Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 225
Filter
1.
Food Chem ; 463(Pt 1): 141127, 2025 Jan 15.
Article in English | MEDLINE | ID: mdl-39243625

ABSTRACT

A trending problem of Extra Virgin Olive Oil (EVOO) adulteration is investigated using two analytical platforms, involving: (1) Near Infrared (NIR) spectroscopy, resulting in a two-way data set, and (2) Fluorescence Excitation-Emission Matrix (EEFM) spectroscopy, producing three-way data. The related instruments were employed to study genuine and adulterated samples. Each data set was first separately analyzed using the Data Driven-Soft Independent Modeling of Class Analogies (DD-SIMCA) method, based on Principal Component Analysis (for the two-way NIR data) and PARallel FACtor analysis (for the three-way EEFM data). The data sets were then processed together using the multi-block fusion method, based on the concept of Cumulative Analytical Signal (CAS). A comparison of the data processing methods in terms of sensitivity, specificity and selectivity showed the following order of excellence: NIR < EEFM < NIR + EEFM. This finding confirms the effectiveness of multi-block data fusion, which cumulatively improves the model performance.


Subject(s)
Food Contamination , Olive Oil , Spectroscopy, Near-Infrared , Olive Oil/chemistry , Spectroscopy, Near-Infrared/methods , Food Contamination/analysis , Spectrometry, Fluorescence/methods , Principal Component Analysis
2.
Molecules ; 29(17)2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39275097

ABSTRACT

Olive trees not only produce olives but also generate a substantial amount of waste and by-products, including leaves, pomace (the solid remains after pressing olives for oil), and wastewater from the olive oil-making process. The waste products, particularly the leaves, contain bioactive compounds, especially phenolic compounds, known for their health benefits, such as high antioxidant potential and the ability to reduce inflammation. These compounds have shown promise in preventing and treating cancer. This review, based on in vitro evidence, provides a detailed description and discussion of the mechanisms through which these compounds from olive leaves can prevent development, the ways they might act against cancer cells, and their potential to increase the sensitivity of tumor cells to conventional anticancer therapy. The possible synergistic effects of these compounds suggest that olive leaf extracts may offer a promising approach for cancer treatment, compared with isolated compounds, thus providing novel possibilities for cancer therapy.


Subject(s)
Olea , Plant Extracts , Plant Leaves , Olea/chemistry , Plant Leaves/chemistry , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Neoplasms/drug therapy , Neoplasms/metabolism , Phenols/pharmacology , Phenols/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Animals
3.
Wound Repair Regen ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39225068

ABSTRACT

The imbalance in oxidant production and chronic inflammation are the main mechanisms that lead to the detrimental effects of diabetes on skin wound healing. Thus, administration of antioxidants could improve diabetic wound healing. This study aimed to understand the effects of extra virgin olive oil (EVOO) or hydroxytyrosol (HT) in skin wound healing under diabetic conditions. Skin wounds in streptozotocin-induced diabetic mice were topically treated with HT. Some diabetic animals were fed with a diet rich in EVOO. Wounds were harvested 7 days later. In in vitro assays, fibroblasts and macrophages were treated with high levels of glucose and HT. The EVOO or HT promoted wound closure and collagen deposition in diabetic mouse wounds. The EVOO or HT reduced the number of infiltrated neutrophils, tumour necrosis factor-α, lipid peroxidation, and nuclear factor erythroid 2-related factor 2 in diabetic mouse wounds. The EVOO or HT also increased the number of macrophages with anti-inflammatory phenotype and interleukin-10 in diabetic mouse wounds. In the in vitro assays, HT promoted the fibroblast migration, collagen gel contraction, and switched macrophages to an anti-inflammatory phenotype under high glucose conditions. In conclusion, the diet supplementation with EVOO or topical application of HT promotes skin wound healing under diabetic conditions and can be a possible therapeutic tool for the treatment of those lesions.

5.
Polymers (Basel) ; 16(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39000730

ABSTRACT

Olive-like TiO2 (titanium dioxide), nanospheres compounds were synthesized. Polysaccharide (1-3 linked ß-D galactapyranose and 1.4-linked 3.6 anyhdro-α-L-galactopyranose and titanium isopropoxide (IV) was used as a precursor in its formation. The powder sample was evaluated by scanning tunneling microscope, X-ray diffraction pattern, power spectral density, fast Fourier transform, differential thermal analysis, continuous wavelet transform, and isotropy texture analysis. The results demonstrate that these nanospheres can successfully be synthesized in a solution using a polysaccharide network by means of the sol-gel method. The synthesized olive-like TiO2 nanospheres have diameters ranging from 50 nm to 500 nm. The synthesis parameters, such as temperature, time, and concentration of the polysaccharide, were controlled in solution.

6.
Nutr Rev ; 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39001794

ABSTRACT

CONTEXT: Olive oil is a vegetable oil that provides health benefits, including a reduction in free radicals and total cholesterol and prevention of chronic diseases. The escalating incidence of chronic diseases presents a substantial challenge to public health, prompting numerous studies to assess these health-related effects. Despite several systematic reviews and meta-analyses summarizing the association between olive oil consumption and specific health outcomes, there is no summary of the accumulated evidence from these reviews. OBJECTIVE: This umbrella review summarizes the evidence on olive oil consumption or intervention in adults and its association with multiple risk factors and diseases. DATA SOURCES: We retrieved systematic reviews of randomized trials or observational studies on oral interventions or the consumption of olive oil. The systematic search encompassed databases including MEDLINE, Embase, Scopus, Web of Science, LILACS, and CENTRAL from inception to February 6, 2023. DATA EXTRACTION: Two independent reviewers conducted data extraction and assessed methodological quality using the Joanna Briggs Institute tool. DATA ANALYSIS: Overall, 17 systematic reviews of randomized trials and observational studies, covering outcomes such as cardiovascular diseases, cancer, type 2 diabetes, glucose metabolism, inflammatory and oxidative markers, and all-cause mortality, were included. The evidence suggests a beneficial association between olive oil consumption and cardiovascular diseases, cancer, type 2 diabetes, and all-cause mortality. However, the evidence was less definitive for inflammatory markers, oxidative stress, glucose metabolism, and blood lipid outcomes. Several meta-analyses revealed high heterogeneity and wide confidence intervals, along with a limited number of randomized clinical trials. CONCLUSION: Given the high heterogeneity and low quality of evidence, further studies involving randomized trials are imperative. Prioritizing an in-depth analysis of specific olive oil components and using a control group with distinct characteristics and different effects is strongly recommended. SYSTEMATIC REVIEW REGISTRATION: PROSPERO registration no. CRD42022357290.

7.
Neotrop Entomol ; 53(4): 738-745, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38955945

ABSTRACT

Palpita forficifera Munroe, 1959 (Lepidoptera: Crambidae) is considered the main pest of the olive tree (Olea europaea L., Oleaceae) in Brazil and Uruguay. The aim of this work was to study the mating and oviposition behavior of P. forficifera in the field and laboratory. In the field, the sex emitting the mating pheromone was determined and in the laboratory, the rate of emergence of males and females; the age, time and duration of mating; number of copulations and oviposition time of P. forficifera were recorded. The field results showed that it was possible to capture up to five males per trap in just one night in traps with the presence of female P. forficifera. Copulation occurs between the seventh and twenty-third day of life and is most frequent during the third and sixth hours of scotophase. The average duration of the first copulation was 174 min, with 35% of couples recopulating, and there were cases of up to five copulations. Oviposition times were concentrated between 20:00 and 02:00. The results obtained provide insight into the reproductive behavior of P. forficifera and are useful for future studies aimed at identifying the sex pheromone to improve monitoring of the pest in olive orchards.


Subject(s)
Oviposition , Sexual Behavior, Animal , Animals , Female , Male , Lepidoptera/physiology , Moths/physiology
8.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 608-635, jul. 2024. tab, ilus, graf, mapas
Article in English | LILACS | ID: biblio-1538071

ABSTRACT

Chile has two certified origin olive products: Extra-Virgin Olive Oil (EVOO) from Huasco valley and the Azapa variety table olive from the Azapa valley. However, efficient methodologies are needed to determine the varieties and raw materials involved in the end products. In this study, we assessed the size of alleles from ten microsatellites in 20 EVOOs and in leaves and fruits of 16 olive varieties cultivated in Chile to authenticate their origins. The identification of varieties relied on specific allele sizes derived from microsatellites markers UDO99-011 and DCA18-M found in leaves and fruit mesocarp. While most Chilean single-variety EVOOs matched the variety declared on the label, inconsistencies were observed in single-variety EVOOs containing multiple varieties. Our findings confirm that microsatellites serve as a valuable as diagnostic tools for ensuring the quality control of Geographical Indication certification for Azapa olives and EVOO with Designation of Origin from Huasco.


Chile cuenta con dos productos de oliva de origen certificado: El aceite de oliva virgen extra (AOVE) del valle del Huasco y la aceituna de mesa de la variedad Azapa del valle de Azapa. Sin embargo, se necesitan metodologías eficientes para determinar las variedades y materias primas involucradas en los productos finales. En este estudio, evaluamos el tamaño de los alelos de diez microsatélites en 20 AOVEs y en hojas y frutos de 16 variedades de aceituna cultivadas en Chile para autentificar sus orígenes. La identificación de las variedades se basó en los tamaños alélicos específicos derivados de los marcadores microsatélites UDO99-011 y DCA18-M encontrados en las hojas y el mesocarpio de los frutos. Aunque la mayoría de los AOVEs chilenos monovarietales coincidían con la variedad declarada en la etiqueta, se observaron incoherencias en los AOVEs monovarietales que contenían múltiples variedades. Nuestros hallazgos confirman que los microsatélites sirven como valiosas herramientas de diagnóstico para asegurar el control de calidad de la certificación de Indicación Geográfica para aceitunas de Azapa y AOVE con Denominación de Origen de Huasco.


Subject(s)
Plant Extracts/genetics , Microsatellite Repeats , Olea/genetics , Olive Oil/chemistry , Geography , Chile
9.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732097

ABSTRACT

The olive oil sector is a fundamental food in the Mediterranean diet. It has been demonstrated that the consumption of extra virgin olive oil (EVOO) with a high content of phenolic compounds is beneficial in the prevention and/or treatment of many diseases. The main objective of this work was to study the relationship between the content of phenolic compounds and the in vitro neuroprotective and anti-inflammatory activity of EVOOs from two PDOs in the province of Granada. To this purpose, the amounts of phenolic compounds were determined by liquid chromatography coupled to mass spectrometry (HPLC-MS) and the inhibitory activity of acetylcholinesterase (AChE) and cyclooxygenase-2 (COX-2) enzymes by spectrophotometric and fluorimetric assays. The main families identified were phenolic alcohols, secoiridoids, lignans, flavonoids, and phenolic acids. The EVOO samples with the highest total concentration of compounds and the highest inhibitory activity belonged to the Picual and Manzanillo varieties. Statistical analysis showed a positive correlation between identified compounds and AChE and COX-2 inhibitory activity, except for lignans. These results confirm EVOO's compounds possess neuroprotective potential.


Subject(s)
Neuroprotective Agents , Olive Oil , Phenols , Olive Oil/chemistry , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Phenols/analysis , Phenols/chemistry , Phenols/pharmacology , Spain , Cyclooxygenase 2/metabolism , Acetylcholinesterase/metabolism , Chromatography, High Pressure Liquid , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/chemistry , Flavonoids/analysis , Flavonoids/pharmacology , Flavonoids/chemistry
10.
Antioxidants (Basel) ; 13(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38790663

ABSTRACT

The frequency of early frosts has increased in recent years, which are injurious to olive growing, causing losses in the yield and quality of virgin olive oil. In this research, it was studied how the management of agronomic factors mitigates frost damage in Arbequina olives, minimizing the loss of phenols and volatiles in virgin olive oil, at different fruit ripening stages. A Box-Behnken design and multivariate analysis were performed, with three levels of irrigation, potassium fertilization, and foliar copper application (15 treatments). Virgin olive oil was extracted from fresh and frozen olives. Light frost caused a significant decrease in the total phenols and secoiridoid compounds in and the antioxidant capacity of the frost-affected oils, which were perceived as more pungent and had the slight defect of "frostbitten olives". According to the Box-Behnken design, an 86% reference evapotranspiration (ET0) or higher with 100 potassium oxide units (UK2O) and a 100% ET0 or higher with 250 UK2O would be required to minimize the effect of light frost on phenols and volatiles. Partial Least Squares Regression-Discriminant Analysis (PLS-DA) differentiated the virgin olive oils according to their ripening stage and fresh and frost conditions. Moreover, PLS-DA positively correlated a 75-100% ET0 and 0 Uk2O with the dialdehydic form of the decarboxymethyl ligstroside aglycone (p-HPEA-EDA), the dialdehydic form of the decarboxymethyl oleuropein aglycone (3,4-DHPEA-EDA), the dialdehydic form of the ligstroside aglycone (p-HPEA-EDA-DLA), and with fruity, pungent, and bitter attributes. Precision agronomic management based on the needs of the crop itself would avoid unnecessary stress on olive trees and oil damage.

11.
Food Chem ; 449: 139194, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38574525

ABSTRACT

Tracing methods of non-European EVOOs commercialized worldwide are becoming crucial for effective authenticity controls. Limited analytical studies of these oils are available on a global scale, similar to those of European EVOOs. We report for the first time the fatty acid concentrations, bulk-oil 2H/1H, 13C/12C, and 18O/16O ratios and fatty acid 13C/12C ratios of 43 authentic monovarietal EVOOs from different geographical regions in Argentina and Uruguay. The samples were obtained from a wide range of latitudes and altitudes along an E-W profile, from lowlands near the Atlantic Ocean to the pre-Andean highlands near the Pacific Ocean. Principal component scores were used to cluster EVOOs into three groups- central-western Argentina, central Argentina, and Uruguay-based on nine stable isotope ratios and the oleic-linoleic acid concentration ratio. The bulk 2H/1H and 18O/16O values and 13C/12C of palmitoleic and linoleic acids provide good tools for differentiating these oils via linear discriminant analysis.


Subject(s)
Fatty Acids , Olive Oil , Uruguay , Argentina , Fatty Acids/chemistry , Fatty Acids/analysis , Olive Oil/chemistry , Discriminant Analysis , Carbon Isotopes/analysis
12.
Mar Environ Res ; 198: 106491, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657368

ABSTRACT

Our study aimed to establish reference values for nesting females and compare them with those previously reported to understand olive ridley turtles' health status and contribute to long-term health assessment and monitoring in foraging and nesting areas from the state of Sinaloa, Mexico. In August and September 2018, morphometric data and biochemical profiles were collected from 33 nesting olive ridley turtles from Ceuta Beach Sanctuary (CBS) and 14 foraging female turtles captured at the foraging site, Navachiste Marine Area (NMA). Nesting turtles sampled had greater CCL (65.86 ± 1.70 cm) than those from the foraging area (61.54 ± 1.22) (p < 0.05). Regarding biochemical profiles, post-nesting turtles had higher packed cell volume (PCV), albumin, blood urea nitrogen (BUN), cholesterol, triglycerides, and calcium than turtles from the foraging area (p < 0.05). Phosphorus levels were higher in foraging turtles than in nesting turtles (p = 0.001), while the remaining parameters showed no significant differences. The present study describes for the first time the blood biochemical values of nesting turtles from the Ceuta Beach Sanctuary in southern Sinaloa, Mexico, similar to those of foraging turtles from the north of the state. The significant differences observed between the two analysis groups may be due to the energy reserves and reproductive and nesting activity of the nesting turtles, so the blood biochemistry values described in this study can be used as a standard reference blood value for the olive ridley turtle population of Sinaloa, Mexico.


Subject(s)
Nesting Behavior , Turtles , Animals , Turtles/blood , Turtles/physiology , Mexico , Female , Environmental Monitoring , Blood Urea Nitrogen , Reference Values , Hematocrit
13.
Animals (Basel) ; 14(4)2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38396564

ABSTRACT

An adult female Lepidochelys kempii was found trapped in drifting sargassum south of Martinique; this is the southernmost report of this taxon in the Lesser Antilles arc. Determining the limits of distribution and the existence of possible sympatry between L. kempii and L. olivacea in certain subregions of the Caribbean has been hindered by numerous misidentifications. We review the available data and propose a new distribution map in the Caribbean, which can serve as a basis for future studies.

14.
Appl Microbiol Biotechnol ; 108(1): 241, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38413482

ABSTRACT

The present work aimed to develop, characterize, and evaluate the antibacterial and antibiofilm activity of two nanoemulsions (NEs) containing 500 µg/mL of curcumin from Curcuma longa (CUR). These NEs, produced with heating, contain olive oil (5%) and the surfactants tween 80 (5%) and span 80 (2.5%), water q.s. 100 mL, and were stable for 120 days. NE-2-CUR presented Ø of 165.40 ± 2.56 nm, PDI of 0.254, ζ of - 33.20 ± 1.35 mV, pH of 6.49, and Entrapment Drug Efficiency (EE) of 99%. The NE-4-CUR showed a Ø of 105.70 ± 4.13 nm, PDI of 0.459, ζ of - 32.10 ± 1.45 mV, pH of 6.40 and EE of 99.29%. Structural characterization was performed using DRX and FTIR, thermal characterization using DSC and TG, and morphological characterization using SEM, suggesting that there is no significant change in the CUR present in the NEs and that they remain stable. The MIC was performed by the broth microdilution method for nine gram-positive and gram-negative bacteria, as well as Klebsiella pneumoniae clinical isolates resistant to antibiotics and biofilm and efflux pump producers. The NEs mostly showed a bacteriostatic profile. The MIC varied between 125 and 250 µg/mL. The most sensitive bacteria were Staphylococcus aureus and Enterococcus faecalis, for which NE-2-CUR showed a MIC of 125 µg/mL. The NEs and ceftazidime (CAZ) interaction was also evaluated against the K. pneumoniae resistant clinical isolates using the Checkerboard method. NE-2-CUR and NE-4-CUR showed a synergistic or additive profile; there was a reduction in CAZ MICs between 256 times (K26-A2) and 2 times (K29-A2). Furthermore, the NEs inhibited these isolates biofilms formation. The NEs showed a MBIC ranging from 15.625 to 250 µg/mL. Thus, the NEs showed physicochemical characteristics suitable for future clinical trials, enhancing the CAZ antibacterial and antibiofilm activity, thus becoming a promising strategy for the treatment of bacterial infections caused by multidrug-resistant K. pneumoniae. KEY POINTS: • The NEs showed physicochemical characteristics suitable for future clinical trials. • The NEs showed a synergistic/additive profile, when associated with ceftazidime. • The NEs inhibited biofilm formation of clinical isolates.


Subject(s)
Anti-Infective Agents , Curcumin , Anti-Bacterial Agents/pharmacology , Ceftazidime/pharmacology , Curcumin/pharmacology , Curcumin/chemistry , Olive Oil/pharmacology , Gram-Positive Bacteria , Gram-Negative Bacteria , Anti-Infective Agents/pharmacology , Klebsiella pneumoniae , Microbial Sensitivity Tests
15.
Foods ; 13(2)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38254566

ABSTRACT

Olive leaves are residues from pruning and harvesting and are considered an environmental management problems. Interestingly, these residues contain high polyphenol concentrations, which can be used to treat chronic diseases. However, these compounds are a technological challenge due to their thermolability and reactivity during extraction. Thus, this study assessed the use of pressurized liquid extraction (PLE) with green solvents like water-ethanol and water-glycerol mixtures (0-15%) at 50 °C and 70 °C to yield polyphenol-rich antioxidant extracts with reduced glucose and fructose content. The use of 30% ethanol at 70°C presented the highest polyphenol content (15.29 mg gallic acid equivalent/g dry weight) and antioxidant capacity, which was expressed as IC50 (half maximal inhibitory concentration): 5.49 mg/mL and oxygen radical absorbance capacity (ORAC): 1259 µmol Trolox equivalent/g dry weight, as well as lower sugar content (glucose: 3.75 mg/g dry weight, fructose: 5.68 mg/g dry weight) compared to water-glycerol mixtures. Interestingly, ethanol exhibits a higher degree of effectiveness in recovering flavanols, stilbenes and secoiridoids, while glycerol improves the extraction of phenolic acids and flavonols. Therefore, to enhance the efficiency of polyphenol recovery during the PLE process, it is necessary to consider its solvent composition and chemical structure.

16.
Nutr Rev ; 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38287654

ABSTRACT

CONTEXT: Olive leaf extract (OLE) is rich in phenolic compounds, which are known for their health benefits. Cardiovascular diseases, primarily coronary heart disease and stroke, are leading causes of mortality globally. OBJECTIVE: This systematic review aimed to assess the impact of OLE on cardiometabolic risk factors in adults. The selection of studies was based on intervention and outcomes, using relevant search descriptors. DATA SOURCES: The databases PubMed, EMBASE, and Web of Science were systematically searched for pertinent studies published up to August 2021. DATA EXTRACTION: Only randomized clinical trials, either cross-over or parallel, involving adult individuals aged ≥18 years, were considered. Additionally, trials that had a comparative or placebo group and used pure OLEs for oral treatment were included. DATA ANALYSIS: Twelve randomized clinical trials (RCTs) met the inclusion criteria. These trials had follow-up periods ranging from 2 days to 12 weeks and involved 703 patients aged 18 years-79 years. The outcomes demonstrated a positive correlation between the intervention group and glucose metabolism (4 RCTs), blood pressure (2 RCTs), lipid profile (2 RCTs), and inflammatory markers (2 RCTs). The RoB2 tool and the GRADE system were used to evaluate the risk of bias and the quality of evidence in the studies. CONCLUSIONS: In the meta-analysis, fasting glycemia, as evaluated in studies using a low dose of OLE, showed a significant result favoring the control group. To obtain more consistent results, further clinical studies in humans, using similar methodologies, are required. SYSTEMATIC REVIEW REGISTRATION: PROSPERO registration no. CRD42020200877.

17.
Molecules ; 29(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38276611

ABSTRACT

The tanning industry generates effluents with high chromium content, which require treatment prior to discharge into the sewage system. This article explores the use of magnetic magnetite nanoparticles (MNPs) to remove Cr(VI) from aqueous solutions, such as tanning effluents. The MNPs were synthesized by coprecipitation reaction using the Olea europaea extract as a reducing agent. Subsequently, they were characterized by dynamic light scattering spectroscopy (DLS), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). MNPs with irregular morphology and diameters ranging from 73.28 to 162.90 nm were obtained. Cr(VI) removal was performed using jar test methodology, and its efficiency was evaluated in the laboratory for different initial Cr(VI) (mg/L) concentration and nanoparticle (g/L) concentration. A kinetic study was developed and indicated that the equilibrium adsorption mechanism corresponds to a pseudo-second-order model. Furthermore, the isotherm analysis revealed that chromium adsorption best fits the Langmuir isotherm. Finally, Cr(VI) removal rates from 85% to 100% were achieved in tanning and retanning effluents.


Subject(s)
Magnetite Nanoparticles , Olea , Water Pollutants, Chemical , Water Purification , Magnetite Nanoparticles/chemistry , Chromium/chemistry , Adsorption , Kinetics , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration , Water Purification/methods
18.
J Sci Food Agric ; 104(7): 3807-3815, 2024 May.
Article in English | MEDLINE | ID: mdl-38270195

ABSTRACT

Olive oil production yields a substantial volume of by-products, constituting up to 80% of the processed fruits. The olive pomace by-product represents a residue of significant interest due to the diverse bioactive compounds identified in it. However, a thorough characterization and elucidation of the biological activities of olive pomace are imperative to redirect its application for functional food, nutraceutical, and pharmaceutical purposes both for animals and humans. In this review, we examine data from experimental models, including immortalized human vascular endothelial cells, human corneal and conjunctival epithelial cells, human colorectal adenocarcinoma cells, non-tumorigenic human hepatoma cells, and murine macrophages alongside clinical trials. These studies aim to validate the safety, nutritional value, and pharmacological effects of olive pomace. In vitro studies suggest that biophenols extracted from olive pomace possess antioxidant, anti-inflammatory, and antiproliferative properties that could be beneficial in mitigating cardiovascular disorders, particularly atherosclerosis, hepatosteatosis, and dry-eye disease. Protective effects against dry-eye disease were confirmed in a mouse model assay. Olive pomace used in the feed for fish and poultry has demonstrated the ability to enhance animals' immunity and improve nutritional quality of meat and eggs. Human clinical trials are scarce and have revealed minimal biological changes following the consumption of olive pomace-enriched foods. However, alterations in certain biomarkers tentatively suggest cardioprotective properties. The review underscores the value of olive pomace while addressing potential drawbacks and future perspectives, with a specific focus on the need for further investigation into the animal feed and human nutritional properties of olive pomace. © 2024 Society of Chemical Industry.


Subject(s)
Eye Diseases , Olea , Humans , Animals , Mice , Olea/chemistry , Endothelial Cells , Olive Oil/chemistry , Dietary Supplements
19.
Rev. bras. entomol ; Rev. bras. entomol;68(3): e20240017, 2024. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1576061

ABSTRACT

ABSTRACT Xylem sap-feeding auchenorrhynchans, e.g. sharpshooters and spittlebugs (Hemiptera: Cicadellinae and Cercopoidea, respectively), are considered potential vectors of the xylem-limited bacterium Xylella fastidiosa, which is associated with olive leaf desiccation syndrome, a severe disease affecting olive orchards (Olea europaea L.) in the Mantiqueira mountain range region, southeastern Brazil. We evaluated, through faunal analysis, the composition and predominance of Cicadellinae and Cercopoidea species collected fortnightly over two years with yellow sticky cards in eight olive orchards distributed along an altitudinal gradient in the states of São Paulo and Minas Gerais. A high diversity of Cicadellinae (64 species) and Cercopoidea (10 species) was found in the orchards, with 20 of them considered predominant. Clastoptera sp. 1, Macugonalia cavifrons, and Scopogonalia paula were the most representative among the predominant species. We also found out that the trap position on the olive tree canopy at a height of 0.8 m above ground is more efficient than at 1.6 m for capturing the majority of Cicadellinae and Cercopoidea species associated with olive orchards.

20.
Ecohealth ; 20(4): 390-401, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38110613

ABSTRACT

Olive ridleys (Lepidochelys olivacea) are the most common sea turtle found in the Gulf of California. Unfortunately, the bacterial flora of nesting olive ridley turtles is still unknown. We conducted a study to identify, characterize, serotype, and determine the antibiotic resistance of potentially pathogenic bacteria isolated from olive ridley turtles nesting in northwestern Mexico. Bacteria were isolated and identified from the oral cavity and cloaca of 47 postnesting turtles. Escherichia coli and Vibrio parahaemolyticus were characterized, and antibiotic resistance testing was performed. One hundred bacteria belonging to 21 species were isolated, 53 from the oral cavity and 47 from the cloaca, the most prevalent being Pseudomonas aeruginosa, followed by Aeromonas hydrophila, Vibrio alginolyticus, Vibrio parahaemolyticus, Klebsiella pneumoniae, and E. coli, among others. Moreover, two to three different bacterial species were found co-colonizing both anatomical sites in some turtles. E. coli phylogroups B1, A, F, and unknown were identified as diarrheagenic E. coli (enteroaggregative and enteropathogenic E. coli). O1, O4, K8, K12, OUT, and KUT of V. parahaemolyticus serogroups were identified, also comprising pathogenic and nonpathogenic strains. Finally, 100% of the bacterial species tested were antibiotic resistant, and both MDR and XDR strains were found. In conclusion, olive ridley turtles are colonized by a diversity of bacterial species with a high rate of antibiotic resistance, some with pathogenic potential to turtles, representing a health risk factor for the species.


Subject(s)
Turtles , Animals , Bacteria , Escherichia coli , Mexico , Skin Pigmentation
SELECTION OF CITATIONS
SEARCH DETAIL