Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Front Pharmacol ; 15: 1335836, 2024.
Article in English | MEDLINE | ID: mdl-38873410

ABSTRACT

Drug-induced liver injury is a prevalent adverse event associated with pharmaceutical agents. More significantly, there are certain drugs that present severe hepatotoxicity only during the clinical phase, consequently leading to the termination of drug development during clinical trials or the withdrawal from the market after approval. The establishment of an evaluation model that can sensitively manifest such hepatotoxicity has always been a challenging aspect in drug development. In this study, we build a liver-immune-microphysiological-system (LIMPS) to fully demonstrate the liver injury triggered by troglitazone (TGZ), a drug that was withdrawn from the market due to hepatotoxicity. Leveraging the capabilities of organ-on-chip technology allows for the dynamic modulation of cellular immune milieu, as well as the synergistic effects between drugs, hepatocytes and multiple immune cells. Through the LIMPS, we discovered that 1) TGZ can promote neutrophils to adhered hepatocytes, 2) the presence of TGZ enhances the crosstalk between macrophages and neutrophils, 3) the induction of damage in hepatocytes by TGZ at clinically relevant blood concentrations not observed in other in vitro experiments, 4) no hepatotoxicity was observed in LIMPS when exposed to rosiglitazone and pioglitazone, structurally similar analogs of TGZ, even at the higher multiples of blood drug concentration levels. As an immune-mediated liver toxicity assessment method, LIMPS is simple to operate and can be used to test multiple drug candidates to detect whether they will cause severe liver toxicity in clinical settings as early as possible.

2.
Trends Biotechnol ; 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38071144

ABSTRACT

Three-dimensional (3D) human tissue models/microphysiological systems (e.g., organs-on-chips, organoids, and tissue explants) model HIV and related comorbidities and have potential to address critical questions, including characterization of viral reservoirs, insufficient innate and adaptive immune responses, biomarker discovery and evaluation, medical complexity with comorbidities (e.g., tuberculosis and SARS-CoV-2), and protection and transmission during pregnancy and birth. Composed of multiple primary or stem cell-derived cell types organized in a dedicated 3D space, these systems hold unique promise for better reproducing human physiology, advancing therapeutic development, and bridging the human-animal model translational gap. Here, we discuss the promises and achievements with 3D human tissue models in HIV and comorbidity research, along with remaining barriers with respect to cell biology, virology, immunology, and regulatory issues.

3.
Front Bioeng Biotechnol ; 11: 1237561, 2023.
Article in English | MEDLINE | ID: mdl-37731764

ABSTRACT

Background: Organ chips are microfabricated devices containing living engineered organ substructures in a controlled microenvironment. Research on organ chips has increased considerably over the past two decades. Aim: This paper offers an overview of the emerging knowledge ecosystem of organ chip research in Europe. Method: This study is based on queries and analyses undertaken through the bibliometric software Dimensions.ai. Results: Organ chip research has been rapidly growing in Europe in recent years, supported by robust academic science consortia, public-private initiatives, dedicated funding, and science policy instruments. Our data shows that previous investment in basic and fundamental research in centers of excellence in bioengineering science and technology are relevant to future investment in organ chips. Moreover, organ chip research in Europe is characterized by collaborative infrastructures to promote convergence of scientific, technical, and clinical capabilities. Conclusion: According to our study, the knowledge ecosystem of organ chip research in Europe has been growing sustainably. This growth is due to relevant institutional diversity, public-private initiatives, and ongoing research collaborations supported by robust funding schemes.

4.
Biomed Mater ; 18(6)2023 10 10.
Article in English | MEDLINE | ID: mdl-37703884

ABSTRACT

Healthy synovium is critical for joint homeostasis. Synovial inflammation (synovitis) is implicated in the onset, progression and symptomatic presentation of arthritic joint diseases such as rheumatoid arthritis and osteoarthritis. Thus, the synovium is a promising target for the development of novel, disease-modifying therapeutics. However, target exploration is hampered by a lack of good pre-clinical models that accurately replicate human physiology and that are developed in a way that allows for widespread uptake. The current study presents a multi-channel, microfluidic, organ-on-a-chip (OOAC) model, comprising a 3D configuration of the human synovium and its associated vasculature, with biomechanical and inflammatory stimulation, built upon a commercially available OOAC platform. Healthy human fibroblast-like synoviocytes (hFLS) were co-cultured with human umbilical vein endothelial cells (HUVECs) with appropriate matrix proteins, separated by a flexible, porous membrane. The model was developed within the Emulate organ-chip platform enabling the application of physiological biomechanical stimulation in the form of fluid shear and cyclic tensile strain. The hFLS exhibited characteristic morphology, cytoskeletal architecture and matrix protein deposition. Synovial inflammation was initiated through the addition of interleukin-1ß(IL-1ß) into the synovium channel resulting in the increased secretion of inflammatory and catabolic mediators, interleukin-6 (IL-6), prostaglandin E2 (PGE2), matrix metalloproteinase 1 (MMP-1), as well as the synovial fluid constituent protein, hyaluronan. Enhanced expression of the inflammatory marker, intercellular adhesion molecule-1 (ICAM-1), was observed in HUVECs in the vascular channel, accompanied by increased attachment of circulating monocytes. This vascularised human synovium-on-a-chip model recapitulates a number of the functional characteristics of both healthy and inflamed human synovium. Thus, this model offers the first human synovium organ-chip suitable for widespread adoption to understand synovial joint disease mechanisms, permit the identification of novel therapeutic targets and support pre-clinical testing of therapies.


Subject(s)
Endothelial Cells , Monocytes , Humans , Microfluidics , Synovial Membrane/metabolism , Inflammation/metabolism , Lab-On-A-Chip Devices
5.
Int J Mol Sci ; 24(18)2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37762529

ABSTRACT

While cells in the human body function in an environment where the blood supply constantly delivers nutrients and removes waste, cells in conventional tissue culture well platforms are grown with a static pool of media above them and often lack maturity, limiting their utility to study cell biology in health and disease. In contrast, organ-chip microfluidic systems allow the growth of cells under constant flow, more akin to the in vivo situation. Here, we differentiated human induced pluripotent stem cells into dopamine neurons and assessed cellular properties in conventional multi-well cultures and organ-chips. We show that organ-chip cultures, compared to multi-well cultures, provide an overall greater proportion and homogeneity of dopaminergic neurons as well as increased levels of maturation markers. These organ-chips are an ideal platform to study mature dopamine neurons to better understand their biology in health and ultimately in neurological disorders.


Subject(s)
Dopaminergic Neurons , Induced Pluripotent Stem Cells , Humans , Cell Differentiation , Cells, Cultured , Organ Culture Techniques
6.
Cells ; 11(20)2022 10 19.
Article in English | MEDLINE | ID: mdl-36291161

ABSTRACT

Significant advancements in the field of preclinical in vitro blood-brain barrier (BBB) models have been achieved in recent years, by developing monolayer-based culture systems towards complex multi-cellular assays. The coupling of those models with other relevant organoid systems to integrate the investigation of blood-brain barrier permeation in the larger picture of drug distribution and metabolization is still missing. Here, we report for the first time the combination of a human induced pluripotent stem cell (hiPSC)-derived blood-brain barrier model with a cortical brain and a liver spheroid model from the same donor in a closed microfluidic system (MPS). The two model compounds atenolol and propranolol were used to measure permeation at the blood-brain barrier and to assess metabolization. Both substances showed an in vivo-like permeation behavior and were metabolized in vitro. Therefore, the novel multi-organ system enabled not only the measurement of parent compound concentrations but also of metabolite distribution at the blood-brain barrier.


Subject(s)
Blood-Brain Barrier , Induced Pluripotent Stem Cells , Pharmaceutical Preparations , Humans , Atenolol/metabolism , Blood-Brain Barrier/metabolism , Brain , Induced Pluripotent Stem Cells/metabolism , Liver , Pharmaceutical Preparations/metabolism , Propranolol/metabolism
7.
Adv Drug Deliv Rev ; 191: 114542, 2022 12.
Article in English | MEDLINE | ID: mdl-36179916

ABSTRACT

The surfaces of human internal organs are lined by a mucus layer that ensures symbiotic relationships with commensal microbiome while protecting against potentially injurious environmental chemicals, toxins, and pathogens, and disruption of this layer can contribute to disease development. Studying mucus biology has been challenging due to the lack of physiologically relevant human in vitro models. Here we review recent progress that has been made in the development of human organ-on-a-chip microfluidic culture models that reconstitute epithelial tissue barriers and physiologically relevant mucus layers with a focus on lung, colon, small intestine, cervix and vagina. These organ-on-a-chip models that incorporate dynamic fluid flow, air-liquid interfaces, and physiologically relevant mechanical cues can be used to study mucus composition, mechanics, and structure, as well as investigate its contributions to human health and disease with a level of biomimicry not possible in the past.


Subject(s)
Models, Biological , Mucus , Humans , Colon , Lab-On-A-Chip Devices , Microbiota , Microfluidics , Mucus/physiology
8.
Physiology (Bethesda) ; 37(5): 0, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35658627

ABSTRACT

The intertwined relationship between structure and function has been key to understanding human organ physiology and disease pathogenesis. An organ-on-a-chip (organ chip) is a bioengineered microfluidic cell culture device lined by living cells and tissues that recapitulates organ-level functions in vitro. This is accomplished by recreating organ-specific tissue-tissue interfaces and microenvironmental biochemical and mechanical cues while providing dynamic perfusion through endothelium-lined vascular channels. In this review, we discuss how this emerging technology has contributed to the understanding of human lung structure-function relationships at the cell, tissue, and organ levels.


Subject(s)
Cell Culture Techniques , Lab-On-A-Chip Devices , Endothelial Cells , Humans , Lung
9.
Adv Sci (Weinh) ; 9(14): e2103241, 2022 05.
Article in English | MEDLINE | ID: mdl-35289122

ABSTRACT

Lymphoid follicles (LFs) are responsible for generation of adaptive immune responses in secondary lymphoid organs and form ectopically during chronic inflammation. A human model of ectopic LF formation will provide a tool to understand LF development and an alternative to non-human primates for preclinical evaluation of vaccines. Here, it is shown that primary human blood B- and T-lymphocytes autonomously assemble into ectopic LFs when cultured in a 3D extracellular matrix gel within one channel of a two-channel organ-on-a-chip microfluidic device. Superfusion via a parallel channel separated by a microporous membrane is required for LF formation and prevents lymphocyte autoactivation. These germinal center-like LFs contain B cells expressing Activation-Induced Cytidine Deaminase and exhibit plasma cell differentiation upon activation. To explore their utility for seasonal vaccine testing, autologous monocyte-derived dendritic cells are integrated into LF Chips. The human LF chips demonstrate improved antibody responses to split virion influenza vaccination compared to 2D cultures, which are enhanced by a squalene-in-water emulsion adjuvant, and this is accompanied by increases in LF size and number. When inoculated with commercial influenza vaccine, plasma cell formation and production of anti-hemagglutinin IgG are observed, as well as secretion of cytokines similar to vaccinated humans over clinically relevant timescales.


Subject(s)
Influenza Vaccines , Influenza, Human , Tertiary Lymphoid Structures , Animals , Antibodies, Viral , Humans , Influenza, Human/prevention & control , Lab-On-A-Chip Devices , Seasons , Vaccination
10.
Biosensors (Basel) ; 12(2)2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35200349

ABSTRACT

Malignant melanoma is a type of highly aggressive tumor, which has a strong ability to metastasize to brain, and 60-70% of patients die from the spread of the tumor into the central nervous system. Exosomes are a type of nano-sized vesicle secreted by most living cells, and accumulated studies have reported that they play crucial roles in brain tumor metastasis, such as breast cancer and lung cancer. However, it is unclear whether exosomes also participate in the brain metastasis of malignant melanoma. Here, we established a human blood-brain barrier (BBB) model by co-culturing human brain microvascular endothelial cells, astrocytes and microglial cells under a biomimetic condition, and used this model to explore the potential roles of exosomes derived from malignant melanoma in modulating BBB integrity. Our findings showed that malignant melanoma-derived exosomes disrupted BBB integrity and induced glial activation on the BBB chip. Transcriptome analyses revealed dys-regulation of autophagy and immune responses following tumor exosome treatment. These studies indicated malignant melanoma cells might modulate BBB integrity via exosomes, and verified the feasibility of a BBB chip as an ideal platform for studies of brain metastasis of tumors in vitro.


Subject(s)
Brain Neoplasms , Exosomes , Melanoma , Blood-Brain Barrier/pathology , Endothelial Cells/cytology , Humans , Skin Neoplasms , Melanoma, Cutaneous Malignant
11.
J Cyst Fibros ; 21(4): 606-615, 2022 07.
Article in English | MEDLINE | ID: mdl-34799298

ABSTRACT

BACKGROUND: Cystic fibrosis (CF) is a genetic disease caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR), which results in impaired airway mucociliary clearance, inflammation, infection, and respiratory insufficiency. The development of new therapeutics for CF are limited by the lack of reliable preclinical models that recapitulate the structural, immunological, and bioelectrical features of human CF lungs. METHODS: We leveraged organ-on-a-chip technology to develop a microfluidic device lined by primary human CF bronchial epithelial cells grown under an air-liquid interface and interfaced with pulmonary microvascular endothelial cells (CF Airway Chip) exposed to fluid flow. The responses of CF and healthy Airway Chips were analyzed in the presence or absence of polymorphonuclear leukocytes (PMNs) and the bacterial pathogen, Pseudomonas aeruginosa. RESULTS: The CF Airway Chip faithfully recapitulated many features of the human CF airways, including enhanced mucus accumulation, increased cilia density, and a higher ciliary beating frequency compared to chips lined by healthy bronchial epithelial cells. The CF chips also secreted higher levels of IL-8, which was accompanied by enhanced PMN adhesion to the endothelium and transmigration into the airway compartment. In addition, CF Airway Chips provided a more favorable environment for Pseudomonas aeruginosa growth, which resulted in enhanced secretion of inflammatory cytokines and recruitment of PMNs to the airway. CONCLUSIONS: The human CF Airway Chip may provide a valuable preclinical tool for pathophysiology studies as well as for drug testing and personalized medicine.


Subject(s)
Cystic Fibrosis , Cells, Cultured , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Endothelial Cells , Humans , Lab-On-A-Chip Devices , Lung , Pseudomonas aeruginosa/physiology
13.
Food Chem Toxicol ; 151: 112107, 2021 May.
Article in English | MEDLINE | ID: mdl-33722596

ABSTRACT

Toxicant exposure can induce acute or chronic alterations in cellular numbers, morphology, and cell function. The quantification of these parameters can provide valuable information regarding a toxicant's effect and/or mechanism of action in organ-on-a-chip toxicity testing platforms. Unfortunately, manual quantification can be variable and time consuming. Additionally, the unique designs of Organ-Chips make automated imaging difficult as current microscopes were not specifically designed for Organ-Chip use. The development of semi-automated and automated imaging and quantification procedures greatly increases the quantity and quality of collected data. Using Emulate's transparent liver Organ-Chip (Liver-Chip) in combination with Keyence's bench-top BZ-X700 All-in-one fluorescence microscope we have developed semi-automated imaging and automated quantification methods for nuclei, mitochondrial viability, and apoptosis. The methods described herein provide alternative imaging options to more costly and space consuming microscopes while still providing necessary features for Organ-Chip evaluation. We were able to detect significant decreases in nuclear number and mitochondrial membrane potential, and significant increases in apoptosis with a model hepatotoxic compound, benzbromarone. These methods have greatly reduced the time and increased the quality of cell number/function data acquisition and demonstrated that these automated quantification methods can detect changes resulting from chemical exposure.


Subject(s)
Liver/diagnostic imaging , Microscopy, Fluorescence/methods , Apoptosis/drug effects , Automation , Benzbromarone/toxicity , Cell Nucleus/drug effects , Cells, Cultured , Hepatocytes/cytology , Hepatocytes/drug effects , Humans , Liver/cytology , Membrane Potential, Mitochondrial/drug effects , Microscopy, Fluorescence/instrumentation , Mitochondria, Liver/drug effects
14.
Ocul Surf ; 19: 1-15, 2021 01.
Article in English | MEDLINE | ID: mdl-33220469

ABSTRACT

Recent advances have driven the development of stem cell-derived, self-organizing, three-dimensional miniature organs, termed organoids, which mimic different eye tissues including the retina, cornea, and lens. Organoids and engineered microfluidic organ-on-chips (organ chips) are transformative technologies that show promise in simulating the architectural and functional complexity of native organs. Accordingly, they enable exploration of facets of human disease and development not accurately recapitulated by animal models. Together, these technologies will increase our understanding of the basic physiology of different eye structures, enable us to interrogate unknown aspects of ophthalmic disease pathogenesis, and serve as clinically-relevant surrogates for the evaluation of ocular therapeutics. Both the burden and prevalence of monogenic and multifactorial ophthalmic diseases, which can cause visual impairment or blindness, in the human population warrants a paradigm shift towards organoids and organ chips that can provide sensitive, quantitative, and scalable phenotypic assays. In this article, we review the current situation of organoids and organ chips in ophthalmology and discuss how they can be leveraged for translational applications.


Subject(s)
Eye Diseases , Ophthalmology , Animals , Humans , Lab-On-A-Chip Devices , Organoids
15.
Adv Sci (Weinh) ; 8(3): 2002928, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33173719

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The models that can accurately resemble human-relevant responses to viral infection are lacking. Here, a biomimetic human disease model on chip that allows to recapitulate lung injury and immune responses induced by SARS-CoV-2 in vitro at organ level is created. This human alveolar chip reproduce the key features of alveolar-capillary barrier by coculture of human alveolar epithelium, microvascular endothelium, and circulating immune cells under fluidic flow in normal and disease. Upon SARS-CoV-2 infection, the epithelium exhibits higher susceptibility to virus than endothelium. Transcriptional analyses show activated innate immune responses in epithelium and cytokine-dependent pathways in endothelium at day 3 post-infection, revealing the distinctive responses in different cell types. Notably, viral infection causes the immune cell recruitment, endothelium detachment, and increased inflammatory cytokines release, suggesting the crucial role of immune cells involved in alveolar barrier injury and exacerbated inflammation. Treatment with remdesivir can inhibit viral replication and alleviate barrier disruption on chip. This organ chip model can closely mirror human-relevant responses to SARS-CoV-2 infection, which is difficult to be achieved by in vitro models, providing a unique platform for COVID-19 research and drug development.

16.
Article in English | MEDLINE | ID: mdl-32850690

ABSTRACT

The gastrointestinal (GI) tract is a complex system responsible for nutrient absorption, digestion, secretion, and elimination of waste products that also hosts immune surveillance, the intestinal microbiome, and interfaces with the nervous system. Traditional in vitro systems cannot harness the architectural and functional complexity of the GI tract. Recent advances in organoid engineering, microfluidic organs-on-a-chip technology, and microfabrication allows us to create better in vitro models of human organs/tissues. These micro-physiological systems could integrate the numerous cell types involved in GI development and physiology, including intestinal epithelium, endothelium (vascular), nerve cells, immune cells, and their interplay/cooperativity with the microbiome. In this review, we report recent progress in developing micro-physiological models of the GI systems. We also discuss how these models could be used to study normal intestinal physiology such as nutrient absorption, digestion, and secretion as well as GI infection, inflammation, cancer, and metabolism.

17.
Fluids Barriers CNS ; 17(1): 30, 2020 Apr 22.
Article in English | MEDLINE | ID: mdl-32321511

ABSTRACT

The blood-brain barrier (BBB) is a critical component of the central nervous system that protects neurons and other cells of the brain parenchyma from potentially harmful substances found in peripheral circulation. Gaining a thorough understanding of the development and function of the human BBB has been hindered by a lack of relevant models given significant species differences and limited access to in vivo tissue. However, advances in induced pluripotent stem cell (iPSC) and organ-chip technologies now allow us to improve our knowledge of the human BBB in both health and disease. This review focuses on the recent progress in modeling the BBB in vitro using human iPSCs.


Subject(s)
Blood-Brain Barrier , Induced Pluripotent Stem Cells , Models, Biological , Humans
18.
ALTEX ; 37(3): 365-394, 2020.
Article in English | MEDLINE | ID: mdl-32113184

ABSTRACT

The first microfluidic microphysiological systems (MPS) entered the academic scene more than 15 years ago and were considered an enabling technology to human (patho)biology in vitro and, therefore, provide alternative approaches to laboratory animals in pharmaceutical drug development and academic research. Nowadays, the field generates more than a thousand scientific publications per year. Despite the MPS hype in academia and by platform providers, which says this technology is about to reshape the entire in vitro culture landscape in basic and applied research, MPS approaches have neither been widely adopted by the pharmaceutical industry yet nor reached regulated drug authorization processes at all. Here, 46 leading experts from all stakeholders - academia, MPS supplier industry, pharmaceutical and consumer products industries, and leading regulatory agencies - worldwide have analyzed existing challenges and hurdles along the MPS-based assay life cycle in a second workshop of this kind in June 2019. They identified that the level of qualification of MPS-based assays for a given context of use and a communication gap between stakeholders are the major challenges for industrial adoption by end-users. Finally, a regulatory acceptance dilemma exists against that background. This t4 report elaborates on these findings in detail and summarizes solutions how to overcome the roadblocks. It provides recommendations and a roadmap towards regulatory accepted MPS-based models and assays for patients' benefit and further laboratory animal reduction in drug development. Finally, experts highlighted the potential of MPS-based human disease models to feedback into laboratory animal replacement in basic life science research.


Subject(s)
Animal Testing Alternatives , Animal Welfare , Drug Development , Drug Evaluation, Preclinical/methods , Lab-On-A-Chip Devices , Animals , Drug Industry , Humans , Models, Biological
19.
ACS Appl Bio Mater ; 3(10): 6697-6707, 2020 Oct 19.
Article in English | MEDLINE | ID: mdl-35019335

ABSTRACT

The lymphatic system is a complex organ system that is essential in regulating the development of host immune responses. Because of the complexity of the lymphatic system and the existence of few in vitro models that replicate human lymphatic vessels, there is a need for a primary cell-based lymphatic model that can provide a better understanding of the effects of flow parameters, therapeutics, and other stimuli on lymphatic vessel behavior. In this report, a fluidic device models the cyclical lymphatic flow under normal and disease conditions. The device utilizes a pumpless design, operating with gravitational forces to simulate normal conditions with a shear of 0.092 Pa (0.92 dyn/cm2) as well as disease conditions with an increased shear of (0.67 Pa, 6.7 dyn/cm2). The cyclical pumping present in lymphatic vessels is replicated by applying shear stress for a period of 10 s multiple times per minute. Primary human lymphatic endothelial cells (HLECs) cultured in the device for 10 days produce less interleukin 8 (IL-8), and tumor necrosis factor alpha (TNF-α) per cell than cells cultured under static conditions. The results are consistent with previously published in vivo measurements, indicating that the fluidic device mimics conditions for IL-8 and TNF-α expression well. Data obtained with the devices also indicate that primary HLECs proliferate faster under high-shear than under low-shear conditions.

20.
Cell Mol Gastroenterol Hepatol ; 9(3): 507-526, 2020.
Article in English | MEDLINE | ID: mdl-31778828

ABSTRACT

BACKGROUND & AIMS: The mucus layer in the human colon protects against commensal bacteria and pathogens, and defects in its unique bilayered structure contribute to intestinal disorders, such as ulcerative colitis. However, our understanding of colon physiology is limited by the lack of in vitro models that replicate human colonic mucus layer structure and function. Here, we investigated if combining organ-on-a-chip and organoid technologies can be leveraged to develop a human-relevant in vitro model of colon mucus physiology. METHODS: A human colon-on-a-chip (Colon Chip) microfluidic device lined by primary patient-derived colonic epithelial cells was used to recapitulate mucus bilayer formation, and to visualize mucus accumulation in living cultures noninvasively. RESULTS: The Colon Chip supports spontaneous goblet cell differentiation and accumulation of a mucus bilayer with impenetrable and penetrable layers, and a thickness similar to that observed in the human colon, while maintaining a subpopulation of proliferative epithelial cells. Live imaging of the mucus layer formation on-chip showed that stimulation of the colonic epithelium with prostaglandin E2, which is increased during inflammation, causes rapid mucus volume expansion via an Na-K-Cl cotransporter 1 ion channel-dependent increase in its hydration state, but no increase in de novo mucus secretion. CONCLUSIONS: This study shows the production of colonic mucus with a physiologically relevant bilayer structure in vitro, which can be analyzed in real time noninvasively. The Colon Chip may offer a new preclinical tool to analyze the role of mucus in human intestinal homeostasis as well as diseases, such as ulcerative colitis and cancer.


Subject(s)
Colon/metabolism , Intestinal Mucosa/metabolism , Lab-On-A-Chip Devices , Mucus/metabolism , Cells, Cultured , Dinoprostone/metabolism , Goblet Cells/physiology , Humans , Organoids , Primary Cell Culture/methods , Solute Carrier Family 12, Member 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...