Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
Add more filters










Publication year range
1.
Fundam Res ; 4(1): 188-198, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38933843

ABSTRACT

Chronic cerebral hypoperfusion can cause progressive demyelination as well as ischemic vascular dementia, however no effective treatments are available. Here, based on magnetic resonance imaging studies of patients with white matter damage, we found that this damage is associated with disorganized cortical structure. In a mouse model, optogenetic activation of glutamatergic neurons in the somatosensory cortex significantly promoted oligodendrocyte progenitor cell (OPC) proliferation, remyelination in the corpus callosum, and recovery of cognitive ability after cerebral hypoperfusion. The therapeutic effect of such stimulation was restricted to the upper layers of the cortex, but also spanned a wide time window after ischemia. Mechanistically, enhancement of glutamatergic neuron-OPC functional synaptic connections is required to achieve the protection effect of activating cortical glutamatergic neurons. Additionally, skin stroking, an easier method to translate into clinical practice, activated the somatosensory cortex, thereby promoting OPC proliferation, remyelination and cognitive recovery following cerebral hypoperfusion. In summary, we demonstrated that activating glutamatergic neurons in the somatosensory cortex promotes the proliferation of OPCs and remyelination to recover cognitive function after chronic cerebral hypoperfusion. It should be noted that this activation may provide new approaches for treating ischemic vascular dementia via the precise regulation of glutamatergic neuron-OPC circuits.

2.
Bioelectron Med ; 10(1): 14, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38807193

ABSTRACT

BACKGROUND: Key to the advancement of the field of bioelectronic medicine is the identification of novel pathways of neural regulation of immune function. Sensory neurons (termed nociceptors) recognize harmful stimuli and initiate a protective response by eliciting pain and defensive behavior. Nociceptors also interact with immune cells to regulate host defense and inflammatory responses. However, it is still unclear whether nociceptors participate in regulating primary IgG antibody responses to novel antigens. METHODS: To understand the role of transient receptor potential vanilloid 1 (TRPV1)-expressing neurons in IgG responses, we generated TRPV1-Cre/Rosa-ChannelRhodopsin2 mice for precise optogenetic activation of TRPV1 + neurons and TRPV1-Cre/Lox-diphtheria toxin A mice for targeted ablation of TRPV1-expressing neurons. Antigen-specific antibody responses were longitudinally monitored for 28 days. RESULTS: Here we show that TRPV1 expressing neurons are required to develop an antigen-specific immune response. We demonstrate that selective optogenetic stimulation of TRPV1+ nociceptors during immunization significantly enhances primary IgG antibody responses to novel antigens. Further, mice rendered deficient in TRPV1- expressing nociceptors fail to develop primary IgG antibody responses to keyhole limpet hemocyanin or haptenated antigen. CONCLUSION: This functional and genetic evidence indicates a critical role for nociceptor TRPV1 in antigen-specific primary antibody responses to novel antigens. These results also support consideration of potential therapeutic manipulation of nociceptor pathways using bioelectronic devices to enhance immune responses to foreign antigens.

3.
Int J Biol Sci ; 20(6): 2072-2091, 2024.
Article in English | MEDLINE | ID: mdl-38617528

ABSTRACT

Background: It had been shown that selective cardiac vagal activation holds great potential for heart regeneration. Optogenetics has clinical translation potential as a novel means of modulating targeted neurons. This study aimed to investigate whether cardiac vagal activation via optogenetics could improve heart regenerative repair after myocardial infarction (MI) and to identify the underlying mechanism. Methods: We used an adeno-associated virus (AAV) as the vector to deliver ChR2, a light-sensitive protein, to the left nodose ganglion (LNG). To assess the effects of the cardiac vagus nerve on cardiomyocyte (CM) proliferation and myocardial regeneration in vivo, the light-emitting diode illumination (470 nm) was applied for optogenetic stimulation to perform the gain-of-function experiment and the vagotomy was used as a loss-of-function assay. Finally, sequencing data and molecular biology experiments were analyzed to determine the possible mechanisms by which the cardiac vagus nerve affects myocardial regenerative repair after MI. Results: Absence of cardiac surface vagus nerve after MI was more common in adult hearts with low proliferative capacity, causing a poor prognosis. Gain- and loss-of-function experiments further demonstrated that optogenetic stimulation of the cardiac vagus nerve positively regulated cardiomyocyte (CM) proliferation and myocardial regeneration in vivo. More importantly, optogenetic stimulation attenuated ventricular remodeling and improved cardiac function after MI. Further analysis of sequencing results and flow cytometry revealed that cardiac vagal stimulation activated the IL-10/STAT3 pathway and promoted the polarization of cardiac macrophages to the M2 type, resulting in beneficial cardiac regenerative repair after MI. Conclusions: Targeting the cardiac vagus nerve by optogenetic stimulation induced macrophage M2 polarization by activating the IL-10/STAT3 signaling pathway, which obviously optimized the regenerative microenvironment and then improved cardiac function after MI.


Subject(s)
Interleukin-10 , Myocardial Infarction , Adult , Humans , Interleukin-10/genetics , Optogenetics , Myocardial Infarction/therapy , Vagus Nerve , Myocytes, Cardiac
4.
Cell Rep ; 43(3): 113834, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38431842

ABSTRACT

Striatal dopamine axons co-release dopamine and gamma-aminobutyric acid (GABA), using GABA provided by uptake via GABA transporter-1 (GAT1). Functions of GABA co-release are poorly understood. We asked whether co-released GABA autoinhibits dopamine release via axonal GABA type A receptors (GABAARs), complementing established inhibition by dopamine acting at axonal D2 autoreceptors. We show that dopamine axons express α3-GABAAR subunits in mouse striatum. Enhanced dopamine release evoked by single-pulse optical stimulation in striatal slices with GABAAR antagonism confirms that an endogenous GABA tone limits dopamine release. Strikingly, an additional inhibitory component is seen when multiple pulses are used to mimic phasic axonal activity, revealing the role of GABAAR-mediated autoinhibition of dopamine release. This autoregulation is lost in conditional GAT1-knockout mice lacking GABA co-release. Given the faster kinetics of ionotropic GABAARs than G-protein-coupled D2 autoreceptors, our data reveal a mechanism whereby co-released GABA acts as a first responder to dampen phasic-to-tonic dopamine signaling.


Subject(s)
Autoreceptors , Dopamine , Mice , Animals , gamma-Aminobutyric Acid/pharmacology , Axons/metabolism , Corpus Striatum/metabolism , Receptors, GABA-A/metabolism , Mice, Knockout , Homeostasis
5.
Cogn Neurodyn ; 18(1): 265-282, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38406204

ABSTRACT

Low-voltage fast (LVF) seizure-onset is one of the two frequently observed temporal lobe seizure-onset patterns. Depth electroencephalogram profile analysis illustrated that the peak amplitude of LVF onset was deep temporal areas, e.g., hippocampus. However, the specific dynamic transition mechanisms between normal hippocampal rhythmic activity and LVF seizure-onset remain unclear. Recently, the optogenetic approach to gain control over epileptic hyper-excitability both in vitro and in vivo has become a novel noninvasive modulation strategy. Here, we combined biophysical modeling to study LVF dynamics following changes in crucial physiological parameters, and investigated the potential optogenetic intervention mechanism for both excitatory and inhibitory control. In an Ammon's horn 3 (CA3) biophysical model with light-sensitive protein channelrhodopsin 2 (ChR2), we found that the cooperative effects of excessive extracellular potassium concentration of parvalbumin-positive (PV+) inhibitory interneurons and synaptic links could induce abundant types of discharges of the hippocampus, and lead to transitions from gamma oscillations to LVF seizure-onset. Simulations of optogenetic stimulation revealed that the LVF seizure-onset and morbid fast spiking could not be eliminated by targeting PV+ neurons, whereas the epileptic network was more sensitive to the excitatory control of principal neurons with strong optogenetic currents. We illustrate that in the epileptic hippocampal network, the trajectories of the normal and the seizure state are in close vicinity and optogenetic perturbations therefore may result in transitions. The network model system developed in this study represents a scientific instrument to disclose the underlying principles of LVF, to characterize the effects of optogenetic neuromodulation, and to guide future treatment for specific types of seizures.

6.
Neuropharmacology ; 247: 109860, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38336243

ABSTRACT

Fetal alcohol spectrum disorder (FASD) is the most common preventable form of developmental and neurobehavioral disability. Animal models have demonstrated that even low to moderate prenatal alcohol exposure (PAE) is sufficient to impair behavioral flexibility in multiple domains. Previously, utilizing a moderate limited access drinking in the dark paradigm, we have shown that PAE 1) impairs touchscreen pairwise visual reversal in male adult offspring 2) leads to small but significant decreases in orbitofrontal (OFC) firing rates 3) significantly increases dorsal striatum (dS) activity and 4) aberrantly sustains OFC-dS synchrony across early reversal. In the current study, we examined whether optogenetic stimulation of OFC-dS projection neurons would be sufficient to rescue the behavioral inflexibility induced by PAE in male C57BL/6J mice. Following discrimination learning, we targeted OFC-dS projections using a retrograde adeno-associated virus (AAV) delivered to the dS which expressed channel rhodopsin (ChR2). During the first four sessions of reversal learning, we delivered high frequency optogenetic stimulation to the OFC via optic fibers immediately following correct choice responses. Our results show that optogenetic stimulation significantly reduced the number of sessions, incorrect responses, and correction errors required to move past the early perseverative phase for both PAE and control mice. In addition, OFC-dS stimulation during early reversal learning reduced the increased sessions, correct and incorrect responding seen in PAE mice during the later learning phase of reversal but did not significantly alter later performance in control ChR2 mice. Taken together these results suggest that stimulation of OFC-dS projections can improve early reversal learning in PAE and control mice, and these improvements can persist even into later stages of the task days later. These studies provide an important foundation for future clinical approaches to improve executive control in those with FASD. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".


Subject(s)
Fetal Alcohol Spectrum Disorders , Prenatal Exposure Delayed Effects , Humans , Mice , Male , Female , Animals , Pregnancy , Prefrontal Cortex/physiology , Optogenetics , Mice, Inbred C57BL , Prenatal Exposure Delayed Effects/psychology , Reversal Learning/physiology
7.
Curr Biol ; 34(4): 727-739.e5, 2024 02 26.
Article in English | MEDLINE | ID: mdl-38262418

ABSTRACT

Sustained visual attention allows us to process and react to unpredictable, behaviorally relevant sensory input. Sustained attention engages communication between the higher-order visual thalamus and its connected cortical regions. However, it remains unclear whether there is a causal relationship between oscillatory circuit dynamics and attentional behavior in these thalamo-cortical circuits. By using rhythmic optogenetic stimulation in the ferret, we provide causal evidence that higher-order visual thalamus coordinates thalamo-cortical and cortico-cortical functional connectivity during sustained attention via spike-field phase locking. Increasing theta but not alpha power in the thalamus improved accuracy and reduced omission rates in a sustained attention task. Further, the enhancement of effective connectivity by stimulation was correlated with improved behavioral performance. Our work demonstrates a potential circuit-level causal mechanism for how the higher-order visual thalamus modulates cortical communication through rhythmic synchronization during sustained attention.


Subject(s)
Ferrets , Visual Cortex , Animals , Thalamus/physiology , Visual Cortex/physiology
8.
Neuron ; 111(24): 4102-4115.e9, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37865082

ABSTRACT

The ability to optogenetically perturb neural circuits opens an unprecedented window into mechanisms governing circuit function. We analyzed and theoretically modeled neuronal responses to visual and optogenetic inputs in mouse and monkey V1. In both species, optogenetic stimulation of excitatory neurons strongly modulated the activity of single neurons yet had weak or no effects on the distribution of firing rates across the population. Thus, the optogenetic inputs reshuffled firing rates across the network. Key statistics of mouse and monkey responses lay on a continuum, with mice/monkeys occupying the low-/high-rate regions, respectively. We show that neuronal reshuffling emerges generically in randomly connected excitatory/inhibitory networks, provided the coupling strength (combination of recurrent coupling and external input) is sufficient that powerful inhibitory feedback cancels the mean optogenetic input. A more realistic model, distinguishing tuned visual vs. untuned optogenetic input in a structured network, reduces the coupling strength needed to explain reshuffling.


Subject(s)
Optogenetics , Visual Cortex , Animals , Haplorhini , Neurons/physiology , Photic Stimulation , Visual Cortex/physiology , Random Allocation , Mice
9.
Neurosci Lett ; 816: 137474, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37690497

ABSTRACT

Studying brain functions and activity during gamma oscillations can be a challenge because it requires careful planning to create the necessary conditions for a controlled experiment. Such an experiment consists of placing the brain into a gamma state and investigating cognitive processing with a careful design. Cortical oscillations in the gamma frequency range (30-80 Hz) play an essential role in a variety of cognitive processes, including visual processing and cognition. The present study aims to investigate the effects of a visual stimulus on the primary visual cortex under gamma oscillations. Specifically, we sought to explore the behavior of gamma oscillations triggered by optogenetic stimulation in the II and IV layers of the visual cortex, both with and without concurrent visual stimulation. Our results show that optogenetic stimulation increases the power of gamma oscillation in both layers of the visual cortex. However, the combined stimuli resulted in a reduction of gamma power in layer II and an increase and reinforcement in gamma power in layer IV. Modelling the results with the Wilson-Cowan model suggests changes in the input of the excitatory population due to the combined stimuli. In addition, our analysis of the data using the Lempel-Ziv complexity method supports our interpretations from the modeling. Thus, our results suggest that optogenetic stimulation enhances low gamma power in both layers of the visual cortex, while simultaneous visual stimulation has differing effects on the two layers, reducing gamma power in layer II and increasing it in layer IV.


Subject(s)
Optogenetics , Visual Cortex , Photic Stimulation/methods , Optogenetics/methods , Visual Perception/physiology , Brain , Visual Cortex/physiology , Gamma Rhythm/physiology
10.
Front Syst Neurosci ; 17: 1222176, 2023.
Article in English | MEDLINE | ID: mdl-37719023

ABSTRACT

Introduction: In patients with severe auditory impairment, partial hearing restoration can be achieved by sensory prostheses for the electrical stimulation of the central nervous system. However, these state-of-the-art approaches suffer from limited spectral resolution: electrical field spread depends on the impedance of the surrounding medium, impeding spatially focused electrical stimulation in neural tissue. To overcome these limitations, optogenetic activation could be applied in such prostheses to achieve enhanced resolution through precise and differential stimulation of nearby neuronal ensembles. Previous experiments have provided a first proof for behavioral detectability of optogenetic activation in the rodent auditory system, but little is known about the generation of complex and behaviorally relevant sensory patterns involving differential activation. Methods: In this study, we developed and behaviorally tested an optogenetic implant to excite two spatially separated points along the tonotopy of the murine inferior colliculus (ICc). Results: Using a reward based operant Go/No-Go paradigm, we show that differential optogenetic activation of a sub-cortical sensory pathway is possible and efficient. We demonstrate how animals which were previously trained in a frequency discrimination paradigm (a) rapidly respond to either sound or optogenetic stimulation, (b) generally detect optogenetic stimulation of two different neuronal ensembles, and (c) discriminate between them. Discussion: Our results demonstrate that optogenetic excitatory stimulation at different points of the ICc tonotopy elicits a stable response behavior over time periods of several months. With this study, we provide the first proof of principle for sub-cortical differential stimulation of sensory systems using complex artificial cues in freely moving animals.

11.
Article in English | MEDLINE | ID: mdl-36610613

ABSTRACT

BACKGROUND: Our earlier study demonstrated that repeated optogenetic stimulation of afferents from ventral hippocampus (vHIP) to the prelimbic region of medial prefrontal cortex (mPFC) overcame resistance to antidepressant treatment in Wistar-Kyoto (WKY) rats. These results suggested that antidepressant resistance may result from an insufficiency of transmission from vHIP to mPFC. Here we examined whether similar effects can be elicited from major output of mPFC; the pathway from to nucleus accumbens core (NAc). METHOD: WKY rats were subjected to Chronic Mild Stress and were used in two sets of experiments: 1) they were treated acutely with optogenetic stimulation of afferents to NAc core originating from the mPFC, and 2) they were treated with chronic (5 weeks) venlafaxine (10 mg/kg) and/or repeated (once weekly) optogenetic stimulation of afferents to NAc originating from either mPFC or vHIP. RESULTS: Chronic mild stress procedure decreased sucrose intake, open arm entries on elevated plus maze, and novel object recognition test. Acute optogenetic stimulation of the mPFC-NAc and vHIP-NAc pathways had no effect in sucrose or plus maze tests, but increased object recognition. Neither venlafaxine nor mPFC-NAc optogenetic stimulation alone was effective in reversing the effects of CMS, but the combination of chronic antidepressant and repeated optogenetic stimulation improved behaviour on all three measures. CONCLUSIONS: The synergism between venlafaxine and mPFC-NAc optogenetic stimulation supports the hypothesis that the mechanisms of non-responsiveness of WKY rats involves a failure of antidepressant treatment to restore transmission in the mPFC-NAc pathway. Together with earlier results, this implicates insufficiency in a vHIP-mPFC-NAc circuit in non-responsiveness to antidepressant drugs.


Subject(s)
Depression , Nucleus Accumbens , Rats , Animals , Venlafaxine Hydrochloride/pharmacology , Rats, Inbred WKY , Optogenetics , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Antidepressive Agents/metabolism , Models, Animal , Prefrontal Cortex/metabolism
12.
Biomimetics (Basel) ; 8(1)2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36648823

ABSTRACT

The fabrication of green optical waveguides based on cellulose and spider silk might allow the processing of novel biocompatible materials. Regenerated cellulose fibers are used as the core and recombinantly produced spider silk proteins eADF4(C16) as the cladding material. A detected delamination between core and cladding could be circumvented by using a modified spider silk protein with a cellulose-binding domain-enduring permanent adhesion between the cellulose core and the spider silk cladding. The applied spider silk materials were characterized optically, and the theoretical maximum data rate was determined. The results show optical waveguide structures promising for medical applications, for example, in the future.

13.
Int J Mol Sci ; 23(21)2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36362443

ABSTRACT

This paper attempts to explore and compare the regulatory mechanisms of optogenetic stimulation (OS), deep brain stimulation (DBS) and electromagnetic induction on epilepsy. Based on the Wilson-Cowan model, we first demonstrate that the external input received by excitatory and inhibitory neural populations can induce rich dynamic bifurcation behaviors such as Hopf bifurcation, and make the system exhibit epileptic and normal states. Then, both OS and DBS are shown to be effective in controlling the epileptic state to a normal low-level state, and the stimulus parameters have a broad effective range. However, electromagnetic induction cannot directly control epilepsy to this desired state, even if it can significantly reduce the oscillation frequency of neural populations. One main difference worth noting is that the high spatiotemporal specificity of OS allows it to target inhibitory neuronal populations, whereas DBS and electromagnetic induction can only stimulate excitatory as well as inhibitory neuronal populations together. Next, the propagation behavior of epilepsy is explored under a typical three-node feedback loop structure. An increase in coupling strength accelerates and exacerbates epileptic activity in other brain regions. Finally, OS and DBS applied to the epileptic focus play similar positive roles in controlling the behavior of the area of seizure propagation, while electromagnetic induction still only achieves unsatisfactory effects. It is hoped that these dynamical results can provide insights into the treatment of epilepsy as well as other neurological disorders.


Subject(s)
Deep Brain Stimulation , Epilepsy , Humans , Seizures/therapy , Epilepsy/therapy , Deep Brain Stimulation/methods , Brain , Optogenetics
14.
Front Neurosci ; 16: 968839, 2022.
Article in English | MEDLINE | ID: mdl-36213739

ABSTRACT

Efficient interhemispheric integration of neural activity between left and right primary motor cortex (M1) is critical for inter-limb motor control. We employed optogenetic stimulation to establish a framework for probing transcallosal M1-M1 interactions in rats. We performed optogenetic stimulation of excitatory neurons in right M1 of male Sprague-Dawley rats. We recorded the transcallosal evoked potential in contralateral left M1 via chronically implanted electrodes. Recordings were performed under anesthesia combination of dexmedetomidine and a low concentration of isoflurane. We systematically varied the stimulation intensity and duration to characterize the relationship between stimulation parameters in right M1 and the characteristics of the evoked intracortical potentials in left M1. Optogenetic stimulation of right M1 consistently evoked a transcallosal response in left M1 with a consistent negative peak (N1) that sometimes was preceded by a smaller positive peak (P1). Higher stimulation intensity or longer stimulation duration gradually increased N1 amplitude and reduced N1 variability across trials. A combination of stimulation intensities of 5-10 mW with stimulus durations of 1-10 ms were generally sufficient to elicit a robust transcallosal response in most animal, with our optic fiber setup. Optogenetically stimulated excitatory neurons in M1 can reliably evoke a transcallosal response in anesthetized rats. Characterizing the relationship between "stimulation dose" and "response magnitude" (i.e., the gain function) of transcallosal M1-to-M1 excitatory connections can be used to optimize the variables of optogenetic stimulation and ensure stimulation efficacy.

15.
Bioengineering (Basel) ; 9(10)2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36290530

ABSTRACT

Despite a significant advance in the pathophysiological understanding of peripheral nerve damage, the successful treatment of large nerve defects remains an unmet medical need. In this article, axon growth guidance for peripheral nerve regeneration was systematically reviewed and discussed mainly from the engineering perspective. In addition, the common approaches to surgery, bioengineering approaches to emerging technologies such as optogenetic stimulation and magnetic stimulation for functional recovery were discussed, along with their pros and cons. Additionally, clear future perspectives of axon guidance and nerve regeneration were addressed.

16.
Eur Biophys J ; 51(6): 503-514, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35930029

ABSTRACT

Cultured neuronal networks (CNNs) are powerful tools for studying how neuronal representation and adaptation emerge in networks of controlled populations of neurons. To ensure the interaction of a CNN and an artificial setting, reliable operation in both open and closed loops should be provided. In this study, we integrated optogenetic stimulation with microelectrode array (MEA) recordings using a digital micromirror device and developed an improved research tool with a 64-channel interface for neuronal network control and data acquisition. We determined the ideal stimulation parameters including light intensity, frequency, and duty cycle for our configuration. This resulted in robust and reproducible neuronal responses. We also demonstrated both open and closed loop configurations in the new platform involving multiple bidirectional channels. Unlike previous approaches that combined optogenetic stimulation and MEA recordings, we did not use binary grid patterns, but assigned an adjustable-size, non-binary optical spot to each electrode. This approach allowed simultaneous use of multiple input-output channels and facilitated adaptation of the stimulation parameters. Hence, we advanced a 64-channel interface in that each channel can be controlled individually in both directions simultaneously without any interference or interrupts. The presented setup meets the requirements of research in neuronal plasticity, network encoding and representation, closed-loop control of firing rate and synchronization. Researchers who develop closed-loop control techniques and adaptive stimulation strategies for network activity will benefit much from this novel setup.


Subject(s)
Neurons , Optogenetics , Electrophysiology/methods , Microelectrodes , Optogenetics/methods
17.
Front Cell Neurosci ; 16: 917713, 2022.
Article in English | MEDLINE | ID: mdl-35865111

ABSTRACT

The development of in vivo imaging and optogenetic tools makes it possible to control neural circuit activities in an all-optical, closed-loop manner, but such applications are limited by the lack of software for online analysis of neuronal imaging data. We developed an analysis software ORCA (Online Real-time activity and offline Cross-session Analysis), which performs image registration, neuron segmentation, and activity extraction at over 100 frames per second, fast enough to support real-time detection and readout of neural activity. Our active neuron detection algorithm is purely statistical, achieving a much higher speed than previous methods. We demonstrated closed-loop control of neurons that were identified on the fly, without prior recording or image processing. ORCA also includes a cross-session alignment module that efficiently tracks neurons across multiple sessions. In summary, ORCA is a powerful toolbox for fast imaging data analysis and provides a solution for all-optical closed-loop control of neuronal activity.

18.
Methods Mol Biol ; 2501: 339-360, 2022.
Article in English | MEDLINE | ID: mdl-35857237

ABSTRACT

Spontaneous and optogenetically evoked activities of human induced pluripotent stem cell (hiPSC)-derived neurons can be assessed by patch clamp and multi-electrode array (MEA) electrophysiology. Optogenetic activation of these human neurons facilitates the characterization of their functional properties at the single neuron and circuit level. Here we showcase the preparation of hiPSC-derived neurons expressing optogenetic actuators, in vitro optogenetic stimulation and simultaneous functional recordings using patch clamp and MEA electrophysiology.


Subject(s)
Induced Pluripotent Stem Cells , Optogenetics , Action Potentials/physiology , Cell Differentiation/genetics , Cells, Cultured , Humans , Neurons
19.
Data Brief ; 42: 108304, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35677457

ABSTRACT

This labeled quantitative proteomics dataset was collected from a transgenic channel rhodopsin mouse model (Chr2) subjected to light stimulation after traumatic optic nerve crush (ONC). Protein extraction was performed by careful mincing of the tissue in extraction buffer (TEAB, NaCl and SDS). Protein amounts were normalized across samples using dot blot densitometry and ImageJ software. Samples were labeled for quantification using a modified TMTpro™ 16plex Label Reagent Set (Thermo Scientific™) after performing an overnight trypsin digestion. Untargeted liquid chromatography-mass spectrometry was performed on an Easy-nLC 1000 liquid chromatograph coupled to a Q Exactive mass spectrometer (LC-MS/MS). Data analysis was performed using Proteome Discoverer™ 2.5 (Thermo Scientific™). This data has been deposited to the ProteomeXchange (PX) and is available through PRIDE with the identifier PXD032788.

20.
Cogn Neurodyn ; 16(3): 667-681, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35603050

ABSTRACT

Optogenetic stimulation, an effective stimulation technique, is applied to the treatment of Parkinson's disease (PD) to compete with the current neuromodulation technology that focuses on the electrical stimulation. Using the cortical-thalamic-basal ganglia model, we systematically study the effect of optogenetic stimulation on pathological parkinsonian rhythmic neural activity. Based on the experimental studies, four types of neurons are selected as stimulation targets. Our results indicate that both the optogenetic excitatory stimulation of D1 medium spiny neurons and inhibitory stimulation of globus pallidus internal (GPi) can directly suppress the abnormal discharge of GPi neurons. The former stimulation pattern drives the model to health state with smaller stimulation parameters, suggesting that inhibiting the GPi abnormal discharge through synaptic action seems to be more effective. Compared with electrical stimulation, it is found that 120Hz optogenetic excitatory stimulation does not accurately activate the action potential of subthalamic nucleus (STN). In contrast, only optogenetic excitatory stimulation of globus pallidus externa (GPe) can reduce the firing rate of STN and GPi simultaneously. Finally, we study the difference between the effects of high-frequency low pulse width stimulation and low-frequency high pulse width stimulation while maintaining the same pulse duty cycle. For GPe, different stimulation patterns play a positive role as long as the stimulation frequency is not in the beta-band. Although the feasibility of optogenetic stimulation remains to be clinically explored, the results obtained help us understand the pathophysiology of PD.

SELECTION OF CITATIONS
SEARCH DETAIL
...