Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 894
Filter
1.
Article in English | MEDLINE | ID: mdl-39297991

ABSTRACT

PURPOSE: As a cause of primary female infertility, oocyte maturation arrest (OMA) is characterized by failure to obtain mature oocytes due to abnormal meiosis. We aimed to identify pathogenic variants in two sisters with OMA phenotype from a non-consanguineous family. METHODS: Whole-exome sequencing and Sanger sequencing were conducted to identify and validate the disease-causing gene variant. Additionally, we performed a minigene assay, quantitative reverse transcription PCR, and Western blotting to assess the effects of the variant. RESULTS: We identified a novel homozygous splicing variant (c.1021-11T>C) in TRIP13, which followed a recessive inheritance pattern. Minigene assay showed that the variant could disrupt the integrity of TRIP13 mRNA, as evidenced by the production of an alternative transcript with intron10 intermediate retention of 79 bp. Compared to normal controls, the expression of TRIP13 mRNA and abundance of TRIP13 protein were also significantly decreased in Epstein-Barr virus-immortalized lymphoblastoid cells derived from affected individuals. CONCLUSION: Our findings confirm the contribution of genetic factors to OMA and expand the mutation spectrum of TRIP13 in female infertility.

2.
Ecotoxicol Environ Saf ; 285: 117084, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39305772

ABSTRACT

Antimony (Sb) is a metalloid, widely presents in the environment and associates with human health. In this study, we aimed to decipher whether Sb exposure is harmful to female reproduction and explore the underlying mechanisms. The ICR mice were exposed to 0, 5, 10, and 20 mg/kg acetate potassium Sb tartrate trihydrate by intraperitoneal injection for 10 days, then mouse oocytes were collected for further analysis. We first found a significant decrease in the proportion of MII-stage oocytes obtained from supernumerary ovulation in the fallopian tubes and early embryo development under Sb treatment. Then a series of tests showed Sb affects oocyte maturation by damaging the cytoskeleton of microtubule and actin. Moreover, the abnormal distribution of cortical granules and their component Ovastacin in oocytes, combined with reduced expression levels of Juno, affected sperm-oocyte binding and led to fertilization failure. Based on the sequencing results and experimental validation, it was demonstrated that Sb exposure impairs mitochondrial distribution and membrane potential, elevated levels of mitochondrial superoxide, finally caused energy supply deficits. Mitochondrial damage in oocytes after Sb exposure results in the excessive oxidative stress and early apoptosis. Taken together, these data suggest that Sb exposure decreases oocyte quality and female fertilization ability by impairing mitochondrial function and redox perturbation.

3.
Fertil Steril ; 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39260537

ABSTRACT

OBJECTIVE: To compare oocyte maturation rates and pregnancy outcomes in women with polycystic ovary syndrome (PCOS) undergoing biphasic in vitro maturation (capacitation [CAPA]-IVM) with versus without follicle-stimulating hormone (FSH) priming. DESIGN: Randomized, controlled, assessor-blinded trial SUBJECTS: Women aged 18-37 years with PCOS and an indication for CAPA-IVM. INTERVENTION: Participants were randomized (1:1) to undergo CAPA-IVM with or without FSH priming. The FSH priming group had two days of FSH injections before oocyte pick-up; no FSH was given in the non-FSH group. After CAPA-IVM, day-5 embryos were vitrified for transfer in a subsequent cycle. MAIN OUTCOME MEASURE(S): The primary endpoint was number of matured oocytes. Secondary outcomes included rates of live birth, implantation, clinical pregnancy, ongoing pregnancy, pregnancy complications, obstetric and perinatal complications, and neonatal complications. RESULTS: The number [interquartile range] of matured oocytes did not differ significantly in the non-FSH versus FSH group (13 [9-18] vs. 14 [7-8]; absolute difference -1 [95% confidence interval (CI) -5, 4]); other oocyte and embryology outcomes did not differ between groups. Rates of ongoing pregnancy and live birth were both 38.3% in the non-FSH group and both 31.7% in the FSH group (risk ratio for both outcomes: 1.21, 95% CI 0.74-1.98). Maternal complications were infrequent and occurred at a similar rate in the two groups; there were no preterm deliveries before 32 weeks' gestation. CONCLUSION: These findings open the possibility of a new, hormone-free approach to infertility treatment of women with PCOS.

4.
Reprod Domest Anim ; 59(9): e14715, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39262106

ABSTRACT

G-protein-coupled receptor kinase 2 (GRK2) interacts with Gßγ and Gαq, subunits of G-protein alpha, to regulate cell signalling. The second messenger inositol trisphosphate, produced by activated Gαq, promotes calcium release from the endoplasmic reticulum (ER) and regulates maturation-promoting factor (MPF) activity. This study aimed to investigate the role of GRK2 in MPF activity during the meiotic maturation of porcine oocytes. A specific inhibitor of GRK2 (ßi) was used in this study. The present study showed that GRK2 inhibition increased the percentage of oocyte arrest at the metaphase I (MI) stage (control: 13.84 ± 0.95%; ßi: 31.30 ± 4.18%), which resulted in the reduction of the maturation rate (control: 80.36 ± 1.94%; ßi: 65.40 ± 1.14%). The level of phospho-GRK2 decreased in the treated group, suggesting that GRK2 activity was reduced upon GRK2 inhibition. Furthermore, the addition of ßi decreased Ca2+ release from the ER. The protein levels of cyclin B and cyclin-dependent kinase 1 were higher in the treatment group than those in the control group, indicating that GRK2 inhibition prevented a decrease in MPF activity. Collectively, GRK2 inhibition induced meiotic arrest at the MI stage in porcine oocytes by preventing a decrease in MPF activity, suggesting that GRK2 is essential for oocyte meiotic maturation in pigs.


Subject(s)
Calcium , G-Protein-Coupled Receptor Kinase 2 , Meiosis , Oocytes , Animals , Oocytes/drug effects , Meiosis/drug effects , G-Protein-Coupled Receptor Kinase 2/metabolism , Female , Calcium/metabolism , Swine , Maturation-Promoting Factor/metabolism , In Vitro Oocyte Maturation Techniques/veterinary
5.
Hum Reprod Update ; 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39277428

ABSTRACT

BACKGROUND: Bisphenol A (BPA) is an endocrine disrupting chemical released from plastic materials, including food packaging and dental sealants, persisting in the environment and ubiquitously contaminating ecosystems and human populations. BPA can elicit an array of damaging health effects and, alarmingly, 'BPA-free' alternatives mirror these harmful effects. Bisphenol exposure can negatively impact female fertility, damaging both the ovary and oocytes therein. Such damage can diminish reproductive capacity, pregnancy success, and offspring health. Despite global government regulations in place to indicate 'safe' BPA exposure levels, these policies have not considered the effects of bisphenols on oocyte health. OBJECTIVE AND RATIONALE: This scoping review was conducted to evaluate evidence on the effects of BPA and BPA alternatives on standardized parameters of oocyte health. In doing so, this review addresses a critical gap in the literature providing a comprehensive, up-to-date synthesis of the effects of bisphenols on oocyte health. SEARCH METHODS: This scoping review was conducted in accordance with PRISMA guidelines. Four databases, Medline, Embase, Scopus, and Web of Science, were searched twice (23 February 2022 and 1 August 2023) to capture studies assessing mammalian oocyte health post-bisphenol exposure. Search terms regarding oocytes, ovarian follicles, and bisphenols were utilized to identify relevant studies. Manuscripts written in English and reporting the effect of any bisphenol on mammalian oocyte health from all years were included. Parameters for toxicological studies were evaluated, including the number of bisphenol concentrations/doses tested, dosing regimen, biological replicates and/or animal numbers, and statistical information (for human studies). Standardized parameters of oocyte health including follicle counts, oocyte yield, oocyte meiotic capacity, morphology of oocyte and cumulus cells, and oocyte meiotic spindle integrity were extracted across the studies. OUTCOMES: After screening 3147 studies, 107 studies of either humans or mammalian animal models or humans were included. Of the in vitro exposure studies, 96.3% (26/27) and 94.1% (16/17) found at least one adverse effect on oocyte health using BPA or BPA alternatives (including BHPF, BPAF, BPB, BPF, and BPS), respectively. These included increased meiotic cell cycle arrest, altered morphology, and abnormal meiotic spindle/chromosomal alignment. In vivo, 85.7% (30/35) of studies on BPA and 92.3% (12/13) on BPA alternatives documented adverse effects on follicle development, morphology, or spindle/chromosome alignment. Importantly, these effects were recorded using levels below those deemed 'safe' for human exposure. Over half (11/21) of all human observational studies showed associations between higher urinary BPA levels and reduced antral follicle counts or oocyte yield in IVF patients. Recommendations are presented based on the identified shortcomings of the current evidence, incorporating elements of FDA requirements for future research in the field. WIDER IMPLICATIONS: These data highlight the detrimental impacts of low-level BPA and BPA alternative exposure, contributing to poor oocyte quality and reduced fertility. These outcomes are valuable in promoting the revision of current policies and guidelines pertaining to BPA exposure internationally. This study serves as a valuable resource to scientists, providing key recommendations on study design, reporting elements, and endpoint measures to strengthen future studies. Ultimately, this review highlights oocyte health as a fundamentally important endpoint in reproductive toxicological studies, indicating an important direction for future research into endocrine disrupting chemicals to improve fertility outcomes.

6.
Theriogenology ; 230: 101-106, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39278132

ABSTRACT

The objective of this research was to assess the viability and developmental potential of feline oocytes following in vitro maturation (IVM), vitrification, and post-warming incubation with resveratrol. In the first experiment, warmed oocytes were incubated with 0.2 µM, 2 µM, or 20 µM resveratrol for 2 h. Oocytes treated with 0.2 µM resveratrol had the highest viability (68.89 %), as assessed by fluorescein diacetate and ethidium bromide staining, while higher concentrations were associated with diminished oocyte viability. In the second experiment, the warmed oocytes were inseminated following the 2-h incubation with the three concentrations of resveratrol. The presumptive zygotes were then maintained in culture and their development evaluated. The highest cleavage rate was observed when the oocytes had been incubated with 0.2 µM resveratrol (88.34 %), which was higher than for the control group (without resveratrol (75 %)). Moreover, this concentration of resveratrol also augmented the blastocyst formation rate. While the vitrification of oocytes often results in diminished developmental potential in the ensuing embryos, attributed to cryopreservation-induced injury, the utilization of low concentrations of resveratrol enhances the procedure's efficacy.

7.
Dev Biol ; 517: 1-12, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39241854

ABSTRACT

Clathrin is one of the leading players in the endocytic process during oocyte maturation. Immunofluorescence and transmission electron analysis on fully-grown germinal vesicle (GV) mouse oocytes shows Clathrin localization on the cortical region with three peculiar patterns: complete, incomplete, and half-moon. The first configuration is characterized by Clathrin lattices along the cortex; the second is represented by Clathrin lattices interrupted by invaginations forming coated vesicles as an indication of active endocytosis. The half-moon profile, the less frequent but the most interesting one, refers to Clathrin lattices distributed to one-half of the cell. The in vivo analysis of organelles' positioning and cytoplasmic rearrangements, performed to understand the possible relation between endocytosis and oocyte maturation, suggests that the half-moon pattern indicates those fully-grown oocytes that may have likely undergone Germinal Vesicle Breakdown, MI, and MII. Our results show that, before oocytes undergo maturation, Clathrin localizes on the side of the cell, opposite to future spindle migration, thus marking spindle orientation in mouse oocytes.

8.
Animals (Basel) ; 14(17)2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39272301

ABSTRACT

More than 40 species of lampreys (Petromyzontiformes) are known worldwide. Some of them are parasitic and feed on the blood of fish or other aquatic animals. Lampreys spawn once in their lifetime, after which they die. One of the representatives of the ichthyofauna of European rivers is the river lamprey, Lampetra fluviatilis. The river lamprey is now an endangered species due to loss and degradation of their habitats. The present study investigated gonadal development without hormonal stimulation in female river lampreys during puberty under controlled conditions for a period of seven months. Female river lampreys were kept in conditions that mimicked the natural environment. During the November-May period, samples were taken monthly to determine the extent of gonadal development and gastrointestinal and liver changes using histological examination. From the results obtained, the dynamical changes were determined for the following: gonadosomatic index (GSI; %), hepatosomatic index (his; %), and digestivesomatic index (DSI; %). With the gonadal development of female lampreys, an increase in GSI (7-23%; November-May) and a decrease in DSI (0.4-0.1%; November-May) histological changes were observed in the gonads (oocyte development), intestines (over time, decreased lipid vacuoles and enterocyte apoptosis), and in the liver (decreased lipid vacuoles and hepatocyte apoptosis over time) and in the digestive system resulting from its degradation. Also, it was observed that there was a change in the color of the liver to green in April. This study demonstrated the key role of the liver in the oocyte maturation process in this species.

9.
Turk J Obstet Gynecol ; 21(3): 142-152, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39228180

ABSTRACT

Objective: To review the outcomes of in vitro maturation (IVM) and in vitro fertilization (IVF) in women with empty follicle syndrome (EFS). The study evaluated the genetic underpinnings of EFS by analyzing mutations. Materials and Methods: This retrospective case series involving 17 women with EFS over at least 2 IVF cycles was conducted. The study also employed whole-exome sequencing to analyze the genetic mutations. The treatment approaches included letrozole-primed IVM, follicle-stimulating hormone (FSH)-human chorionic gonadotrophin (hCG)-primed IVM, and conventional IVF. Results: The average female age was 31.5±4.6 years, and the duration of infertility was 7.3±3.5 years. Four patients underwent IVF. IVM oocyte collections yielded oocytes in 12 of 13 subjects. Of these, 75% (9/12) yielded MII oocytes after 48 h of IVM media incubation. Six subjects had fertilized embryos, resulting in a 40.9% intracytoplasmic sperm injection (ICSI) fertilization rate (9 embryos/22 MII oocytes). Genetic analysis revealed mutations in seven patients. This study demonstrated the partial efficacy of letrozole-primed IVM plus growth hormone and FSH-hCG primed IVM protocols. No pregnancies or live births were recorded after IVM. One ongoing pregnancy post-IVF and one spontaneous live birth were observed. Conclusion: Inter-cycle variabilities were observed in women with oocyte maturation abnormalities (OMAs). Almost all patients with EFS had oocytes collected during IVM following IVF. These oocytes have limited potential for maturation, fertilization, and live birth, as demonstrated by the low rates observed after IVM culture and ICSI. These conditions are observed in OMAs due to defects in the oocyte machinery. The proposed flowchart provides a comprehensive classification approach for various forms of EFS.

10.
Front Endocrinol (Lausanne) ; 15: 1411000, 2024.
Article in English | MEDLINE | ID: mdl-39220364

ABSTRACT

Calcium (Ca2+) is a second messenger for many signal pathways, and changes in intracellular Ca2+ concentration ([Ca2+]i) are an important signaling mechanism in the oocyte maturation, activation, fertilization, function regulation of granulosa and cumulus cells and offspring development. Ca2+ oscillations occur during oocyte maturation and fertilization, which are maintained by Ca2+ stores and extracellular Ca2+ ([Ca2+]e). Abnormalities in Ca2+ signaling can affect the release of the first polar body, the first meiotic division, and chromosome and spindle morphology. Well-studied aspects of Ca2+ signaling in the oocyte are oocyte activation and fertilization. Oocyte activation, driven by sperm-specific phospholipase PLCζ, is initiated by concerted intracellular patterns of Ca2+ release, termed Ca2+ oscillations. Ca2+ oscillations persist for a long time during fertilization and are coordinately engaged by a variety of Ca2+ channels, pumps, regulatory proteins and their partners. Calcium signaling also regulates granulosa and cumulus cells' function, which further affects oocyte maturation and fertilization outcome. Clinically, there are several physical and chemical options for treating fertilization failure through oocyte activation. Additionally, various exogenous compounds or drugs can cause ovarian dysfunction and female infertility by inducing abnormal Ca2+ signaling or Ca2+ dyshomeostasis in oocytes and granulosa cells. Therefore, the reproductive health risks caused by adverse stresses should arouse our attention. This review will systematically summarize the latest research progress on the aforementioned aspects and propose further research directions on calcium signaling in female reproduction.


Subject(s)
Calcium Signaling , Oocytes , Oocytes/metabolism , Oocytes/physiology , Humans , Calcium Signaling/physiology , Female , Animals , Calcium/metabolism , Fertilization/physiology , Cumulus Cells/metabolism
11.
Mitochondrion ; 78: 101946, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147088

ABSTRACT

Mitochondria play dominant roles in various cellular processes such as energy production, apoptosis, calcium homeostasis, and oxidation-reduction balance. Maintaining mitochondrial quality through mitophagy is essential, especially as its impairment leads to the accumulation of dysfunctional mitochondria in aging oocytes. Our previous research revealed that PKD expression decreases in aging oocytes, and its inhibition negatively impacts oocyte quality. Given PKD's role in autophagy mechanisms, this study investigates whether PKD regulates mitophagy to maintain mitochondrial function and support oocyte maturation. When fully grown oocytes were treated with CID755673, a potent PKD inhibitor, we observed meiosis arrest at the metaphase I stage, along with decreased spindle stability. Our results demonstrate an association with mitochondrial dysfunction, including reduced ATP production and fluctuations in Ca2+ homeostasis, which ultimately lead to increased ROS accumulation, stimulating oxidative stress-induced apoptosis and DNA damage. Further research has revealed that these phenomena result from PKD inhibition, which affects the phosphorylation of ULK, thereby reducing autophagy levels. Additionally, PKD inhibition leads to decreased Parkin expression, which directly and negatively affects mitophagy. These defects result in the accumulation of damaged mitochondria in oocytes, which is the primary cause of mitochondrial dysfunction. Taken together, these findings suggest that PKD regulates mitophagy to support mitochondrial function and mouse oocyte maturation, offering insights into potential targets for improving oocyte quality and addressing mitochondrial-related diseases in aging females.


Subject(s)
Mitochondria , Mitophagy , Oocytes , Oxidative Stress , Animals , Mitophagy/drug effects , Oocytes/metabolism , Oocytes/drug effects , Mice , Mitochondria/metabolism , Mitochondria/drug effects , Oxidative Stress/drug effects , Female , Reactive Oxygen Species/metabolism , Apoptosis/drug effects
12.
Mol Cell Endocrinol ; 592: 112347, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39181310

ABSTRACT

Progesterone (P4) is predicted to act as a negative regulatory hormone for oocyte maturation events; however, its local effects during follicular development remain poorly understood in bovine. The complex process of oocyte meiosis progression is dependent on cellular communication among follicular cells. Besides, the breakdown of this communication, mainly between cumulus cells (CC) and oocyte, through the retraction of cumulus projections connecting these cells can impact oocyte maturation. In our study, we observed that follicles from the ovary ipsilateral to the corpus luteum (CL) containing high intrafollicular P4 concentrations enhance the abundance of proteins detected in follicular-derived small extracellular vesicles (sEVs) predicted to be involved in the retraction of membrane projections based on actin filaments, such as transzonal projections (TZPs). Conversely, we found that follicles from the ovary contralateral to the CL, which contained low intrafollicular P4 concentrations, had a high detection of proteins predicted to regulate the maintenance of TZPs. We also performed RNAseq analysis which demonstrated that 177 genes were differentially expressed in CC under the different P4 environments. Bioinformatic analysis points to changes associated to cell metabolism in cells from follicles ipsilateral to the CL in comparison to genes involved in cell communication in CC from follicles contralateral to the CL. Our functional analysis experiment confirmed that supplementation of cumulus-oocyte complexes during in vitro maturation with P4 at concentration similar to ipsilateral follicles reduces the number of TZPs. In summary, our study underscores a direct association between P4 concentration and cumulus-oocyte interaction, with potential consequences for the acquisition of oocyte competence.


Subject(s)
Corpus Luteum , Cumulus Cells , Extracellular Vesicles , Ovarian Follicle , Progesterone , Animals , Female , Cumulus Cells/metabolism , Cumulus Cells/cytology , Cattle , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Corpus Luteum/metabolism , Corpus Luteum/cytology , Progesterone/metabolism , Ovarian Follicle/metabolism , Ovarian Follicle/cytology , Oocytes/metabolism , Cell Communication
13.
Theriogenology ; 228: 54-63, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39096624

ABSTRACT

Endoplasmic reticulum (ER) stress interferes with developmental processes in oocyte maturation and embryo development. Invitro growth (IVG) is associated with low developmental competence, and ER stress during IVG culture may play a role. Therefore, this study aimed to examine the effect of tauroursodeoxycholic acid (TUDCA), an ER stress inhibitor, on the IVG of bovine oocytes to understand the role of ER stress. Oocyte-granulosa cell complexes (OGCs) were collected from early antral follicles (1.5-1.8 mm) and allowed to grow in vitro for 5 days at 38.5 °C in a humidified atmosphere containing 5 % CO2. Basic growth culture medium was supplemented with TUDCA at various concentrations (0, 50, 100, 250, and 500 µM). After IVG, oocyte diameters were similar among groups, but the antrum formation rate tended to be higher in the TUDCA 100 µM group. The mRNA expression levels of ER stress-associated genes (PERK, ATF6, ATF4, CHOP, BAX, IRE1, and XBP1) in OGCs were downregulated in the TUDCA 100 µM group than those in the control group. Moreover, the TUDCA 100 µM group exhibited reduced ROS production with higher GSH levels and improved in vitro-grown oocyte maturation compared with those in the control group. In contrast, no difference in the developmental competence of embryos following invitro fertilization was observed between the control and TUDCA 100 µM groups. These results indicate that ER stress could impair IVG and subsequent maturation rate of bovine oocytes, and TUDCA could alleviate these detrimental effects. These outcomes might improve the quality of oocytes in IVG culture in assisted reproductive technology.


Subject(s)
Endoplasmic Reticulum Stress , In Vitro Oocyte Maturation Techniques , Oocytes , Taurochenodeoxycholic Acid , Animals , Cattle , Endoplasmic Reticulum Stress/drug effects , Oocytes/drug effects , Oocytes/physiology , In Vitro Oocyte Maturation Techniques/veterinary , In Vitro Oocyte Maturation Techniques/methods , Taurochenodeoxycholic Acid/pharmacology , Female , Reactive Oxygen Species/metabolism , Embryonic Development/drug effects
14.
Int J Mol Sci ; 25(16)2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39201340

ABSTRACT

Promyelocytic leukemia (PML) nuclear bodies (PML-NBs) are core-shell-type membrane-less organelles typically found in the nucleus of mammalian somatic cells but are absent in mouse oocytes. Here, we deliberately induced the assembly of PML-NBs by injecting mRNA encoding human PML protein (hPML VI -sfGFP) into oocytes and investigated their impact on fertilization in which oocyte/embryos undergo multiple types of stresses. Following nuclear membrane breakdown, preassembled hPML VI -sfGFP mRNA-derived PML-NBs (hmdPML-NBs) persisted in the cytoplasm of oocytes, forming less-soluble debris, particularly under stress. Parthenogenetic embryos that successfully formed pronuclei were capable of removing preassembled hmdPML-NBs from the cytoplasm while forming new hmdPML-NBs in the pronucleus. These observations highlight the beneficial aspect of the PML-NB-free nucleoplasmic environment and suggest that the ability to eliminate unnecessary materials in the cytoplasm of metaphase oocytes serves as a potential indicator of the oocyte quality.


Subject(s)
Oocytes , Promyelocytic Leukemia Protein , Oocytes/metabolism , Animals , Mice , Promyelocytic Leukemia Protein/metabolism , Promyelocytic Leukemia Protein/genetics , Female , Humans , Intranuclear Inclusion Bodies/metabolism , Asymmetric Cell Division , Cytoplasm/metabolism , Cell Nucleus/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , Leukemia, Promyelocytic, Acute/metabolism , Leukemia, Promyelocytic, Acute/pathology , Leukemia, Promyelocytic, Acute/genetics
15.
Reprod Biol Endocrinol ; 22(1): 95, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095895

ABSTRACT

BACKGROUND: Assisted Reproductive Technologies (ARTs) have been validated in human and animal to solve reproductive problems such as infertility, aging, genetic selection/amplification and diseases. The persistent gap in ART biomedical applications lies in recapitulating the early stage of ovarian folliculogenesis, thus providing protocols to drive the large reserve of immature follicles towards the gonadotropin-dependent phase. Tissue engineering is becoming a concrete solution to potentially recapitulate ovarian structure, mostly relying on the use of autologous early follicles on natural or synthetic scaffolds. Based on these premises, the present study has been designed to validate the use of the ovarian bioinspired patterned electrospun fibrous scaffolds fabricated with poly(ε-caprolactone) (PCL) for multiple preantral (PA) follicle development. METHODS: PA follicles isolated from lamb ovaries were cultured on PCL scaffold adopting a validated single-follicle protocol (Ctrl) or simulating a multiple-follicle condition by reproducing an artificial ovary engrafted with 5 or 10 PA (AO5PA and AO10PA). The incubations were protracted for 14 and 18 days before assessing scaffold-based microenvironment suitability to assist in vitro folliculogenesis (ivF) and oogenesis at morphological and functional level. RESULTS: The ivF outcomes demonstrated that PCL-scaffolds generate an appropriate biomimetic ovarian microenvironment supporting the transition of multiple PA follicles towards early antral (EA) stage by supporting follicle growth and steroidogenic activation. PCL-multiple bioengineering ivF (AO10PA) performed in long term generated, in addition, the greatest percentage of highly specialized gametes by enhancing meiotic competence, large chromatin remodeling and parthenogenetic developmental competence. CONCLUSIONS: The study showcased the proof of concept for a next-generation ART use of PCL-patterned scaffold aimed to generate transplantable artificial ovary engrafted with autologous early-stage follicles or to advance ivF technologies holding a 3D bioinspired matrix promoting a physiological long-term multiple PA follicle protocol.


Subject(s)
Ovarian Follicle , Polyesters , Tissue Engineering , Tissue Scaffolds , Female , Ovarian Follicle/growth & development , Ovarian Follicle/cytology , Tissue Scaffolds/chemistry , Animals , Polyesters/chemistry , Tissue Engineering/methods , Sheep , Ovary/growth & development , Ovary/cytology , Oogenesis/physiology , Oogenesis/drug effects , Bioengineering/methods , Reproductive Techniques, Assisted , Fertilization in Vitro/methods
16.
J Assist Reprod Genet ; 41(8): 1965-1976, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38954294

ABSTRACT

PURPOSE: Oocyte maturation defect (OOMD) is a rare cause of in vitro fertilization failure characterized by the production of immature oocytes. Compound heterozygous or homozygous PATL2 mutations have been associated with oocyte arrest at the germinal vesicle (GV), metaphase I (MI), and metaphase II (MII) stages, as well as morphological changes. METHODS: In this study, we recruited three OOMD cases and conducted a comprehensive multiplatform laboratory investigation. RESULTS: Whole exome sequence (WES) revealed four diagnostic variants in PATL2, nonsense mutation c.709C > T (p.R237*) and frameshift mutation c.1486_1487delinsT (p.A496Sfs*4) were novel mutations that have not been reported previously. Furthermore, the pathogenicity of these variants was predicted using in silico analysis, which indicated detrimental effects. Molecular dynamic analysis suggested that the A496S variant disrupted the hydrophobic segment, leading to structural changes that affected the overall protein folding and stability. Additionally, biochemical and molecular experiments were conducted on cells transfected with wild-type (WT) or mutant PATL2 (p.R237* and p.A496Sfs*4) plasmid vectors. CONCLUSIONS: The results demonstrated that PATL2A496Sfs*4 and PATL2R237* had impacts on protein size and expression level. Interestingly, expression levels of specific genes involved in oocyte maturation and early embryonic development were found to be simultaneously deregulated. The findings in our study expand the variation spectrum of the PATL2 gene, provide solid evidence for counseling on future pregnancies in affected families, strongly support the application of in the diagnosis of OOMD, and contribute to the understanding of PATL2 function.


Subject(s)
Exome Sequencing , Infertility, Female , Nuclear Proteins , Oocytes , Oogenesis , RNA-Binding Proteins , Adult , Female , Humans , Codon, Nonsense/genetics , Fertilization in Vitro , Frameshift Mutation/genetics , Infertility, Female/genetics , Infertility, Female/pathology , Mutation/genetics , Oocytes/growth & development , Oocytes/pathology , Oocytes/metabolism , Oogenesis/genetics , Nuclear Proteins/genetics , RNA-Binding Proteins/genetics
17.
J Assist Reprod Genet ; 41(8): 1951-1953, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38980564

ABSTRACT

Oocyte maturation arrest (OMA) is a common phenotype observed in IVF/ICSI cycles, characterized by the production of immature oocytes which lead to infertility. Previous studies have demonstrated that genetic factors play an important role in OMA, but the genetic mechanisms underlying a group of patients remain to be elucidated. In the recent issue of Journal of Assisted Reproduction and Genetics, Hu et al. and Wan et al. identified novel PATL2 or ZFP36L2 variants in OMA patients, respectively. By conducting in vitro experiments, they demonstrated the destructive effect of the variants on protein function. These findings expand the mutational spectrum of PATL2 and ZFP36L2, and provide precise reference for genetic counseling of OMA patients.


Subject(s)
Fertilization in Vitro , Oocytes , Sperm Injections, Intracytoplasmic , Humans , Female , Sperm Injections, Intracytoplasmic/methods , Oocytes/growth & development , Oogenesis/genetics , Mutation/genetics , Infertility, Female/genetics , Infertility, Female/pathology
18.
Endocrine ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954374

ABSTRACT

INTRODUCTION: Over the recent years, scientific community has increased its interest on solving problems of female fertility pathology. Many factors acting separately or in combination affect significantly the reproductive life of a woman. This review summarizes current evidence regarding the direct and/or indirect action of environmental factors and endocrine disrupting chemicals (EDCs; i.e. heavy metals, plasticizers, parabens, industrial chemicals, pesticides, or medications, by-products, anti-bacterial agents, perfluorochemicals) upon assisted and non-assisted female fertility, extracted from in vivo and in vitro animal and human published data. Transgenerational effects which could have been caused epigenetically by the action of EDCs have been raised. METHODS: This narrative review englobes and describes data from in vitro and in vivo animal and human studies with regard to the action of environmental factors, which include EDCs, on female fertility following the questions for narrative reviews of the SANRA (a scale for the quality assessment of narrative review articles). The identification of the studies was done: through the PubMed Central and the PubMed of the MEDLINE, the Google Scholar database and the Cochrane Library database until December 2023 combining appropriate keywords ("specific environmental factors" including "EDCs" AND "specific negative fertility outcomes"); by manual scanning of references from selected articles and reviews focusing on these subjects. It includes references to EDCs-induced transgenerational effects. RESULTS: From the reported evidence emerge negative or positive associations between specific environmental factors or EDCs and infertility outcomes such as infertility indices, disrupted maturation of the oocytes, anovulation, deranged transportation of the embryo and failure of implantation. CONCLUSION: The revealed adverse outcomes related to female fertility could be attributed to exposure to specific environmental factors such as temperature, climate, radiation, air pollutants, nutrition, toxic substances and EDCs. The recognition of fertility hazards related to the environment will permit the limitation of exposure to them, will improve female fertility and protect the health potential of future generations.

19.
Trends Genet ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38955588

ABSTRACT

Oocyte maturation and preimplantation embryo development are critical to successful pregnancy outcomes and the correct establishment and maintenance of genomic imprinting. Thanks to novel technologies and omics studies in human patients and mouse models, the importance of the proteins associated with the cytoplasmic lattices (CPLs), highly abundant structures found in the cytoplasm of mammalian oocytes and preimplantation embryos, in the maternal to zygotic transition is becoming increasingly evident. This review highlights the recent discoveries on the role of these proteins in protein storage and other oocyte cytoplasmic processes, epigenetic reprogramming, and zygotic genome activation (ZGA). A better comprehension of these events may significantly improve clinical diagnosis and pave the way for targeted interventions aiming to correct or mitigate female fertility issues and genomic imprinting disorders.

20.
Adv Anat Embryol Cell Biol ; 238: 69-95, 2024.
Article in English | MEDLINE | ID: mdl-39030355

ABSTRACT

In mammals, oogenesis initiates before birth and pauses at the dictyate stage of meiotic prophase I until luteinizing hormone (LH) surges to resume meiosis. Oocyte maturation refers to the resumption of meiosis that directs oocytes to advance from prophase I to metaphase II of meiosis. This process is carefully modulated to ensure a normal ovulation and successful fertilization. By generating excessive amounts of oxidative stress, environmental toxicants can disrupt the oocyte maturation. In this review, we categorized these environmental toxicants that induce mitochondrial dysfunction and abnormal spindle formation. Further, we discussed the underlying mechanisms that hinder oocyte maturation, including mitochondrial function, spindle formation, and DNA damage response.


Subject(s)
Oocytes , Oogenesis , Oxidative Stress , Oxidative Stress/drug effects , Oocytes/drug effects , Animals , Humans , Oogenesis/drug effects , Female , Environmental Pollutants/toxicity , Mitochondria/metabolism , Mitochondria/drug effects , DNA Damage
SELECTION OF CITATIONS
SEARCH DETAIL