Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Genes (Basel) ; 15(5)2024 05 11.
Article in English | MEDLINE | ID: mdl-38790243

ABSTRACT

Alzheimer's disease (AD), a multifactorial neurodegenerative disorder, is prevalent among the elderly population. It is a complex trait with mutations in multiple genes. Although the US Food and Drug Administration (FDA) has approved a few drugs for AD treatment, a definitive cure remains elusive. Research efforts persist in seeking improved treatment options for AD. Here, a hybrid pipeline is proposed to apply text mining to identify comorbid diseases for AD and an omics approach to identify the common genes between AD and five comorbid diseases-dementia, type 2 diabetes, hypertension, Parkinson's disease, and Down syndrome. We further identified the pathways and drugs for common genes. The rationale behind this approach is rooted in the fact that elderly individuals often receive multiple medications for various comorbid diseases, and an insight into the genes that are common to comorbid diseases may enhance treatment strategies. We identified seven common genes-PSEN1, PSEN2, MAPT, APP, APOE, NOTCH, and HFE-for AD and five comorbid diseases. We investigated the drugs interacting with these common genes using LINCS gene-drug perturbation. Our analysis unveiled several promising candidates, including MG-132 and Masitinib, which exhibit potential efficacy for both AD and its comorbid diseases. The pipeline can be extended to other diseases.


Subject(s)
Alzheimer Disease , Comorbidity , Data Mining , Alzheimer Disease/genetics , Alzheimer Disease/drug therapy , Humans , Data Mining/methods , Parkinson Disease/genetics , Parkinson Disease/drug therapy , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/drug therapy , Down Syndrome/genetics , Down Syndrome/drug therapy , Hypertension/genetics , Hypertension/drug therapy
2.
World J Methodol ; 14(1): 89196, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38577200

ABSTRACT

The Human Microbiome Project, Earth Microbiome Project, and next-generation sequencing have advanced novel genome association, host genetic linkages, and pathogen identification. The microbiome is the sum of the microbes, their genetic information, and their ecological niche. This study will describe how millions of bacteria in the gut affect the human body in health and disease. The gut microbiome changes in relation with age, with an increase in Bacteroidetes and Firmicutes. Host and environmental factors affecting the gut microbiome are diet, drugs, age, smoking, exercise, and host genetics. In addition, changes in the gut microbiome may affect the local gut immune system and systemic immune system. In this study, we discuss how the microbiome may affect the metabolism of healthy subjects or may affect the pathogenesis of metabolism-generating metabolic diseases. Due to the high number of publications on the argument, from a methodologically point of view, we decided to select the best papers published in referred journals in the last 3 years. Then we selected the previously published papers. The major goals of our study were to elucidate which microbiome and by which pathways are related to healthy and disease conditions.

3.
Biochem Biophys Rep ; 37: 101589, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38074997

ABSTRACT

Single-cell multi-omics technologies have revolutionized cancer research by allowing us to examine individual cells at a molecular level. Unlike traditional bulk omics approaches, which analyze populations of cells together, single-cell multi-omics enables us to uncover the heterogeneity within tumors and understand the unique molecular characteristics of different cell populations. By doing so, we can identify rare subpopulations of cells that are influential in tumor growth, metastasis, and resistance to therapy. Moreover, single-cell multi-omics analysis provides valuable insights into the immune response triggered by various therapeutic interventions, such as immune checkpoint blockade, chemotherapy, and cell therapy. It also helps us better understand the intricate tumor microenvironment and its impact on patient prognosis and response to treatment. This comprehensive review focuses on the recent advancements in single-cell multi-omics methodologies, with an emphasis on single-cell multi-omics technologies. It highlights the important role of these techniques in uncovering the complexity of tumorigenesis and its multiple applications in cancer research, as well as their equally great contributions in other areas such as immunology. Through single-cell multi-omics, we gain a deeper understanding of cancer biology and pave the way for more precise and effective therapeutic strategies. Apart from those above, this paper also aims to introduce the advancements in live cell imaging technology, the latest developments in protein detection techniques, and explore their seamless integration with single-cell multi-omics technology.

4.
J Adv Res ; 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37392974

ABSTRACT

BACKGROUND: Soil salinization threatens food security and ecosystem health, and is one of the important drivers to the degradation of many ecosystems around the world. Soil microorganisms have extremely high diversity and participate in a variety of key ecological processes. They are important guarantees for soil health and sustainable ecosystem development. However, our understanding of the diversity and function of soil microorganisms under the change of increased soil salinization is fragmented. AIM OF REVIEW: Here, we summarize the changes in soil microbial diversity and function under the influence of soil salinization in diverse natural ecosystems. We particularly focus on the diversity of soil bacteria and fungi under salt stress and the changes in their emerging functions (such as their mediated biogeochemical processes). This study also discusses how to use the soil microbiome in saline soils to deal with soil salinization for supporting sustainable ecosystems, and puts forward the knowledge gaps and the research directions that need to be strengthened in the future. KEY SCIENTIFIC CONCEPTS OF REVIEW: Due to the rapid development of molecular-based biotechnology (especially high-throughput sequencing technology), the diversity and community composition and functional genes of soil microorganisms have been extensively characterized in different habitats. Clarifying the responding pattern of microbial-mediated nutrient cycling under salt stress and developing and utilizing microorganisms to weaken the adverse effects of salt stress on plants and soil, which are of guiding significance for agricultural production and ecosystem management in saline lands.

5.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-995282

ABSTRACT

Urogenital Chlamydia trachomatis ( Ct) infection is a serious sexually transmitted disease worldwide. The early diagnosis and treatment of Ct infection is critical for disease control. This review summarized the progress in the development of methods for detecting Ct infection and discussed the advantages and disadvantages of various methods. The emerging omics techniques in recent years are expected to be new tools for the detection of Ct infection. It is necessary to develop the omics techniques into rapid and accurate point-of-care tests that can be carried out in various testing environments for more effective patient management and disease control.

6.
J Affect Disord ; 318: 423-455, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36103934

ABSTRACT

BACKGROUND: Treatment-resistant depression (TRD) results in huge healthcare costs and poor patient clinical outcomes. Most studies have adopted a "candidate mechanism" approach to investigate TRD pathogenesis, however this is made more challenging due to the complex and heterogeneous nature of this condition. High-throughput "omics" technologies can provide a more holistic view and further insight into the underlying mechanisms involved in TRD development, expanding knowledge beyond already-identified mechanisms. This systematic review assessed the information from studies that examined TRD using hypothesis-free omics techniques. METHODS: PubMed, MEDLINE, Embase, APA PsycInfo, Scopus and Web of Science databases were searched on July 2022. 37 human studies met the eligibility criteria, totalling 17,518 TRD patients, 571,402 healthy controls and 62,279 non-TRD depressed patients (including antidepressant responders and untreated MDD patients). RESULTS: Significant findings were reported that implicate the role in TRD of various molecules, including polymorphisms, genes, mRNAs and microRNAs. The pathways most commonly reported by the identified studies were involved in immune system and inflammation, neuroplasticity, calcium signalling and neurotransmitters. LIMITATIONS: Small sample sizes, variability in defining TRD, and heterogeneity in study design and methodology. CONCLUSIONS: These findings provide insight into TRD pathophysiology, proposing future research directions for novel drug targets and potential biomarkers for clinical staging and response to antidepressants (citalopram/escitalopram in particular) and electroconvulsive therapy (ECT). Further validation is warranted in large prospective studies using standardised TRD criteria. A multi-omics and systems biology strategy with a collaborative effort will likely deliver robust findings for translation into the clinic.


Subject(s)
Depressive Disorder, Treatment-Resistant , Antidepressive Agents/therapeutic use , Calcium , Citalopram/therapeutic use , Depression/therapy , Depressive Disorder, Treatment-Resistant/drug therapy , Humans , Prospective Studies
7.
J Proteomics ; 241: 104218, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33831599

ABSTRACT

Selenium (Se) is an essential mineral nutrient for animals. Se deprivation can lead to many disorders and even death. This study investigated the response of Przewalski's gazelle (P. przewalskii) to Se-deprived environment. We found that Se deprivation in soil and forage not only influenced the mineral contents of the blood and hair in P. przewalskii, but also severely disrupted their blood parameters. We identified significant changes in the abundance of 146 proteins and 25 metabolites (P < 0.05) in serum, including the selenoproteins L8IG93 (glutathione peroxidase) and F4YD09 (Cu/Zn superoxide dismutase). Furthermore, the major known proteins and metabolites associated with the Se stress response in P. przewalskii were Cu/Zn superoxide dismutase, the vitamin K-dependent protein C, the C4b-binding protein alpha chain, complement component C7, lipase linoleic acid, peptidase D, thymidine, pseudo-uridine, L-phenylalanine, L-glutamine, PGA1, and 15-deoxy-delta-12,14-PGJ2. The main signaling pathways involved included complement and coagulation cascades, metabolic pathways, and stress granule formation. Our results indicate that the intake of Se-deficient forage elicited an oxidative stress response in P. przewalskii. These findings provide insights into the response mechanisms of this threatened gazelle to Se stress, and enable the development of conservation strategies to protect populations on the Qinghai-Tibetan Plateau. SIGNIFICANCE: This study is the first to point out the presence of oxidative stress in P. przewalskii in selenium-deficient areas through proteomics and metabolomics studies. These findings should prove helpful for conservation efforts aimed at P. przewalskii populations and maintenance of the integrity of their ecological environment.


Subject(s)
Antelopes , Selenium , Animals , Proteomics
8.
Asian-Australas J Anim Sci ; 32(8): 1321-1330, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31357272

ABSTRACT

Recent development of novel techniques in systems biology have been used to improve and manipulate the rumen microbial ecosystem and gain a deeper understanding of its physiological and microbiological interactions and relationships. This provided a deeper insight and understanding of the relationship and interactions between the rumen microbiome and the host animal. New high-throughput techniques have revealed that the dominance of Proteobacteria in the neonatal gut might be derived from the maternal placenta through fetal swallowing of amniotic fluid in utero, which gradually decreases in the reticulum, omasum, and abomasum with increasing age after birth. Multi "omics" technologies have also enhanced rumen fermentation and production efficiency of dairy goats using dietary interventions through greater knowledge of the links between nutrition, metabolism, and the rumen microbiome and their effect in the environment. For example, supplementation of dietary lipid, such as linseed, affects rumen fermentation by favoring the accumulation of α-linolenic acid biohydrogenation with a high correlation to the relative abundance of Fibrobacteriaceae. This provides greater resolution of the interlinkages among nutritional strategies, rumen microbes, and metabolism of the host animal that can set the foundation for new advancements in ruminant nutrition using multi 'omics' technologies.

9.
Front Genet ; 10: 1361, 2019.
Article in English | MEDLINE | ID: mdl-32038716

ABSTRACT

Next-generation RNA-sequencing is an incredibly powerful means of generating a snapshot of the transcriptomic state within a cell, tissue, or whole organism. As the questions addressed by RNA-sequencing (RNA-seq) become both more complex and greater in number, there is a need to simplify RNA-seq processing workflows, make them more efficient and interoperable, and capable of handling both large and small datasets. This is especially important for researchers who need to process hundreds to tens of thousands of RNA-seq datasets. To address these needs, we have developed a scalable, user-friendly, and easily deployable analysis suite called RMTA (Read Mapping, Transcript Assembly). RMTA can easily process thousands of RNA-seq datasets with features that include automated read quality analysis, filters for lowly expressed transcripts, and read counting for differential expression analysis. RMTA is containerized using Docker for easy deployment within any compute environment [cloud, local, or high-performance computing (HPC)] and is available as two apps in CyVerse's Discovery Environment, one for normal use and one specifically designed for introducing undergraduates and high school to RNA-seq analysis. For extremely large datasets (tens of thousands of FASTq files) we developed a high-throughput, scalable, and parallelized version of RMTA optimized for launching on the Open Science Grid (OSG) from within the Discovery Environment. OSG-RMTA allows users to utilize the Discovery Environment for data management, parallelization, and submitting jobs to OSG, and finally, employ the OSG for distributed, high throughput computing. Alternatively, OSG-RMTA can be run directly on the OSG through the command line. RMTA is designed to be useful for data scientists, of any skill level, interested in rapidly and reproducibly analyzing their large RNA-seq data sets.

10.
Methods Mol Biol ; 1750: 31-66, 2018.
Article in English | MEDLINE | ID: mdl-29512064

ABSTRACT

Alzheimer's disease (AD) is a complex multifactorial disease, involving a combination of genomic, interactome, and environmental factors, with essential participation of (a) intrinsic genomic susceptibility and (b) a constant dynamic interplay between impaired pathways and central homeostatic networks of nerve cells. The proper investigation of the complexity of AD requires new holistic systems-level approaches, at both the experimental and computational level. Systems biology methods offer the potential to unveil new fundamental insights, basic mechanisms, and networks and their interplay. These may lead to the characterization of mechanism-based molecular signatures, and AD hallmarks at the earliest molecular and cellular levels (and beyond), for characterization of AD subtypes and stages, toward targeted interventions according to the evolving precision medicine paradigm. In this work, an update on advanced systems biology methods and strategies for holistic studies of multifactorial diseases-particularly AD-is presented. This includes next-generation genomics, neuroimaging and multi-omics methods, experimental and computational approaches, relevant disease models, and latest genome editing and single-cell technologies. Their progressive incorporation into basic research, cohort studies, and trials is beginning to provide novel insights into AD essential mechanisms, molecular signatures, and markers toward mechanism-based classification and staging, and tailored interventions. Selected methods which can be applied in cohort studies and trials, with the European Prevention of Alzheimer's Dementia (EPAD) project as a reference example, are presented and discussed.


Subject(s)
Alzheimer Disease/pathology , Alzheimer Disease/therapy , Systems Biology/methods , Alzheimer Disease/classification , Biomarkers/analysis , Clinical Trials as Topic , Cohort Studies , Genetic Markers , Genomics , Humans , Precision Medicine
11.
Article in English | MEDLINE | ID: mdl-29594064

ABSTRACT

Eukaryotic parasites and pathogens continue to cause some of the most detrimental and difficult to treat diseases (or disease states) in both humans and animals, while also continuously expanding into non-endemic countries. Combined with the ever growing number of reports on drug-resistance and the lack of effective treatment programs for many metazoan diseases, the impact that these organisms will have on quality of life remain a global challenge. Vaccination as an effective prophylactic treatment has been demonstrated for well over 200 years for bacterial and viral diseases. From the earliest variolation procedures to the cutting edge technologies employed today, many protective preparations have been successfully developed for use in both medical and veterinary applications. In spite of the successes of these applications in the discovery of subunit vaccines against prokaryotic pathogens, not many targets have been successfully developed into vaccines directed against metazoan parasites. With the current increase in -omics technologies and metadata for eukaryotic parasites, target discovery for vaccine development can be expedited. However, a good understanding of the host/vector/pathogen interface is needed to understand the underlying biological, biochemical and immunological components that will confer a protective response in the host animal. Therefore, systems biology is rapidly coming of age in the pursuit of effective parasite vaccines. Despite the difficulties, a number of approaches have been developed and applied to parasitic helminths and arthropods. This review will focus on key aspects of vaccine development that require attention in the battle against these metazoan parasites, as well as successes in the field of vaccine development for helminthiases and ectoparasites. Lastly, we propose future direction of applying successes in pursuit of next generation vaccines.


Subject(s)
Parasitic Diseases, Animal/prevention & control , Protozoan Vaccines/immunology , Vaccination/trends , Vaccination/veterinary , Animals , Antigens, Protozoan/immunology , Antigens, Protozoan/metabolism , Arthropods/classification , Arthropods/immunology , Arthropods/parasitology , Drug Discovery , Drug Resistance , Helminths/classification , Helminths/immunology , Helminths/parasitology , Host-Parasite Interactions/immunology , Metadata , Parasites/drug effects , Parasitic Diseases, Animal/immunology , Protozoan Vaccines/chemistry , Systems Biology
12.
Trends Biotechnol ; 36(8): 747-750, 2018 08.
Article in English | MEDLINE | ID: mdl-29395343

ABSTRACT

Microorganisms are responsible for biochemical cycles and therefore play essential roles in the environment. By using omics approaches and network analysis to understand the interaction and cooperation within mixed microbial communities, it would be possible to engineer microbiomes in fermentation and digestion reactors to convert organic waste into valuable products.


Subject(s)
Bioreactors/microbiology , Medical Waste Disposal/methods , Microbiota , Organic Chemicals/metabolism , Biotransformation , Fermentation
13.
Mass Spectrom Rev ; 37(2): 188-201, 2018 03.
Article in English | MEDLINE | ID: mdl-27579891

ABSTRACT

Siderophores are chemically diverse secondary metabolites that primarily assist the host organisms to chelate iron. Siderophores are biosynthesized by many biological organisms, including bacteria, fungi, and plants and they are responsible for a variety of biological functions beyond capture iron. Thus, they could provide a novel understanding of host-pathogen interactions, plant physiology, disease pathogenesis, and drug development. However, knowledge gaps in analytical technologies, chemistry, and biology have severely impeded the applications of siderophores, and a new strategy is urgently needed to bridge these gaps. Mass spectrometry (MS) and associated technologies render unparalleled advantages in this niche in terms of high throughput, resolution, and sensitivity. Herein, this critical review briefly summarizes progress in the study of siderophores and specifically identifies MS-based novel strategies that attempt to mimic the complexity of siderophore systems in order to increase the applicability of these compounds in the scientific community. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 37:188-201, 2018.


Subject(s)
Mass Spectrometry/methods , Siderophores/chemistry , Siderophores/physiology , Systems Biology/methods , Anti-Bacterial Agents/pharmacology , Crops, Agricultural/growth & development , Humans , Iron Overload/drug therapy , Plants/metabolism , Siderophores/classification , Siderophores/pharmacology
14.
Bol. méd. Hosp. Infant. Méx ; 74(3): 227-232, May.-Jun. 2017. tab
Article in English | LILACS | ID: biblio-888620

ABSTRACT

Abstract: Acute lymphoblastic leukemia (ALL) affects the quality of life of many children in the world and particularly in Mexico, where a high incidence has been reported. With a proper financial investment and with well-organized institutions caring for those patients, together with solid platforms to perform high-throughput analyses, we propose the creation of a Mexican repository system of serum and cells from bone marrow and blood samples derived from tissues of pediatric patients with ALL diagnosis. This resource, in combination with omics technologies, particularly proteomics and metabolomics, would allow longitudinal studies, offering an opportunity to design and apply personalized ALL treatments. Importantly, it would accelerate the development of translational science and will lead us to further discoveries, including the identification of new biomarkers for the early detection of leukemia.


Resumen: La leucemia linfoblástica aguda (LLA) afecta la calidad de vida de una gran cantidad de individuos en edad pediátrica en todo el mundo; particularmente en México, donde se ha reportado una alta incidencia. Con un apropiado fondo de inversión financiera, así como instituciones adecuadamente organizadas al cuidado de los pacientes con LLA, en conjunto con plataformas sólidas para llevar a cabo análisis globales y de alto rendimiento, se propone la creación de un repositorio para la conservación de suero y células provenientes de médula ósea y sangre derivadas de pacientes pediátricos con LLA al diagnóstico. Estos recursos, en combinación con las tecnologías ómicas, en particular la proteómica y la metabolómica, podrían permitir el establecimiento de estudios longitudinales y ofrecer una oportunidad para el diseño y aplicación de tratamientos personalizados para la LLA. Esta estrategia permitiría acelerar el desarrollo de la ciencia traslacional, favoreciendo el hallazgo de importantes descubrimientos, incluyendo la identificación de nuevos biomarcadores para la detección temprana de la leucemia.


Subject(s)
Child , Humans , Biomarkers, Tumor/metabolism , Proteomics/methods , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Metabolomics/methods , Quality of Life , Biological Specimen Banks , Early Diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precision Medicine/methods , Mexico
16.
Pest Manag Sci ; 73(5): 813-822, 2017 May.
Article in English | MEDLINE | ID: mdl-28127901

ABSTRACT

Western flower thrips (WFT) is one of the most economically important pest insects of many crops worldwide. Recent EU legislation has caused a dramatic shift in pest management strategies, pushing for tactics that are less reliable on chemicals. The development of alternative strategies is therefore an issue of increasing urgency. This paper reviews the main control tactics in integrated pest management (IPM) of WFT, with the focus on biological control and host plant resistance as areas of major progress. Knowledge gaps are identified and innovative approaches emphasised, highlighting the advances in 'omics' technologies. Successful programmes are most likely generated when preventive and therapeutic strategies with mutually beneficial, cost-effective and environmentally sound foundations are incorporated. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Insect Control/methods , Thysanoptera , Animals , Behavior, Animal/drug effects , Computational Biology , Mechanical Phenomena , Pest Control, Biological , Thysanoptera/genetics , Thysanoptera/metabolism
17.
Bol Med Hosp Infant Mex ; 74(3): 227-232, 2017.
Article in English | MEDLINE | ID: mdl-29382491

ABSTRACT

Acute lymphoblastic leukemia (ALL) affects the quality of life of many children in the world and particularly in Mexico, where a high incidence has been reported. With a proper financial investment and with well-organized institutions caring for those patients, together with solid platforms to perform high-throughput analyses, we propose the creation of a Mexican repository system of serum and cells from bone marrow and blood samples derived from tissues of pediatric patients with ALL diagnosis. This resource, in combination with omics technologies, particularly proteomics and metabolomics, would allow longitudinal studies, offering an opportunity to design and apply personalized ALL treatments. Importantly, it would accelerate the development of translational science and will lead us to further discoveries, including the identification of new biomarkers for the early detection of leukemia.


Subject(s)
Biomarkers, Tumor/metabolism , Metabolomics/methods , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Proteomics/methods , Biological Specimen Banks , Child , Early Diagnosis , Humans , Mexico , Precision Medicine/methods , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Quality of Life
18.
Front Hum Neurosci ; 10: 602, 2016.
Article in English | MEDLINE | ID: mdl-27965556

ABSTRACT

Feeling embodiment over our body or body part has a major role in the understanding of the self and control of self-actions. Even though it is crucial in our daily life, embodiment is not an homogenous phenotype across population, as quantified by implicit and explicit measures (i.e., neuroimaging or self-reports). Studies have shown differences in neuropathological conditions compared to healthy controls, but also across healthy individuals. We discuss examples of self-perception differences, and the molecular origin of embodiment, focusing on clinical cases, during the first and second section. We then discuss two important questions in this molecular-to-embodiment relationship: (i) which are the molecular levels (and their associated techniques) that can be relevant to embodiment, and (ii) which are the most adequate experiments to correlate molecular profiles and embodiment quantification across individuals. Potential answers for both questions will be outlined during the third and fourth sections, respectively, in order to design a framework to study the molecular profile of body embodiment.

19.
BMC Genomics ; 17: 716, 2016 Sep 07.
Article in English | MEDLINE | ID: mdl-27604083

ABSTRACT

BACKGROUND: Spiders are known for their predatory efficiency and for their high capacity of digesting relatively large prey. They do this by combining both extracorporeal and intracellular digestion. Whereas many high throughput ("-omics") techniques focus on biomolecules in spider venom, so far this approach has not yet been applied to investigate the protein composition of spider midgut diverticula (MD) and digestive fluid (DF). RESULTS: We here report on our investigations of both MD and DF of the spider Nephilingis (Nephilengys) cruentata through the use of next generation sequencing and shotgun proteomics. This shows that the DF is composed of a variety of hydrolases including peptidases, carbohydrases, lipases and nuclease, as well as of toxins and regulatory proteins. We detect 25 astacins in the DF. Phylogenetic analysis of the corresponding transcript(s) in Arachnida suggests that astacins have acquired an unprecedented role for extracorporeal digestion in Araneae, with different orthologs used by each family. The results of a comparative study of spiders in distinct physiological conditions allow us to propose some digestion mechanisms in this interesting animal taxon. CONCLUSION: All the high throughput data allowed the demonstration that DF is a secretion originating from the MD. We identified enzymes involved in the extracellular and intracellular phases of digestion. Besides that, data analyses show a large gene duplication event in Araneae digestive process evolution, mainly of astacin genes. We were also able to identify proteins expressed and translated in the digestive system, which until now had been exclusively associated to venom glands.


Subject(s)
Digestion , High-Throughput Nucleotide Sequencing/methods , Proteomics/methods , Sequence Analysis, DNA/methods , Spiders/physiology , Animals , Arthropod Proteins/genetics , Arthropod Proteins/metabolism , Digestive System/metabolism , Evolution, Molecular , Gene Duplication , Gene Expression Regulation , Metalloendopeptidases/genetics , Metalloendopeptidases/metabolism , Phylogeny , Spiders/genetics
20.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-489508

ABSTRACT

With dramatic decline of genome sequencing cost,high-throughput sequencing technologies have been applied in clinical laboratory field,and play an increasingly important role in clinical diagnosis and treatment in complex diseases.Based on omics techniques,clinical laboratory data recording patient's diagnosis information has become the important independent medical research resources of the major health industry.Because these data include the patient's identity information,there are a series of ethical issues to be solved,such as protection of patients' informed consent right,patient privacy protection,information security protection,when carrying out the medical health big data research.Based on these problems,it proposed clinical laboratory data should be standard extraction,establishment of clinical laboratory data base for teaching,training,in order to improve the utilization of medical resources.Moreover,it is best to implement the written informed consent during the process of sample collection,informing the patient the data collected in diagnosis and treatment process may be used in related research in future.

SELECTION OF CITATIONS
SEARCH DETAIL
...