Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 439
Filter
1.
Int J Biol Macromol ; : 133840, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39004250

ABSTRACT

We previously found that modified citrus pectin (MCP), an inhibitor of pro-inflammatory factor Galectin-3 (Gal-3), has significant anti-inflammatory and chondroprotective effects. In this study, a hyaluronate (HA) gel-based sustained release system of MCP (MCP-HA) was developed as an anti-inflammatory agent for chronic inflammation for osteoarthritis (OA) treatment. The MCP-HA gel was injected into the knee joint cavities of OA rabbit models induced by anterior cruciate ligament transection (ACLT) or modified Hulth method once a week for five weeks. We found that MCP-HA could improve the symptoms and signs of OA, protect articular cartilage from degeneration, suppress synovial inflammation, and therefore alleviate OA progression. Proteomic analysis of the synovial fluid obtained from the knee joints of OA rabbits revealed that MCP-HA synergistically regulated the levels of multiple inflammatory mediators and proteins involved in metabolic pathways. Taken together, our results demonstrate that the MCP-HA shows a synergistic effect of HA and MCP by modulating both inflammation and metabolic processes, thereby alleviating OA progression. The MCP-HA sustained release system has promising potential for long-term use in OA treatment.

2.
Cureus ; 16(5): e60437, 2024 May.
Article in English | MEDLINE | ID: mdl-38883007

ABSTRACT

Modular dual mobility total hip arthroplasty (THA) can be associated with complications if the liner is malseated, which can be unappreciated intraoperatively. A meticulous surgical technique is needed to ensure that the liner is perfectly seated. In addition, a malseated liner can be missed if the postoperative films are not carefully reviewed by the surgeon. We present three cases of THA associated with a malseated modular dual mobility liner. In one case, the malpositioned liner was appreciated intraoperatively, but it was wedged in place and could not be removed. The entire shell needed to be revised. In two other cases, malseating was not detected intra-operatively. Both were appreciated postoperatively, and early revision surgery was needed.

3.
Comput Biol Med ; 178: 108791, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38905892

ABSTRACT

INTRODUCTION: Traumatic bone marrow lesions (BML) are frequently identified on knee MRI scans in patients following an acute full-thickness, complete ACL tear. BMLs coincide with regions of elevated localized bone loss, and studies suggest these may act as a precursor to the development of post-traumatic osteoarthritis. This study addresses the labour-intensive manual assessment of BMLs by using a 3D U-Net for automated identification and segmentation from MRI scans. METHODS: A multi-task learning approach was used to segment both bone and BML from T2 fat-suppressed (FS) fast spin echo (FSE) MRI sequences for BML assessment. Training and testing utilized datasets from individuals with complete ACL tears, employing a five-fold cross-validation approach and pre-processing involved image intensity normalization and data augmentation. A post-processing algorithm was developed to improve segmentation and remove outliers. Training and testing datasets were acquired from different studies with similar imaging protocol to assess the model's performance robustness across different populations and acquisition conditions. RESULTS: The 3D U-Net model exhibited effectiveness in semantic segmentation, while post-processing enhanced segmentation accuracy and precision through morphological operations. The trained model with post-processing achieved a Dice similarity coefficient (DSC) of 0.75 ± 0.08 (mean ± std) and a precision of 0.87 ± 0.07 for BML segmentation on testing data. Additionally, the trained model with post-processing achieved a DSC of 0.93 ± 0.02 and a precision of 0.92 ± 0.02 for bone segmentation on testing data. This demonstrates the approach's high accuracy for capturing true positives and effectively minimizing false positives in the identification and segmentation of bone structures. CONCLUSION: Automated segmentation methods are a valuable tool for clinicians and researchers, streamlining the assessment of BMLs and allowing for longitudinal assessments. This study presents a model with promising clinical efficacy and provides a quantitative approach for bone-related pathology research and diagnostics.

4.
J Pers Med ; 14(6)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38929825

ABSTRACT

Osteoarthritis (OA) is the most common complex musculoskeletal disorder, resulting from the degeneration of the articular cartilage and characterized by joint pain and dysfunction that culminate in progressive articular cartilage loss. We present our experience in the management of hip and knee OA by means of the intra-articular injection of fat micrograft, describing our approach, which was developed from the belief in the powerful reparative effect of autologous fat graft on damaged tissue, as well as its natural lubricating effect on the joints. Inclusion criteria were as follows: men and women, aged 20 to 80 years, that referred articular pain of the hips and/or knees, showing initial-stage degenerative OA. From October 2018 to July 2023, a total of 250 patients underwent treatment with the Sefficare® device (SEFFILINE srl, Bologna, Italy). The Superficial Enhanced Fluid Fat Injection device was used to perform autologous regenerative treatments in a safe, standardized, easy, and effective way on 160 women, 64%, and 90 men, 36%. A total of 190 procedures (76%) involved the knees, with 20 patients who were bilaterally treated, while 60 procedures, all unilateral, involved the hips (24%). The mean age at treatment was 52.4 years. Before treatment, each patient had undergone X-rays and Magnetic Resonance Imaging (MRI) of the painful hip/knee to evaluate and grade the articular OA. Postoperatively, each patient was assessed after one, three, six, and twelve months. The donor site postoperative course was uneventful other than minimal discomfort. Clinically, the ROM (range of motion) of the treated knee/hip increased an average of 10 degrees 3 months after treatment, but the stiffness was reduced, as reported by the patients. The VAS (Visual Analog Scale) was submitted at 3, 6, and 12 months, demonstrating a progressive reduction of pain, with the best score obtained at six months postoperatively. In total, 85% of patients were satisfied one year after treatment, with a considerable improvement in pain and quality of life. The satisfactory outcome of this minimally invasive procedure indicates that the intra-articular injection of fat micrograft can replace or considerably delay the need for the classical major joint replacement surgery, thanks to its impact on the quality of life of patients and financial cost.

5.
Mil Med Res ; 11(1): 40, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38902808

ABSTRACT

Fibroblast growth factor (FGF) signaling encompasses a multitude of functions, including regulation of cell proliferation, differentiation, morphogenesis, and patterning. FGFs and their receptors (FGFR) are crucial for adult tissue repair processes. Aberrant FGF signal transduction is associated with various pathological conditions such as cartilage damage, bone loss, muscle reduction, and other core pathological changes observed in orthopedic degenerative diseases like osteoarthritis (OA), intervertebral disc degeneration (IVDD), osteoporosis (OP), and sarcopenia. In OA and IVDD pathologies specifically, FGF1, FGF2, FGF8, FGF9, FGF18, FGF21, and FGF23 regulate the synthesis, catabolism, and ossification of cartilage tissue. Additionally, the dysregulation of FGFR expression (FGFR1 and FGFR3) promotes the pathological process of cartilage degradation. In OP and sarcopenia, endocrine-derived FGFs (FGF19, FGF21, and FGF23) modulate bone mineral synthesis and decomposition as well as muscle tissues. FGF2 and other FGFs also exert regulatory roles. A growing body of research has focused on understanding the implications of FGF signaling in orthopedic degeneration. Moreover, an increasing number of potential targets within the FGF signaling have been identified, such as FGF9, FGF18, and FGF23. However, it should be noted that most of these discoveries are still in the experimental stage, and further studies are needed before clinical application can be considered. Presently, this review aims to document the association between the FGF signaling pathway and the development and progression of orthopedic diseases. Besides, current therapeutic strategies targeting the FGF signaling pathway to prevent and treat orthopedic degeneration will be evaluated.


Subject(s)
Fibroblast Growth Factors , Osteoarthritis , Signal Transduction , Humans , Fibroblast Growth Factors/physiology , Fibroblast Growth Factors/metabolism , Signal Transduction/physiology , Osteoarthritis/physiopathology , Fibroblast Growth Factor-23 , Intervertebral Disc Degeneration/physiopathology , Osteoporosis/physiopathology , Osteoporosis/etiology , Sarcopenia/physiopathology , Aging/physiology , Animals
6.
J Zhejiang Univ Sci B ; 25(6): 513-528, 2024 Jun 15.
Article in English, Chinese | MEDLINE | ID: mdl-38910496

ABSTRACT

Osteoarthritis (OA) is a chronic progressive osteoarthropathy in the elderly. Osteoclast activation plays a crucial role in the occurrence of subchondral bone loss in early OA. However, the specific mechanism of osteoclast differentiation in OA remains unclear. In our study, gene expression profiles related to OA disease progression and osteoclast activation were screened from the Gene Expression Omnibus (GEO) repository. GEO2R and Funrich analysis tools were employed to find differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses demonstrated that chemical carcinogenesis, reactive oxygen species (ROS), and response to oxidative stress were mainly involved in osteoclast differentiation in OA subchondral bone. Furthermore, fourteen DEGs that are associated with oxidative stress were identified. The first ranked differential gene, heme oxygenase 1 (HMOX1), was selected for further validation. Related results showed that osteoclast activation in the pathogenesis of OA subchondral bone is accompanied by the downregulation of HMOX1. Carnosol was revealed to inhibit osteoclastogenesis by targeting HMOX1 and upregulating the expression of antioxidant protein in vitro. Meanwhile, carnosol was found to alleviate the severity of OA by inhibiting the activation of subchondral osteoclasts in vivo. Our research indicated that the activation of osteoclasts due to subchondral bone redox dysplasia may serve as a significant pathway for the advancement of OA. Targeting HMOX1 in subchondral osteoclasts may offer novel insights for the treatment of early OA.


Subject(s)
Heme Oxygenase-1 , Osteoarthritis , Osteoclasts , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Osteoarthritis/pathology , Osteoarthritis/metabolism , Osteoarthritis/genetics , Osteoclasts/metabolism , Humans , Animals , Oxidative Stress , Cell Differentiation , Osteogenesis , Male , Mice , Reactive Oxygen Species/metabolism
7.
Ann Transl Med ; 12(3): 43, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38911554

ABSTRACT

Background: Several tissues contribute to the onset and advancement of knee osteoarthritis (OA). One tissue type that is worthy of closer evaluation, particularly in the context of sex, is the infrapatellar fat pad (IFP). We previously demonstrated that removal of the IFP had short-term beneficial effects for a cohort of male Dunkin-Hartley guinea pigs. The present project was designed to elucidate the influence of IFP removal in females of this OA-prone strain. It was hypothesized that resection of the IFP would reduce the development of OA in knees of a rodent model predisposed to the disease. Methods: Female guinea pigs (n=16) were acquired at an age of 2.5 months. Surgical removal of the IFP and associated synovium complex (IFP/SC) was executed at 3 months of age. One knee had the IFP/SC resected; a comparable sham surgery was performed on the contralateral knee. All animals were subjected to voluntary enclosure monitoring and dynamic weight-bearing, as well as compulsory treadmill-based gait analysis monthly; baseline data was collected prior to surgery. Guinea pigs were euthanized at 7 months. Knees from eight animals were evaluated via histology, mRNA expression, and immunohistochemistry (IHC); knees from the remaining eight animals were allocated to microcomputed tomography (microCT), biomechanical analyses (whole joint testing and indentation relaxation testing), and atomic absorption spectroscopy (AAS). Results: Fibrous connective tissue (FCT) replaced the IFP/SC. Mobility/gait data indicated that unilateral IFP/SC removal did not affect bilateral hindlimb movement. MicroCT demonstrated that osteophytes were not a significant feature of OA in this sex; however, trabecular thickness (TbTh) in medial femorae decreased in knees containing the FCT. Histopathology scores were predominantly influenced by changes in the lateral tibia, which demonstrated that histologic signs of OA were increased in knees containing the native IFP/SC versus those with the FCT. Similarly, indentation testing demonstrated higher instantaneous and equilibrium moduli in the lateral tibial articular cartilage of control knees with native IFPs. AAS of multiple tissue types associated with the knee revealed that zinc was the major trace element influenced by removal of the IFP/SC. Conclusions: Our data suggest that the IFP/SC is a significant component driving knee OA in female guinea pigs and that resection of this tissue prior to disease has short-term benefits. Specifically, the formation of the FCT in place of the native tissue resulted in decreased cartilage-related OA changes, as demonstrated by reduced Osteoarthritis Research Society International (OARSI) histology scores, as well as changes in transcript, protein, and cartilage indentation analyses. Importantly, this model provides evidence that sex needs to be considered when investigating responses and associated mechanisms seen with this intervention.

8.
ACS Biomater Sci Eng ; 10(7): 4437-4451, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38885017

ABSTRACT

Osteoarthritis (OA) is a chronic joint disease characterized by cartilage imbalance and disruption of cartilage extracellular matrix secretion. Identifying key genes that regulate cartilage differentiation and developing effective therapeutic strategies to restore their expression is crucial. In a previous study, we observed a significant correlation between the expression of the gene encoding casein kinase-2 interacting protein-1 (CKIP-1) in the cartilage of OA patients and OA severity scores, suggesting its potential involvement in OA development. To test this hypothesis, we synthesized a chondrocyte affinity plasmid, liposomes CKIP-1, to enhance CKIP-1 expression in chondrocytes. Our results demonstrated that injection of CAP-Lipos-CKIP-1 plasmid significantly improved OA joint destruction and restored joint motor function by enhancing cartilage extracellular matrix (ECM) secretion. Histological and cytological analyses confirmed that CKIP-1 maintains altered the phosphorylation of the signal transduction molecule SMAD2/3 of the transforming growth factor-ß (TGF-ß) pathway by promoting the phosphorylation of the 8T, 416S sit. Taken together, this work highlights a novel approach for the precise modulation of chondrocyte phenotype from an inflammatory to a noninflammatory state for the treatment of OA and may be broadly applicable to patients suffering from other arthritic diseases.


Subject(s)
Chondrocytes , Homeostasis , Liposomes , Osteoarthritis , Chondrocytes/metabolism , Osteoarthritis/therapy , Osteoarthritis/pathology , Osteoarthritis/metabolism , Liposomes/chemistry , Humans , Animals , Carrier Proteins/metabolism , Carrier Proteins/genetics , Male , Phosphorylation , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Transforming Growth Factor beta/metabolism , Extracellular Matrix/metabolism , Smad3 Protein/metabolism , Smad3 Protein/genetics , Signal Transduction , Plasmids/genetics , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Smad2 Protein/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics
9.
Ann Palliat Med ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38859594

ABSTRACT

Radiofrequency ablation (RFA) of the articular branches of the femoral and obturator nerves (the innervation of the anterior capsule of the hip) is an emerging treatment for chronic hip pain. Body mass index (BMI) greater than 30, older age, large acetabular/femoral head bone marrow lesions, chronic widespread pain, depression, and female sex increase the risk of developing hip pain. Chronic hip pain is a common condition with a wide range of etiologies, including hip osteoarthritis (OA), labral tears, osteonecrosis, post total hip arthroplasty (THA), post-operative dislocation/fracture, and cancer. The most common and well studied is hip OA. Management of chronic hip pain includes conservative measures (pharmacotherapy and exercise), surgery, and percutaneous procedures such as RFA. While surgery is effective, those whose medical comorbidities preclude surgery, those who do not wish to have surgery, and those whose pain persists after surgery (11-36% of patients) could benefit from RFA. Because of the aforementioned circumstances, hip RFA is often a palliative intervention. Hip RFA is an effective treatment, one recent retrospective study of 138 patients found 69% had >50% pain relief at 6 months. The most frequent adverse event reported for hip RFA is pain from needle placement. No serious bleeding events have been reported, despite the valid concern of the procedure's proximity to vasculature. This descriptive review details the pathophysiology of hip pain, its etiologies, its clinical presentation, conservative management, the anatomy/technique of hip RFA, hip RFA efficacy, and RFA adverse events.

10.
Cureus ; 16(4): e57690, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38711706

ABSTRACT

Background Knee osteoarthritis (KOA) is a prevalent degenerative disease that affects the knee joints, particularly among individuals aged over 40 years. It leads to pain, stiffness, and reduced quality of life; affects approximately 300 million individuals worldwide; and is increasing, particularly in developed nations. Although treatments for KOA range from conservative measures to surgical interventions, such as total knee arthroplasty (TKA), the financial burden of TKA in many countries underscores the urgent need for effective conservative therapies. The pathophysiology of KOA involves articular cartilage degeneration, increased subchondral bone turnover, synovitis, and periarticular soft tissue contracture. Abnormal bone turnover, intensified by factors, such as weight gain and knee injury, precedes cartilage degeneration. Synovitis, characterized by inflammation in the synovial tissue, plays a crucial role in perpetuating the disease by triggering a cascade of catabolic and proinflammatory mediators, including cytokines, such as interleukin (IL)-1 beta, tumor necrosis factor-alpha, and IL-13. Periostin, an extracellular matrix protein, is implicated in KOA progression, with its levels increasing with disease severity. Materials & methods In this study, the preventive effect of boiogito (BOT), a traditional herbal medicine, on periostin secretion in human fibroblast-like synoviocytes (hFLS) stimulated by IL-13 was investigated. Synoviocyte Growth Medium and recombinant human IL-13 were used for cell culture and stimulation. BOT was dissolved in phosphate-buffered saline and applied to cell cultures. Periostin secretion and mRNA expression were measured using enzyme-linked immunosorbent assay and quantitative reverse transcription polymerase chain reaction, respectively. Cell viability was assessed using an MTT assay, and signal transducer and activator of transcription factor 6 (STAT6) phosphorylation was examined using Western blotting. Results IL-13 stimulation of hFLS significantly increased periostin secretion, with levels rising above 20 ng/mL after 72 h of stimulation. Pretreatment with BOT dose-dependently suppressed periostin secretion, with doses of 1,000 µg/mL significantly reducing periostin levels. Furthermore, BOT inhibited periostin mRNA expression and STAT6 phosphorylation in IL-13-stimulated hFLS, suggesting its potential in modulating IL-13-mediated inflammatory pathways in KOA. Conclusion This study demonstrated the preventive effect of BOT on periostin secretion in IL-13-stimulated hFLS, highlighting its potential as a therapeutic agent for KOA. By inhibiting periostin production and downstream signaling pathways, BOT may offer a promising conservative treatment option for KOA, addressing the inflammatory cascade implicated in disease progression. Further research is warranted to elucidate the specific herbal components responsible for the therapeutic effects of BOT and to validate its efficacy in clinical settings.

11.
Animal Model Exp Med ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720455

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is a common joint disease, and existing drugs cannot cure OA, so there is an urgent need to identify new targets. Mitophagy plays an important role in OA; however, the role of mitophagy in the OA immune system is not yet clear. METHODS: In this study, differential analysis and enrichment analysis were used to identify mitophagy-related genes (MRGs) with differential expression in OA and the functional pathways involved in OA. Subsequently, two machine learning methods, RF and LASSO, were used to screen MRGs with diagnostic value and construct nomograms. At the same time, the relationship between mitophagy and OA immune response was explored by immunoinfiltration analysis. RESULTS: Forty-three differentially MRGs were identified in OA, of which six MRGs (GABARAPL2, PARL, GABARAPL1, JUN, RRAS, and SNX7) were associated with the diagnosis of OA. The ROC analysis results show that these 6 MRGs have high predictive accuracy in the diagnosis of OA. In immune infiltration analysis, we found that the abundance of significantly different immune cells in OA was mostly upregulated. In addition, the expression of diagnostic-related MRGs is correlated with changes in the abundance of immune cells in OA. CONCLUSION: This study demonstrates that six MRGs can be used as diagnostic biomarkers. The expression of diagnostic-related MRGs is correlated with changes in the abundance of immune cells in OA. At the same time, mitophagy may affect the immune microenvironment of OA by regulating immune cells, ultimately leading to the progression of OA.

12.
J Orthop Translat ; 46: 79-90, 2024 May.
Article in English | MEDLINE | ID: mdl-38817242

ABSTRACT

Background: The cartilage stem/progenitor cells (CSPC) play a critical role in maintaining cartilage homeostasis. However, the effects of phenotypic fluctuations of CSPC on cartilage degeneration and the role of CSPC in the pathogenesis of OA is largely unknown. Methods: The cartilage samples of 3 non-OA and 10 OA patients were collected. Human CSPC (hCSPC) derived from these patients were isolated, identified, and evaluated for cellular functions. Additionally, chondrocytes derived from OA patients were isolated. The effect of Yes-associated protein (YAP) expression on hCSPC was investigated in vitro. The OA rat model was established by Hulth's method. Lentivirus-mediated YAP (Lv-YAP) or lentivirus-mediated YAP RNAi (Lv-YAP-RNAi) was injected intra-articularly to modulate YAP expression in rat joints. In addition, allogeneic rat CSPC (rCSPC) overexpressing or silencing YAP were transplanted by intra-articularly injection. We also evaluated the functions of rCSPC and the OA-related cartilage phenotype in the rat model. Finally, the transcriptome of OA rCSPC overexpressing YAP was examined to explore the potential downstream targets of YAP in rCSPC. Results: hCSPC derived from OA patients exhibited differential chondrogenesis capacity. Among them, a subset of hCSPC showed pronounced dysfunction, including impaired chondrogenic differentiation, inhibition of proliferation and migration, and downregulation of lubricin. Additionally, YAP was lowly expressed in quiescent non-OA hCSPC, upregulated in activated OA hCSPC, but significantly downregulated in dysfunctional OA hCSPC. Notably, the overexpression of YAP in OA hCSPC improved the proliferation, lubricin production, cell migration, and senescence, while silencing YAP had the opposite effect. In vivo, upregulation of YAP in the joint delayed OA progression and improved the cartilage regeneration capacity of rCSPC. Using transcriptomic analysis, we found that YAP may regulate rCSPC function by upregulating Baculoviral IAP repeat-containing 2 (BIRC2). Importantly, the knockdown of BIRC2 partly blocked the regulation of YAP on the CSPC function. Conclusion: Dysfunction of CSPC compromises the intrinsic repair capacity of cartilage and impairs cartilage homeostasis in OA. Notably, the transcriptional co-activator YAP plays a critical role in maintaining CSPC function through potential target gene BIRC2. The Translational Potential of this Article: In this study, we observed targeting the YAP-BIRC2 axis improved the CSPC function and restored the cartilage homeostasis in OA. This study provides a potential stem cell-modifying OA therapy.

13.
J Pers Med ; 14(5)2024 May 08.
Article in English | MEDLINE | ID: mdl-38793077

ABSTRACT

Objective: This study aimed to evaluate the quality and readability of information generated by ChatGPT versions 3.5 and 4 concerning platelet-rich plasma (PRP) therapy in the management of knee osteoarthritis (OA), exploring whether large language models (LLMs) could play a significant role in patient education. Design: A total of 23 common patient queries regarding the role of PRP therapy in knee OA management were presented to ChatGPT versions 3.5 and 4. The quality of the responses was assessed using the DISCERN criteria, and readability was evaluated using six established assessment tools. Results: Both ChatGPT versions 3.5 and 4 produced moderate quality information. The quality of information provided by ChatGPT version 4 was significantly better than version 3.5, with mean DISCERN scores of 48.74 and 44.59, respectively. Both models scored highly with respect to response relevance and had a consistent emphasis on the importance of shared decision making. However, both versions produced content significantly above the recommended 8th grade reading level for patient education materials (PEMs), with mean reading grade levels (RGLs) of 17.18 for ChatGPT version 3.5 and 16.36 for ChatGPT version 4, indicating a potential barrier to their utility in patient education. Conclusions: While ChatGPT versions 3.5 and 4 both demonstrated the capability to generate information of moderate quality regarding the role of PRP therapy for knee OA, the readability of the content remains a significant barrier to widespread usage, exceeding the recommended reading levels for PEMs. Although ChatGPT version 4 showed improvements in quality and source citation, future iterations must focus on producing more accessible content to serve as a viable resource in patient education. Collaboration between healthcare providers, patient organizations, and AI developers is crucial to ensure the generation of high quality, peer reviewed, and easily understandable information that supports informed healthcare decisions.

14.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167215, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38714267

ABSTRACT

Osteoarthritis (OA) is a prevalent joint degenerative disease, resulting in a significant societal burden. However, there is currently a lack of effective treatment option available. Previous studies have suggested that Botulinum toxin A (BONT/A), a macromolecular protein extracted from Clostridium Botulinum, may improve the pain and joint function in OA patients, but the mechanism remains elusive. This study was to investigate the impact and potential mechanism of BONT/A on OA in vivo and in vitro experiment. LPS increased the levels of ROS, Fe2+and Fe3+, as well as decreased GSH levels, the ratio of GSH / GSSH and mitochondrial membrane potential. It also enhanced the degeneration of extracellular matrix (ECM) and altered the ferroptosis-related protein expression in chondrocytes. BONT/A rescued LPS-induced decrease in collagen type II (Collagen II) expression and increase in matrix metalloproteinase 13 (MMP13), mitigated LPS-induced cytotoxicity in chondrocytes, abolished the accumulation of ROS and iron, upregulated GSH and the ratio of GSH/ GSSH, improved mitochondrial function, and promoted SLC7A11/GPX4 anti-ferroptosis system activation. Additionally, intra-articular injection of BONT/A inhibited the degradation of cartilage in OA model rats. This chondroprotective effect of BONT/A was reversed by erastin (a classical ferroptosis agonist) and enhanced by liproxstatin-1 (a classic ferroptosis inhibitor). Our research confirms that BONT/A alleviates the OA development by inhibiting the ferroptosis of chondrocytes, which revealed to be a potential therapeutic mechanism for BONT/A treating the OA.


Subject(s)
Botulinum Toxins, Type A , Chondrocytes , Ferroptosis , Osteoarthritis , Phospholipid Hydroperoxide Glutathione Peroxidase , Ferroptosis/drug effects , Chondrocytes/metabolism , Chondrocytes/drug effects , Chondrocytes/pathology , Animals , Botulinum Toxins, Type A/pharmacology , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Osteoarthritis/pathology , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Rats , Male , Lipopolysaccharides/pharmacology , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial/drug effects , Humans
15.
Int J Mol Sci ; 25(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38791285

ABSTRACT

Extracellular vesicles (EVs) have been found to have the characteristics of their parent cells. Based on the characteristics of these EVs, various studies on disease treatment using mesenchymal stem cell (MSC)-derived EVs with regenerative activity have been actively conducted. The therapeutic nature of MSC-derived EVs has been shown in several studies, but in recent years, there have been many efforts to functionalize EVs to give them more potent therapeutic effects. Strategies for functionalizing EVs include endogenous and exogenous methods. In this study, human umbilical cord MSC (UCMSC)-derived EVs were selected for optimum OA treatments with expectation via bioinformatics analysis based on antibody array. And we created a novel nanovesicle system called the IGF-si-EV, which has the properties of both cartilage regeneration and long-term retention in the lesion site, attaching positively charged insulin-like growth factor-1 (IGF-1) to the surface of the UCMSC-derived Evs carrying siRNA, which inhibits MMP13. The downregulation of inflammation-related cytokine (MMP13, NF-kB, and IL-6) and the upregulation of cartilage-regeneration-related factors (Col2, Acan) were achieved with IGF-si-EV. Moreover, the ability of IGF-si-EV to remain in the lesion site for a long time has been proven through an ex vivo system. Collectively, the final constructed IGF-si-EV can be proposed as an effective OA treatment through its successful MMP13 inhibition, chondroprotective effect, and cartilage adhesion ability. We also believe that this EV-based nanoparticle-manufacturing technology can be applied as a platform technology for various diseases.


Subject(s)
Extracellular Vesicles , Insulin-Like Growth Factor I , Mesenchymal Stem Cells , Osteoarthritis , RNA, Small Interfering , Insulin-Like Growth Factor I/metabolism , Extracellular Vesicles/metabolism , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Osteoarthritis/therapy , Osteoarthritis/metabolism , RNA, Small Interfering/genetics , Animals , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 13/genetics
16.
J Clin Med ; 13(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38730996

ABSTRACT

Background: Rapidly progressive osteoarthritis of the hip (RPOH) is a rare syndrome that involves the femoral head and acetabulum. Methods: We analyzed the incidence of RPOH in 2022. The inclusion criteria included a clinical history of pain for 1-6 months and a decrease in joint space of > 2 mm within one year or a decrease in joint space by 50% in that time accompanied by femoral and/or acetabular bone destruction. Exclusion: There are no other destructive arthropathies and no evolutionary radiological image sequence. Results: There were 15 patients, 16 hips, an incidence around 3.17%, a 1:1 laterality ratio, and 1 bilateral affected. The mean average age is 77.35 years. The male/female ratio is 1:2. The average BMI is 31.2. The time of the onset of the symptoms to the patient's diagnosis is 5 months. The functionally modified Harris scale (MHS) had an average score of 30 points. They had surgery hip arthroplasty with a cementless cup in all cases, a revision cup in one of them, and a double mobility cup in the other, with the stem cemented three times. There were no post-surgical complications. Functionally was achieved at 3 months. The average MHS is 70 at 12 months. The average MHS is 85. Conclusions: RPOH is an idiopathic entity characterized by great clinical involvement and rapid radiological evolution. It is most common in women around 77 years of age. The bone quality requires surgical alternatives to implants, and it has good functional recovery post-surgery.

17.
Article in English | MEDLINE | ID: mdl-38601071

ABSTRACT

Osteoarthritis (OA) is a degenerative joint disease with a substantial global burden, causing chronic pain and reduced quality of life. Managing OA efficiently while maximizing healthcare resources is crucial. Health economics and health technology assessment (HTA) are central tools providing a framework to evaluate the clinical, economic, and ethical aspects of healthcare technologies and interventions. This article presents some insights into the role of health economics and the HTA process in OA management. It also illustrates an example of cost-effectiveness analysis in a specific healthcare context, on the basis of a recent clinical trial involving hyaluronic acid treatment for knee OA. While HTA offers valuable insights, it faces challenges like data availability and resource constraints. Integrating health economics into decision-making can enhance patient care and allocate resources effectively in OA and other healthcare domains.

18.
Bioresour Bioprocess ; 11(1): 21, 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38647941

ABSTRACT

Osteoarthritis (OA) of the knee is a common degenerative articular disorder and is one of the main causes of pain and functional disability. Cartilage damage is frequently linked to elevated osteoarthritis incidence. Supercritical carbon dioxide (scCO2) decellularized cartilage graft produced from the porcine cartilage is an ideal candidate for cartilage tissue engineering. In the present study, we derived collagen type II (Col II) solution from the scCO2 decellularized porcine cartilage graft (dPCG) and compared its efficacy with hyaluronic acid (HA) in the surgical medial meniscectomy (MNX) induced post-traumatic osteoarthritis (PTOA) model. Dose-dependent attenuation of the OA (12.3 ± 0.8) progression was observed in the intra-articular administration of Col II solution (7.3 ± 1.2) which significantly decreased the MNX-induced OA symptoms similar to HA. The pain of the OA group (37.4 ± 2.7) was attenuated dose-dependently by Col II solution (45.9 ± 4.1) similar to HA (43.1 ± 3.5) as evaluated by a capacitance meter. Micro-CT depicted a dose-dependent attenuation of articular cartilage damage by the Col II solution similar to HA treatment. A significant (p < 0.001) dose-dependent elevation in the bone volume was also observed in Col II solution-treated OA animals. The protective competence of Col II solution on articular cartilage damage is due to its significant (p < 0.001) increase in the expression of type II collagen, aggrecan and SOX-9 similar to HA. To conclude, intra-articular administration of type II collagen solution and HA reestablished the injured cartilage and decreased osteoarthritis progression in the experimental PTOA model.

19.
Int Immunopharmacol ; 132: 112061, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38608474

ABSTRACT

OBJECTIVE: Osteoarthritis (OA) is a degenerative disease characterized by the gradual degeneration of chondrocytes, involving endoplasmic reticulum (ER) stress. Esculin is a natural compound with antioxidant, anti-inflammatory and anti-tumor properties. However, its impact on ER stress in OA therapy has not been thoroughly investigated. We aim to determine the efficiency of Esculin in OA treatment and its underlying mechanism. METHODS: We utilized the tert-butyl hydroperoxide (TBHP) to establish OA model in chondrocytes. The expression of SIRT1, PERK/eIF2α pathway-related proteins, apoptosis-associated proteins and ER stress-related proteins were detected by Western blot and Real-time PCR. The apoptosis was evaluated by flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining. X-ray imaging, Hematoxylin & Eosin staining, Safranin O staining and immunohistochemistry were used to assess the pharmacological effects of Esculin in the anterior cruciate ligament transection (ACLT) rat OA model. RESULTS: Esculin downregulated the expression of PERK/eIF2α pathway-related proteins, apoptosis-associated proteins and ER stress-related proteins, while upregulated the expression of SIRT1 and Bcl2 in the TBHP-induced OA model in vitro. It was coincident with the results of TUNEL staining and flow cytometry. We further confirmed the protective effect of Esculin in the rat ACLT-related model. CONCLUSION: Our results suggest the potential therapeutic value of Esculin on osteoarthritis. It probably inhibits the PERK-eIF2α-ATF4-CHOP pathway by upregulating SIRT1, thereby mitigating endoplasmic reticulum stress and protecting chondrocytes from apoptosis.


Subject(s)
Apoptosis , Chondrocytes , Disease Models, Animal , Eukaryotic Initiation Factor-2 , Osteoarthritis , Oxidative Stress , Rats, Sprague-Dawley , Signal Transduction , Sirtuin 1 , Transcription Factor CHOP , eIF-2 Kinase , Animals , Chondrocytes/drug effects , Chondrocytes/metabolism , Chondrocytes/pathology , Sirtuin 1/metabolism , Sirtuin 1/genetics , eIF-2 Kinase/metabolism , eIF-2 Kinase/genetics , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Osteoarthritis/pathology , Eukaryotic Initiation Factor-2/metabolism , Transcription Factor CHOP/metabolism , Transcription Factor CHOP/genetics , Rats , Oxidative Stress/drug effects , Male , Signal Transduction/drug effects , Apoptosis/drug effects , Endoplasmic Reticulum Stress/drug effects , Cells, Cultured
20.
J Nanobiotechnology ; 22(1): 157, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589904

ABSTRACT

Osteoarthritis (OA) is a common degenerative joint disease that can cause severe pain, motor dysfunction, and even disability. A growing body of research indicates that gut microbiota and their associated metabolites are key players in maintaining bone health and in the progression of OA. Short-chain fatty acids (SCFAs) are a series of active metabolites that widely participate in bone homeostasis. Gold nanoparticles (GNPs) with outstanding anti-bacterial and anti-inflammatory properties, have been demonstrated to ameliorate excessive bone loss during the progression of osteoporosis (OP) and rheumatoid arthritis (RA). However, the protective effects of GNPs on OA progression are not clear. Here, we observed that GNPs significantly alleviated anterior cruciate ligament transection (ACLT)-induced OA in a gut microbiota-dependent manner. 16S rDNA gene sequencing showed that GNPs changed gut microbial diversity and structure, which manifested as an increase in the abundance of Akkermansia and Lactobacillus. Additionally, GNPs increased levels of SCFAs (such as butyric acid), which could have improved bone destruction by reducing the inflammatory response. Notably, GNPs modulated the dynamic balance of M1/M2 macrophages, and increased the serum levels of anti-inflammatory cytokines such as IL-10. To sum up, our study indicated that GNPs exhibited anti-osteoarthritis effects via modulating the interaction of "microbiota-gut-joint" axis, which might provide promising therapeutic strategies for OA.


Subject(s)
Gastrointestinal Microbiome , Metal Nanoparticles , Gold/pharmacology , Metal Nanoparticles/therapeutic use , Fatty Acids, Volatile , Anti-Inflammatory Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...