Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 565
Filter
1.
J Fungi (Basel) ; 10(6)2024 May 25.
Article in English | MEDLINE | ID: mdl-38921365

ABSTRACT

Brown-rot fungus is one of the important medicinal mushrooms, which include some species within the genus Fomitopsis. This study identified wild macrofungi collected from a broad-leaved tree in Liaoning Province as Fomitopsis palustris using both morphological and molecular methods. To elucidate the potential medicinal and economic value of F. palustris, we conducted single-factor and orthogonal tests to optimize its mycelium culture conditions. Subsequently, we completed liquid culture and domestic cultivation based on these findings. Furthermore, crude polysaccharides were extracted from the cultivated fruiting bodies of F. palustris and their antioxidant activity was evaluated using chemical methods and cell-based models. The results showed that the optimal culture conditions for F. palustris mycelium were glucose as the carbon source, yeast extract powder as the nitrogen source, pH 6.0, and a temperature of 35 °C. Moreover, temperature was found to have the most significant impact on mycelial growth. The liquid strains were fermented for 6 days and then inoculated into a cultivation substrate composed of broadleaf sawdust, resulting in mature fruiting bodies in approximately 60 days. The crude polysaccharides extracted from the cultivated fruiting bodies of F. palustris (FPPs) possess in vitro scavenging abilities against DPPH radicals and OH radicals, as well as a certain ferric-reducing antioxidant power. Additionally, FPPs effectively mitigated H2O2-induced oxidative stress in RAW264.7cells by enhancing the intracellular activity of antioxidant enzymes such as SOD and CAT, scavenging excess ROS, and reducing MDA levels. This study provides preliminarily evidence of the potential medicinal and economic value of F. palustris and offers initial data for the future development and utilization of this species.

2.
Article in English | MEDLINE | ID: mdl-38907821

ABSTRACT

To control the diffusion of high concentrations of coal dust during tunnel boring and minimize the threat to the life and health of coal miners, theoretical analysis, numerical simulations, and field measurements were combined in this study. First, computational fluid dynamic simulation software was used to simulate the generation of dust particles and their transport pattern in the tunnel. Subsequently, an innovative orthogonal test was performed to study the effect of four ventilation parameters [the pressure airflow rate (Q), distance between the air duct center and heading face (LA), distance between the air duct center and tunnel floor (LB), and distance between the air duct center and nearest coal wall (LC)] on dust diffusion. According to the orthogonal test results, the optimal ventilation parameters for effective dust control are as follows: Q = 1400 m3/min, LA = 7 m, LB = 2.8 m, and LC = 1 m. The optimized set of ventilation parameters was applied to the Wangpo 3206 working face. The results show that dust diffusion in the tunnel was effectively controlled and that the air quality was sufficiently improved.

3.
Heliyon ; 10(10): e31545, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38818211

ABSTRACT

The compressibility of bank soils is a critical consideration in t riverbank protection project, construction. In the Inner Mongolia section of the Yellow River, a seasonal frozen soil region, the impact of F-T cycles on soil compressibility cannot be overlooked. This study, based on F-T cycle tests, conducted orthogonal consolidation tests on embankment sandy silt from the Inner Mongolia section of the Yellow River, considering varying initial w and ρd. It investigated the effects of different initial w, ρd, and F-T cycles on soil compressibility, ranked and assessed the significance of influencing factors, and established a predictive model for the compressibility of Inner Mongolia section Yellow River embankment sandy silt. The results show that: the embankment sandy silt is medium-high compression soil, with a between 0.1 and 0.74 MPa-1, Es between 2.65 and 18.47 MPa, and Cc between 0.04 and 0.24 MPa. The greater the ρd of soil, the smaller the initial w, the smaller the a and Cc, and the greater the Es of soil. The F-T effect affects soil compressibility, and soil a, Es and Cc are linearly related to the number of F-T cycles. The ranking of factors influencing soil compressibility is ρd > w > F-T cycles. The initial ρd and w are decisive factors affecting soil compressibility, while the impact of F-T cycles is relatively minor. Additionally, a regression predictive model based on the initial ρd and w of the soil demonstrates good performance in predicting soil compression indices. This model can be utilized for predicting the compressibility indices of embankment soil in the Inner Mongolia section of the Yellow River.

4.
3D Print Addit Manuf ; 11(2): e688-e697, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38689921

ABSTRACT

Microcantilever structures such as microgears play an important role in precision mechanisms, where highly accurate cantilever characteristics guarantee the reliable function of these structures. Projection-based stereolithography (PSL) technology is widely used to fabricate sophisticated microstructures owing to its high precision and remarkable efficiency, and plenty of works have been done to improve the precision of structures with macroscale. However, the shape accuracy of microcantilever structures fabricated through PSL process is always neglected, which severely hinders its application in precision mechanisms. In this work, we investigated the influence of major factors on the shape accuracy of microcantilever structures in PSL process through orthogonal tests. Different resin materials were tested to investigate the influence of material properties. Printing experiments showed that for a given PSL system, microcantilever structures with confined size could be directly and accurately manufactured using a set of optimized processing parameters, which dramatically speed up the production process and effectively improved the reliability of microcantilevers. This work provides a comprehensive understanding of the capability of PSL to fabricate microcantilever structures and guides the manufacturing processes of micromechanisms with cantilever features, which effectually promotes the industrial application of PSL technology.

5.
Sci Rep ; 14(1): 8778, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627433

ABSTRACT

With the continuous improvement of various armor protection technologies, the armor protection performance has increased significantly, and then the damage performance requirements of armor-piercing ammunition have also increased. In order to improve the penetration ability of the liner, a new three-layer liner structure is designed in this paper. The jet forming process was simulated by AUTODYN software. The mechanism of shaped jet forming of three-layer liner was studied. The reason why the penetration depth of three-layer liner was higher than that of ordinary liner was explained. The influence of three-layer liner on the propagation of detonation wave and the change of pressure when detonation wave acted on liner were found, which provided a new idea for improving the penetration depth of jet. The influence of liner material, cone angle and stand-off on jet forming and penetration was also studied by orthogonal optimization experiment, and the structural parameters with the best penetration performance were obtained. The results show that the pressure at the convergence point increases first and then decreases during the formation of the jet of the three-layer liner. The pressure at the convergence point when the three-layer liner material is from low impedance to high impedance from the outside to the inside is much larger than the pressure at the convergence point from high impedance to low impedance. When the three-layer liner material is Al 2024-Copper-Tantalum from the outside to the inside, the pressure at the convergence point of the three-layer liner at different times is higher than that of the double-layer liner and the single-layer liner. Reasonable matching of different impact impedance materials in the three-layer liner can greatly improve the pressure value of the detonation wave acting on the cone liner. The maximum pressure at the convergence point on the axis is 39.10 GPa, which is 22.00% higher than that of the double-layer liner at the convergence point, and 53.03% higher than that of the single-layer liner at the convergence point. The orthogonal design test scheme is simulated and analyzed. The penetration depth is taken as the observation index, and the range analysis is adopted. The results show that the material matching of the three-layer liner has the greatest influence on the depth of the jet penetrating the target plate, followed by the cone angle of the three-layer liner. Relatively speaking, the stand-off has the least influence on the result. Reasonable matching of materials with different impact impedances in the three-layer liner can maximize the penetration depth of the jet into the target plate.

6.
Heliyon ; 10(8): e29837, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38681536

ABSTRACT

Unmanned aerial vehicle (UAV) granular fertilizer spreading technology has been gradually applied in agricultural production. However, in the process of spreading operation, the actual influence effect of each factor in field operation is still unclear. Based on the self-developed UAV fertilizer spreading system, this paper explores the effects of three factors, the baffle retraction (B), spreading disc speed (D), and UAV flight altitude (H), on the granular fertilizer spreading effect in the actual field scenarios through the orthogonal test and taking the coefficient of variation (Cv) and relative error of fertilizer application rate (λ) as the evaluation indexes. The results showed that the optimal factor level combination of Cv was 11.23 % for BbDbHa (the baffle retraction is 6 %, spreading disc speed is 600r/min, and UAV flight height is 1.5 m) at UAV flight speed of 2 m/s. The best factor level combination for λ was BbDbHb of 7.99 % (the baffle retraction is 6 %, spreading disc speed is 600r/min, and UAV flight height is 2 m). In addition, by analysing the influence of the weather and the vortex of the rice canopy on the actual spreading effect, it was found that the weather has less influence on the spreading effect of this system, while the vortex caused by the airflow of the UAV rotor has a certain influence on the spreading effect, which is also relatively easy to ignore in fertilizer spreading operations. The results of the study can be used to explore the operational effects of actual fertilizer application by UAVs in rice field, which will help promote the development of UAV spreading technology and provide a reference for precision fertilizer application through agricultural aviation.

7.
Front Microbiol ; 15: 1364448, 2024.
Article in English | MEDLINE | ID: mdl-38633692

ABSTRACT

The aim of the research was to obtain a high healthcare honeysuckle beverage with strong antioxidant activity. Honeysuckle (Lonicera japonica Thunb) was used as the raw material in this experiment. The effects of fermentation temperature, fermentation time, lactic acid bacteria inoculation amount, and sugar addition amount on the sensory quality of honeysuckle beverage were investigated by single factor test and orthogonal test, and the best process was obtained. The physicochemical indexes and antioxidant activity of honeysuckle beverages fermented with lactic acid bacteria were studied. The results showed that the fermentation temperature of the beverage was 37 °C, the fermentation time was 24 h, the inoculation amount of Lactiplantibacillus plantarum and Lactobacillus acidophilus mixed starter (1:1) was 3%, and 8% white granulated sugar was added. The highest sensory score was 87.30 ± 0.17, which was the optimal process. The honeysuckle liquid mixed inoculation with Lactiplantibacillus plantarum and Lactobacillus acidophilus was fermented for 24 h. The number of viable bacteria reached 9.84 ± 0.02 lg cfu/mL, the pH value was 3.10 ± 0.01, and the total polyphenol content was 7.53 ± 0.03 mg GAE/g. The number of lactic acid bacteria, pH, total polyphenol content, and free radical scavenging rate were significantly increased (p < 0.05) compared with the non-inoculated and single-inoculated lactic acid bacteria. To sum up, it was concluded that a better quality beverage could be obtained by fermenting a solution of honeysuckle with Lactiplantibacillus plantarum and Lactobacillus acidophilus mixed fermentation agent, providing a new approach and new ideas for the development of deep processing and fermented beverages using honeysuckle.

8.
Sci Total Environ ; 912: 169077, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38056672

ABSTRACT

The aim of this study is to propose a desulfurized rubber powder / styrene butadiene styrene (DRP/SBS) composite modified asphalt technology by combining the advantages of DRP and SBS. This reduces the production cost of modified asphalt and improves the performance of asphalt. In this paper, orthogonal tests were used to optimize preparation process parameters of DRP/SBS composite modified asphalt. And the physicochemical properties, modification mechanism of composite modified asphalt had been thoroughly studied. Subsequently, the results showed that the optimum content of DRP and SBS modifiers are 25 % and 2 %, respectively. The suitable preparation process is to add SBS first, then DRP, while shearing at 5000 r/min for 50 min. In addition, DRP/SBS composite modified asphalt has better high-temperature performance, viscosity-temperature characteristics, aging resistance, and storage stability. Meanwhile, the storage stability of the composite modified asphalt was verified by fluorescence microscopy test. Through the Fourier transform infrared spectroscopy test, it was observed that the composite modified asphalt modification process is a compatible and stable modification of physical and chemical coexistence. Overall, the composite modification method achieves recycling of waste tires while improving pavement performance, thus promoting the sustainability of pavement.

9.
China Pharmacy ; (12): 449-452, 2024.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1011326

ABSTRACT

OBJECTIVE To prepare the Eriodictyol chewable tablet and to evaluate its quality. METHODS The chewable tablet was prepared by the wetting granulation method by using microcrystalline cellulose (MCC) and mannitol as fillers, polyvinylpyrrolidone (PVP) as adhesive, citric acid and sucralose as flavor correction agents, magnesium stearate as lubricant. The comprehensive evaluation was conducted on Eriodictyol chewable tablets with the dosage of each excipient as a factor using the appearance, taste, flavor and texture as indicators. The ratio of excipients was optimized by orthogonal test, and the quality of Eriodictyol chewable tablets prepared by optimized formulation was evaluated in terms of appearance, weight difference, hardness, fragility, eriodictyol content, dissolution and content uniformity. RESULTS The optimal formulation was as follows: 26.4% eriodictyol (50 mg each piece), 45% mannitol, 25% MCC, 0.3% citric acid, 0.3% sucralose, 1% magnesium stearate, 2% PVP (preparing 5% solution using purified water). The scores of 3 batches of Eriodictyol chewable tablets in the validation test were 8.76, 8.75 and 8.80 (RSD=0.30%, n=3), respectively. The Eriodictyol chewable tablet had a complete appearance and a smooth surface; the average tablet weight was 192.57 mg, the average hardness was 57.36 N, the fragility was 0.09%, the average content of eriodictyol per tablet was 50.74 mg, the cumulative dissolution within 30 min was exceeding 80%, and the content uniformity was 5.51. CONCLUSIONS Eriodictyol chewable tablet prepared by optimal formulation conforms to the requirements of the 2020 edition of Chinese Pharmacopoeia.

10.
China Pharmacy ; (12): 27-32, 2024.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1005209

ABSTRACT

OBJECTIVE Optimizing the water extraction technology of Xiangqin jiere granules. METHODS The orthogonal test of 3 factors and 3 levels was designed, and comprehensive scoring was conducted for the above indexes by using G1-entropy weight to obtain the optimized water extraction technology of Xiangqin jiere granules with water addition ratio, extraction time and extraction times as factors, using the contents of forsythoside A, baicalin, phillyrin, oroxylin A-7-O-β-D-glycoside, wogonoside, baicalein and wogonin, and extraction rate as evaluation indexes. BP neural network modeling was used to optimize the network model and water extraction process using the results of 9 groups of orthogonal tests as test and training data, the water addition multiple, decocting time and extraction times as input nodes, and the comprehensive score as output nodes. Then the two analysis methods were compared by verification test to find the best water extraction process parameters. RESULTS The water extraction technology optimized by the orthogonal test was 8-fold water, extracting 3 times, extracting for 1 h each time. Comprehensive score was 96.84 (RSD=0.90%). The optimal water extraction technology obtained by BP neural network modeling included 12-fold water, extracting 4 times, extracting for 0.5 h each time. The comprehensive score was 92.72 (RSD=0.77%), which was slightly lower than that of the orthogonal test. CONCLUSIONS The water extraction technology of Xiangqin jiere granules is optimized successfully in the study, which includes adding 8-fold water, extracting 3 times, and extracting for 1 hour each time.

11.
Article in English | MEDLINE | ID: mdl-38078428

ABSTRACT

Existing glioma treatments face challenges in simultaneously combining radiotherapy and chemotherapy while achieving long-term, stable continuous irradiation at low doses. To address this clinical challenge, two types of radiochemotherapy integrated dual-cavity capsules, single-capsule dual-cavity, and dual-capsule dual-cavity, were designed in this research. We employed finite element simulation and the Monte Carlo method to conduct stress-deformation simulation and dose analysis on the structure and manufacturing materials of the capsules. Based on these simulations, the structure of the dual-cavity capsule was optimized through orthogonal tests to obtain optimal results for tumor radiation therapy. Dose analysis experiments revealed that the dual-capsule dual-cavity structure exhibited improved irradiation effects on the lesion while minimizing damage to surrounding tissues and organs compared to the single-capsule dual-cavity structure. Stress-deformation simulation indicated that using polyetheretherketone as the capsule material enabled higher central dose rates and reduced deformation. Furthermore, the material's ease of processing and low-cost characteristics facilitated the development of personalized and precise treatment approaches. The proposed capsule structure realizes the integrated combination of internal radiotherapy and internal chemotherapy, establishing a new mode of long-term stable local high-dose and peripheral low-dose radiation therapy. This scheme offers a novel treatment plan and advanced technical reserve for the integrated treatment of intracranial glioma radiotherapy and chemotherapy.

12.
Environ Sci Pollut Res Int ; 30(57): 120820-120831, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37943435

ABSTRACT

Sorptive removal of cadmium (Cd) from the aqueous solutions using the easily available natural materials is an attractive method. However, the adsorption efficiencies of these materials, such as clays, are typically low. Besides, they are generally in relatively low stability and renewability, which restrict their application. Thus, modification of these materials to enhance their performance on Cd removal has gained growing attentions. Herein, the integration of calcination and ferric chloride (FeCl3) was used to modify a typical clay, i.e., attapulgite, to increase the adsorption sites, and thus to develop a robust adsorbent for Cd. Under the optimum conditions for attapulgite modification (i.e., the mass ratio of FeCl3 to attapulgite was 1:2, calcination temperature was 350 °C, and calcination time was 1.5 h) and Cd adsorption (i.e., initial pH of 6.0, adsorption temperature of 25 °C, and adsorbent dosage of 1.0 g/L), the maximum adsorption capacity of the modified attapulgite toward Cd was 149.9 mg/g. Mechanisms of surface complexation and electrostatic attraction were involved in the efficient removal of Cd. The adsorption of Cd increased with pH due to the increased electrostatic attraction. Metal cations inhibited the Cd adsorption through competing with the adsorption sites. The changes of Gibbs-free energy during the adsorption of Cd were lower than zero and decreased with temperature, suggesting the process was spontaneous and endothermic. The removal efficiency of Cd after 5 times of recycle maintained at 82% of that of the raw modified attapulgite demonstrated the stability of the adsorbent. These results suggested that the modified attapulgite is robust for Cd removal and is promising for land application.


Subject(s)
Iron , Water Pollutants, Chemical , Cadmium/analysis , Water Pollutants, Chemical/analysis , Clay , Adsorption , Hydrogen-Ion Concentration , Kinetics
13.
Micromachines (Basel) ; 14(11)2023 Oct 29.
Article in English | MEDLINE | ID: mdl-38004869

ABSTRACT

Laser polishing is a noncontact and efficient processing method for surface treatment of different materials. It removes surface material and improves its quality by means of a laser beam that acts directly on the surface of the material. The material surface roughness is a major criterion that evaluates the polishing effect when alumina ceramics are polished by a laser. In this study, the effects of three factors, namely, laser power, scanning speed, and pulse frequency, on the surface roughness were investigated through orthogonal tests. The optimum polishing parameters were obtained through a comparison of the experimental results. Compared to the initial surface roughness (Ra = 1.624 µm), the roughness of the polished surface was reduced to Ra = 0.549 µm. A transient two-dimensional model was established by the COMSOL Multiphysics 5.5, and the flow condition of the material inside the molten pool of laser-polished alumina ceramics and the surface morphology of the smoothing process were investigated by utilizing the optimal polishing parameters obtained from the experiments. The simulation results showed that in the process of laser polishing, the fluid inside the molten pool flowed from the peaks to the valleys under the action of capillary force, and the inside of the molten pool tended to be smoothened gradually. In order to verify the correctness of the numerical model, the surface profile at the same position on the material surface was compared, and the results showed that the maximum error between the numerical simulation and the experimental results was 17.8%.

14.
Materials (Basel) ; 16(19)2023 Oct 08.
Article in English | MEDLINE | ID: mdl-37834736

ABSTRACT

To ensure a limited washout loss rate and the self-compaction of underwater concrete, the mix proportion design of underwater non-dispersible concrete is a key technology that has not been completely mastered. In view of this aspect, an orthogonal test study was carried out in this paper on the workability, washout resistance, and compressive strength of underwater non-dispersible concrete. Six factors with five levels were considered, which included the water/binder ratio, the sand ratio, the maximum particle size of the coarse aggregate, the content of the dispersion resistance agent, the content of superplasticizer, and the dosage of fly ash. Using a range and variance analysis, the sensitivity and significance of these factors were analyzed on the slump and slump-flow, the flow time, the washout loss rate, the pH value, and the compressive strength at the curing ages of 7 days and 28 days. The results indicated that the water/binder ratio and the content of the dispersion resistance agent were strong in terms of their sensitivity and significance on the workability and washout resistance, and the water/binder ratio and the dosage of fly ash were strong in terms of their sensitivity and significance on the compressive strength. With the joint fitness of the test results, formulas for predicting the slump-flow, washout loss rate, and compressive strength of underwater non-dispersible concrete were proposed considering the main impact factors.

15.
Front Plant Sci ; 14: 1168900, 2023.
Article in English | MEDLINE | ID: mdl-37674735

ABSTRACT

Introduction: Root cutting is an important process in garlic field harvesting but is the weakest link in the full mechanization of garlic production. To improve the current situation of technological backwardness and poor operational quality of mechanized garlic root-cutting in the main garlic-producing regions of China, this study combined the physical characteristics and agronomic requirements of garlic plants, and proposed an innovative floating root-cutting technology for garlic combine harvesters that enables the top alignment of bulb, adaptive profiling floating of cutter, and embedded cutting of roots. Methods: Through the kinematic analysis of the floating cutting process, the coordinate equations of the initial contact point of the bulb, the mathematical model of the floating displacement of the cutting component. Using computer simulation techniques, the dynamic simulation study of the floating cutting process was carried out in the rigid-flexible coupling numerical simulation model of root-cutting mechanism and garlic plant. The influence law of garlic conveying speed, extension spring preload force and stiffness on the floating displacement of the cutting component and the angular velocity of swing arm reset and its formation causes were analyzed by a single-factor simulation test. The key operating parameters of the root-cutting mechanism were optimized through the computerized virtual orthogonal test and fuzzy comprehensive evaluation. Results and discussion: The significance of the factors affecting the floating cutting performance decreased in the following order: extension spring preload force, garlic conveying speed and extension spring stiffness. The optimal parameter combination of the root cutting mechanism obtained from the optimization were as follow: extension spring preload force was 16 N, garlic conveying speed was 0.8 m/s, and extension spring stiffness was 215 N/m. Tests conducted with the optimal parameter combination yielded a root excision rate of 92.72%, which meets the requirements of Chinese garlic field harvesting quality. This study provides computer simulation optimization methods for the optimal design of the root-cutting mechanism, and also provides technical and equipment support for the full mechanization of garlic production in China.

16.
Materials (Basel) ; 16(18)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37763598

ABSTRACT

In this study, the research aim is to enhance the activity index of activated coal gangue and study its activation mechanism. The activation process of coal gangue was optimized through orthogonal tests, and the Back-Propagation (BP) neural network model was improved using a genetic algorithm. With the effects of grinding duration, calcination temperature, and calcination duration, the morphological changes and phase transformation processes of coal gangue were studied at the micro and meso levels to clarify the activation mechanism. The results indicated that the effect of calcination temperature on the strength activity index of coal gangue was most significant, followed by grinding duration and calcination duration. The potential activity of coal gangue can be effectively stimulated through mechanical and thermal activation, and the content of potential active minerals in coal gangue powders was also increased. The activation process of coal gangue for the optimal scheme was obtained as grinding at 76 min first and thermal treatment at 54 min at 749 °C. As the thermal activation under 950 °C, some unstable external hydroxyls, and internal hydroxyls in kaolinite from coal gangue were removed, the AlⅥ-O octahedron was destroyed, and kaolinite was transformed into spatially disordered metakaolinite with very high activity.

17.
Front Bioeng Biotechnol ; 11: 1265420, 2023.
Article in English | MEDLINE | ID: mdl-37720322

ABSTRACT

The screening of ligninolytic enzyme-producing fungal species in samples led to the identification of Paracremonium sp. LCB1, Clonostachys compactiuscula LCD1 and C. compactiuscula LCN1. Both these strains produced high levels of hemicellulase and ligninolytic enzyme production over a relatively short fermentation period of 3-5 days while exhibiting very low levels of cellulase activity. The results of the tests indicated that co-culturing LCB1 and LCN1 enhanced the ability to degrade lignin, and the ideal degrading circumstances and internal degrading mechanism of combined fungi were examined. The results showed that under conditions of temperature (30°C), pH (5), culture time (40 d), solid-liquid ratio (1:2.5), the pretreatment of bamboo culms with a co-culture of LCB1 and LCN1 resulted in a pronounced 76.37% drop in lignin weight and a high lignin/cellulose loss ratio (>10). Fourier transform infrared spectroscopy, X-ray diffractometry, and scanning electron microscopy were used to characterize the physicochemical properties of these bio-pretreated bamboo culms, further confirming that LCB1 and LCN1 co-culture represents an effective approach to bamboo delignification.

18.
Materials (Basel) ; 16(16)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37629980

ABSTRACT

Construction and agricultural waste recycling have gained more and more attention recently as renewable resources. Straw and construction waste, both of which are widespread in northern Fujian, were investigated in this research. The orthogonal test was used to investigate the effects of recycled aggregate, straw, and glazed hollow beads on the mechanical and thermal properties of recycled insulation concrete. The influence of different factors on the macroscopic characteristics of recycled insulation concrete was examined using scanning electron microscopy (SEM). The optimal mix proportion for recycled insulation concrete that satisfies mechanical performance standards and provides superior insulation performance was then determined using the total efficacy coefficient method. According to the research findings, the heat conductivity of recycled insulation concrete decreases as its dried density decreases. A 100% recycled coarse aggregate replacement rate, 1% straw content, and 10% glazed hollow beads replacement rate are the optimal mix ratios for recycled insulation concrete. With a compressive strength of 20.98 MPa, a splitting tensile strength of 2.01 MPa, a thermal conductivity of 0.3776 W/(m·K), and a dry density of 1778.66 kg/m3, recycled insulation concrete has the optimal mix ratio. Recycled insulation concrete is a novel form of eco-friendly, energy-saving concrete that aims to achieve low-carbon energy savings and sustainable development by combining resource recycling with building energy savings to realize the recycling of solid waste resources, which has significant environmental, social, and economic benefits and broad market application potential.

19.
Materials (Basel) ; 16(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37569983

ABSTRACT

This study assessed the modification effects of zirconia-based nanopowder and cement contents and curing age on the mechanical properties of silty soil. The orthogonal test design was applied to derive the best combination of each influencing factor using the lateral unconfined compressive test. Two-dimensional particle flow code (PFC2D) distinct-element modeling software was also used to fit and analyze the test curves, as well as simulate the triaxial test with the derived parameters. The test results reveal the optimal combination of 20% cement, 2% zirconia-based nanopowder, and 28 d curing age. The extreme difference table was used to plot the orthogonal trend diagram, and cement content was found to be the most significant factor controlling the silty soil strength. The maximum peak stress was 2196.33 kPa under the optimum combination of factors, which could be obtained through the index estimation, and these results were experimentally verified. According to the predicted strength envelope, the cohesive force of nanopowder-cement-modified silty soil in the optimal proportion was 717.11 kPa, and the internal friction angle was 21.05°. Nano zirconium dioxide will accelerate the hydration reaction of cement, the flocculent structure produced by the hydration of cement and soil particles connected to each other, play the role of filling and anchoring, and thus increase the strength of the nano-zirconium dioxide, and the optimal dosage of nano-zirconium dioxide is 2%.

20.
Zhongguo Zhong Yao Za Zhi ; 48(13): 3485-3497, 2023 Jul.
Article in Chinese | MEDLINE | ID: mdl-37475001

ABSTRACT

In order to establish the standardized processing technology of the hot water washing of Euodiae Fructus, this study, based on the traditional processing method of hot water washing of Euodiae Fructus recorded in ancient works and modern processing specifications of traditional Chinese medicine decoction pieces, took the yield of decoction pieces and the content of main components as the indicators and optimized the processing conditions by orthogonal test based on the results of single factor investigation. At the same time, electronic tongue technology was used to analyze the change law of the taste index of Euodiae Fructus during the hot water washing. The results of the single factor investigation showed that the content of the main components in Euodiae Fructus showed some regular changes during the processing. Specifically, the content of chlorogenic acid, hyperin, isorhamnetin-3-O-rutinoside, isorhamnetin-3-O-galactoside, and dehydroevodiamine decreased significantly, with average decreases of-23.75%,-27.80%,-14.04%,-14.03%, and-13.11%, respectively. The content of limonin increased significantly with an average increase of 19.83%. The content of evodiamine, rutaecarpine, evocarpine, and dihydroevocarpine showed fluctuating changes and generally increased, with average variation amplitudes of 0.54%,-3.78%, 2.69%, and 5.13%, respectively. The orthogonal test results showed that the optimum processing parameters for the hot water washing of Euodiae Fructus were as follows: washing time of 2 min, the solid-to-liquid ratio of 1∶10 g·mL~(-1), washing temperature of 80 ℃, washing once, and drying at 50 ℃. After the hot water washing processing, the average yield of Euodiae Fructus pieces was 94.80%. The content of limonin, evodiamine, and rutaecarpine was higher than those of raw pro-ducts, and the average transfer rates were 102.56%, 103.15%, and 105.16%, respectively. The content of dehydroevodiamine was lower than that of the raw products, and the average transfer rate was 83.04%. The results of taste analysis showed that the hot water washing could significantly reduce the salty, astringent, and bitter tastes of Euodiae Fructus. This study revealed the influence of the hot water washing on the content of main components and taste of Euodiae Fructus, and the processing technology of the hot water was-hing of Euodiae Fructus established in this study was stable, feasible, and suitable for industrial production, which laid a foundation for clarifying its processing principle and improving the quality standard and clinical application value of decoction pieces.


Subject(s)
Drugs, Chinese Herbal , Limonins , Taste , Technology , Chromatography, High Pressure Liquid/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...