleic Acid/analysis , Peroxides/analysis
14.
Eur J Immunol ; : e2350685, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890809

ABSTRACT

Unsaturated fatty acids (UFA) are crucial for T-cell effector functions, as they can affect the growth, differentiation, survival, and function of T cells. Nonetheless, the mechanisms by which UFA affects T-cell behavior are ill-defined. Therefore, we analyzed the processing of oleic acid, a prominent UFA abundantly present in blood, adipocytes, and the fat pads surrounding lymph nodes, in CD4+ T cells. We found that exogenous oleic acid increases proliferation and enhances the calcium flux response upon CD3/CD28 activation. By using a variety of techniques, we found that the incorporation of oleic acid into membrane lipids, rather than regulation of cellular metabolism or TCR expression, is essential for its effects on CD4+ T cells. These results provide novel insights into the mechanism through which exogenous oleic acid enhances CD4+ T-cell function.

15.
J Pharm Bioallied Sci ; 16(Suppl 2): S1829-S1832, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882853

ABSTRACT

Background: The scientific validity of contemporary and alternative medicinal practices, such as Ayurveda and Siddha, holds significant importance in today's context. Aim and Objective: The present study employs gas chromatography-mass spectrometry (GC-MS) analysis to investigate a pain-relieving Ayurvedic oil, Dhanwantharam Thailam, aiming to establish correlations between its medicinal activity and the biomolecules it contains. Materials and Methods: Procured sample from a reputable Ayurvedic vendor in Chennai, Dhanwantharam Thailam underwent GC-MS analysis using standard procedures. Results and Discussion: The resulting profile revealed the presence of crucial molecules like oleic acid, dodecanoic acid, 1,2,3-propanetriyl ester, ethenyl ester, and 9,12-octadecadienoyl chloride (Z, Z), aligning with the medicinal properties attributed to Dhanwantharam Thailam. Conclusion: The identification of these biomolecules supports the role of Dhanwantharam Thailamas an effective pain-relieving oil.

16.
Gels ; 10(6)2024 May 22.
Article in English | MEDLINE | ID: mdl-38920903

ABSTRACT

Mesoporous silica nanoparticles (MSNs) are inorganic nanocarriers presenting versatile properties and the possibility to deliver drug molecules via different routes of application. Their modification with lipids could diminish the burst release profile for water-soluble molecules. In the case of oleic acid (OA) as a lipid component, an improvement in skin penetration can be expected. Therefore, in the present study, aminopropyl-functionalized MSNs were modified with oleic acid through carbodiimide chemistry and were subsequently incorporated into a semisolid hydrogel for dermal delivery. Doxorubicin served as a model drug. The FT-IR and XRD analysis as well as the ninhydrin reaction showed the successful preparation of the proposed nanocarrier with a uniform particle size (352-449 nm) and negative zeta potential. Transmission electron microscopy was applied to evaluate any possible changes in morphology. High encapsulation efficiency (97.6 ± 1.8%) was achieved together with a sustained release profile over 48 h. The composite hydrogels containing the OA-modified nanoparticles were characterized by excellent physiochemical properties (pH of 6.9; occlusion factor of 53.9; spreadability of factor 2.87 and viscosity of 1486 Pa·s) for dermal application. The in vitro permeation study showed 2.35 fold improvement compared with the hydrogel containing free drug. In vitro cell studies showed that loading in OA-modified nanoparticles significantly improved doxorubicin's cytotoxic effects toward epidermoid carcinoma cells (A431). All of the results suggest that the prepared composite hydrogel has potential for dermal delivery of doxorubicin in the treatment of skin cancer.

17.
Sci Rep ; 14(1): 14026, 2024 06 18.
Article in English | MEDLINE | ID: mdl-38890414

ABSTRACT

The excessive accumulation of sodium chloride (NaCl) in soil can result in soil salinity, which poses a significant challenge to plant growth and crop production due to impaired water and nutrient uptake. On the other hand, hydropriming (WP) and low level of NaCl priming can improve the germination of seeds, chlorophyll contents, oil and seed yield in plants. That's why this study investigates the impact of hydro and different levels of NaCl (0.5, 1.0, 1.5 and 2.0%) priming, as pre-treatment techniques on canola seeds germination, growth and yield of two varieties Punjab and Faisal Canola. Results showed that, WP performed significant best for increase in germination (~ 20 and ~ 22%) and shoot length (~ 6 and ~ 10%) over non-priming (NP) in Punjab Canola and Faisal Canola respectively. A significant increase in plant height (~ 6 and ~ 7%), root length (~ 1 and ~ 7%), shoot fresh weight (~ 5 and ~ 7%), root fresh weight (~ 6 and ~ 7%) in Punjab Canola and Faisal Canola respectively. It was also observed that plants under WP and 0.5%NaCl priming were also better in production of seed yield per plant, oil contents, silique per plant, seeds per silique, and branches per plant chlorophyll contents and leaf relative water contents over NP. In conclusion, WP and 0.5%NaCl has potential to improve the germination, growth, yield and oil attributes of canola compared to non-priming, 1.0%NaCl priming, 1.5%NaCl priming and 2.0%NaCl priming.


Subject(s)
Brassica napus , Germination , Seeds , Sodium Chloride , Germination/drug effects , Brassica napus/growth & development , Brassica napus/metabolism , Brassica napus/drug effects , Sodium Chloride/pharmacology , Seeds/growth & development , Seeds/metabolism , Seeds/drug effects , Chlorophyll/metabolism , Water/metabolism , Salinity , Soil/chemistry
18.
J Dairy Sci ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825117

ABSTRACT

Recent research has highlighted the importance of dietary fatty acid profile of fatty acid supplements on production responses of high-producing dairy cows. Conventional soybeans contain ∼15% oleic acid and ∼50% linoleic acid whereas high oleic acid soybeans (HOSB) contain ∼70% oleic acid and ∼7% linoleic acid. We determined the effect of increasing dietary inclusion of roasted and ground HOSB on production responses of high-producing dairy cows. Twenty-four multiparous Holstein cows (50.7 ± 4.45 kg/d of milk; 122 ± 57 DIM) were randomly assigned to treatment sequences in a replicated 4 × 4 Latin square design with 21-d periods. Treatments were increasing doses of HOSB at 0, 8, 16, and 24% DM. The HOSB replaced conventional soybean meal and hulls to maintain similar diet nutrient composition (% DM) of 27.4 - 29.4% (NDF), 20.6% forage NDF, 27.5% starch, and 15.9 - 16.5% CP. Total fatty acid content of treatments was 1.65, 3.11, 4.52, and 5.97% DM, respectively. Pre-planned polynomial orthogonal contrasts included the linear, quadratic, and cubic effects of increasing HOSB. Increasing dietary inclusion of HOSB linearly decreased DMI and milk urea nitrogen and increased yields of milk, 3.5% fat corrected milk, energy corrected milk, and milk fat, and quadratically increased milk protein. The increased response to milk fat was due to an increase in preformed milk fatty acids. Due to the increase in milk component yields and decrease in DMI, there was an increase in feed efficiency. Increasing HOSB inclusion linearly decreased plasma BUN concentration and tended to decrease plasma insulin. Increasing HOSB had no effect on BW change or BCS change. In summary, increasing dietary inclusion of HOSB up to 24% DM increased production responses of high-producing dairy cows and did not affect body reserves.

19.
J Oleo Sci ; 73(6): 847-855, 2024.
Article in English | MEDLINE | ID: mdl-38825538

ABSTRACT

Unsaturated fatty acids, such as oleic and linoleic acids, are easily oxidized by exposure to temperature and light in the presence of air to form unsaturated fatty acid hydroperoxides as primary oxidation products. However, the catabolic rates of unsaturated fatty acid hydroperoxides in the human body remain unknown. In this study, ethyl esters of 13C-labeled linoleic acid (*C18:2-EE) and oleic acid (*C18:1-EE) and their hydroperoxides (*C18:2-EE-OOH and *C18:1-EE-OOH, respectively) prepared by the photo-oxidation of *C18:2-EE and *C18:1-EE, respectively, were administered to mice and their catabolic rates were determined by measuring the expired 13CO2 levels. *C18:2-EE-OOH and *C18:1-EE-OOH were ß-oxidized faster than *C18:2-EE and *C18:1-EE, respectively. Notably, rapid ß-oxidation of *C18:2-EE-OOH and *C18:1-EE-OOH was similar to that of medium-chain fatty acids, such as octanoic acid. Then, degradation products of C18:2-EE-OOH and C18:1-EE-OOH were analyzed under gastric conditions by gas chromatography/mass spectrometry. Major decomposition products of C18:2-EE-OOH and C18:1-EE-OOH were medium-chain compounds, such as octanoic acid ethyl ester, 9-oxo-nonanoic acid ethyl ester, and 10-oxo-8-decenoic acid ethyl esters, indicating that C18:2-EE-OOH and C18:1-EE-OOH isomers formed during photo-oxidation were decomposed under acidic conditions. These findings support previous reports that dietary lipid hydroperoxides are not absorbed into the intestine as lipid hydroperoxides but as degradation products. This is the first study to suggest that dietary lipid hydroperoxides decompose during gastric digestion to form medium-chain compounds that are directly absorbed into the liver via the portal vein and rapidly catabolized via ß-oxidation.


Subject(s)
Carbon Dioxide , Carbon Isotopes , Linoleic Acid , Oleic Acid , Oxidation-Reduction , Animals , Oleic Acid/metabolism , Oleic Acid/chemistry , Linoleic Acid/metabolism , Linoleic Acid/chemistry , Carbon Dioxide/metabolism , Carbon Dioxide/chemistry , Mice , Male , Hydrogen Peroxide/metabolism
20.
Biochem Biophys Res Commun ; 722: 150162, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38801802

ABSTRACT

Extracellular fatty acids (FAs) play an important role in regulating cellular functions such as cell proliferation, survival, and migration. The effects of oleic acid (OA) on cancer cells vary depending on the cell type. Our prior study showed that two distinct ovarian cancer cell lines, RMG-1 and HNOA, proliferate in response to OA, but they differ with respect to glucose utilization. Here, we aimed to elucidate the mechanism(s) by which OA stimulates proliferation of RMG-1 cells. We found that OA stimulates RMG-1 proliferation by activating the FA transporter CD36. OA also increases uptake of glucose and glutamine, which subsequently activate the pentose phosphate pathway (PPP) and glutamine metabolism, respectively. Given that ribose 5-phosphate derived from the PPP is utilized for glutamine metabolism and the subsequent de novo nucleotide synthesis, our findings suggest that OA affects the PPP associated with Gln metabolism, rather than glycolysis associated with glutaminolysis; this leads ultimately to activation of DNA synthesis, which is required for cell proliferation. This selective activation by OA contrasts with the mechanisms observed in HNOA cells, in which OA-induced cell proliferation is driven by transcriptional regulation of the GLUT gene. The diverse responses of cancer cells to OA may be attributed to distinct mechanisms of OA reception and/or different metabolic pathways activated by OA.


Subject(s)
Cell Proliferation , Glutamine , Oleic Acid , Ovarian Neoplasms , Pentose Phosphate Pathway , Glutamine/metabolism , Pentose Phosphate Pathway/drug effects , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Cell Proliferation/drug effects , Humans , Cell Line, Tumor , Female , Oleic Acid/pharmacology , Oleic Acid/metabolism , Glucose/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...