Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 646
Filter
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124716, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38991617

ABSTRACT

The objective of this study was to evaluate the ability of a handheld near-infrared device (900-1600 nm) to predict fertility and sex (male and female) traits in-ovo. The NIR reflectance spectra of the egg samples were collected on days 0, 7, 14 and 18 of incubation and the data was analysed using principal component analysis (PCA), linear discriminant analysis (LDA) and support vector machines classification (SVM). The overall classification rates for the prediction of fertile and infertile egg samples ranged from 73 % to 84 % and between 93 % to 95 % using LDA and SVM classification, respectively. The highest classification rate was obtained on day 7 of incubation. The classification between male and female embryos achieved lower classification rates, between 62 % and 68 % using LDA and SVM classification, respectively. Although the classification rates for in-ovo sexing obtained in this study are higher than those obtained by chance (50 %), the classification results are currently not sufficient for industrial in-ovo sexing of chicken eggs. These results demonstrated that short wavelengths in the NIR range may be useful to distinguish between fertile and infertile egg samples at days 7 and 14 during incubation.

2.
J Pharm Pharmacol ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989974

ABSTRACT

OBJECTIVES: Patients with type 2 diabetes or prolonged diabetic condition are webbed into cardiac complications. This study aimed to ascertain the utility of chick embryo as an alternative to the mammalian model for type 2 diabetes-induced cardiac complications and chrysin as a protective agent. METHODS: Diabetes was activated in ovo model (chick embryo) using glucose along with ß-hydroxybutyric acid. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, Alamar, and Kenacid blue assay were used to compare with chrysin-administered group. Blood glucose level, total cholesterol, triglyceride, and high-density lipoprotein were considered as endpoints. Diabetes was induced in Wistar albino rats by administering a high-fat diet and a subdued dose of streptozotocin (35 mg/kg, b.w). Percentage of glycated hemoglobin, creatinine kinase-MB, tumor necrosis factor-α, and C-reactive protein were evaluated and compared with chrysin administered group. KEY FINDINGS: Chrysin treatment improved elevated blood glucose levels and dyslipidemia in a diabetic group of whole embryos. Condensed cellular growth and protein content as well as enhanced cytotoxicity in ovo were shielded by chrysin. Chrysin reduced cardiac and inflammatory markers in diabetic rats and provided cellular protection to damage the heart of diabetic rats. CONCLUSION: The protective action of chrysin in ovo model induced a secondary complication associated with diabetes, evidenced that the ovo model is an effective alternative in curtailing higher animal use in scientific research.

3.
Foods ; 13(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38998609

ABSTRACT

Though Italy is a native land of Mediterranean diet, its adherence in the Italian population is low, witnessed by the high rates of overweight in its inhabitants. Vegetarian dietary patterns (i.e., lacto-ovo-vegetarian and vegan) are increasing in western countries, and also in Italy, where 9.5% of the population self-declared as vegetarian in 2023. Though the vegetarian diet has been associated with beneficial health effects, speculation on its alleged nutrient inadequacy exists. For this reason, we assessed the nutrient composition of the diet of 470 participants enrolled in an online survey (the INVITA study), who completed a weighted food questionnaire on three different days. Participants were divided into four dietary groups obtained according to their self-declared dietary intakes: 116 Meat Eaters (MEs), 49 Fish Eaters (FEs), 116 Lacto-Ovo-Vegetarians (LOVs), and 189 VegaNs (VNs). The mean intake of most of the main nutrients was similar among all groups and within the normal range expected for the Italian population, supporting the adequacy of diets within our Italian sample, especially the LOV and VN diet. Since the Mediterranean diet is a plant-based diet, some of its components still persist in the current Italian diet, representing a staple also for people adopting a vegetarian diet.

4.
Nutrients ; 16(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38999858

ABSTRACT

The aim of this systematic review and meta-analysis was to examine the effects of plant-based diets on markers of insulin sensitivity in people with overweight/obesity, prediabetes, or type 2 diabetes (T2D). A systematic literature search in MEDLINE, Embase, CINAHL, and CENTRAL was conducted, and randomised controlled trials (RCTs) investigating the effect of plant-based diets (vegan, ovo-vegetarian, lacto-vegetarian, and lacto-ovo-vegetarian) for ≥14 d on markers of insulin sensitivity in adults (≥18 years) with BMI ≥ 25 kg/m2, prediabetes, or T2D were eligible. We identified eight RCTs, including 716 participants. In comparison with control diets, plant-based diets improved Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) (-0.97, 95% confidence interval (CI) (-1.67, -0.27), p = 0.007) and fasting insulin (-4.13 µU/mL, 95% CI (-7.22, -1.04), p = 0.009) in people with overweight/obesity. In people with prediabetes, one study compared vegan and vegetarian diets and found no difference in HOMA-IR, or fasting insulin. One study of people with T2D reported no difference in immunoreactive insulin and metabolic glucose clearance compared with a conventional diabetes diet. In conclusion, adhering to plant-based diets for ≥14 d improved HOMA-IR and fasting insulin in people with overweight/obesity. Long-term RCTs are needed to determine whether plant-based diets can result in prolonged improvements in insulin sensitivity in people at risk of or with T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Diet, Vegetarian , Insulin Resistance , Obesity , Prediabetic State , Randomized Controlled Trials as Topic , Humans , Diabetes Mellitus, Type 2/diet therapy , Prediabetic State/diet therapy , Prediabetic State/blood , Obesity/diet therapy , Insulin/blood , Biomarkers/blood , Diet, Vegan , Overweight/diet therapy , Male , Blood Glucose/metabolism , Female , Adult , Middle Aged , Diet, Plant-Based
5.
Exp Biol Med (Maywood) ; 249: 10037, 2024.
Article in English | MEDLINE | ID: mdl-38854792

ABSTRACT

In-ovo imaging using avian eggs has been described as a potential alternative to animal testing using rodents. However, imaging studies are hampered by embryonal motion producing artifacts. This study aims at systematically comparing isoflurane, desflurane and sevoflurane in three different concentrations in ostrich embryos. Biomagnetic signals of ostrich embryos were recorded analyzing cardiac action and motion. Ten groups comprising eight ostrich embryos each were investigated: Control, isoflurane (2%, 4%, and 6%), desflurane (6%, 12%, and 18%) and sevoflurane (3%, 5%, and 8%). Each ostrich egg was exposed to the same narcotic gas and concentration on development day (DD) 31 and 34. Narcotic gas exposure was upheld for 90 min and embryos were monitored for additional 75 min. Toxicity was evaluated by verifying embryo viability 24 h after the experiments. Initial heart rate of mean 148 beats/min (DD 31) and 136 beats/min (DD 34) decreased over time by 44-48 beats/minute. No significant differences were observed between groups. All narcotic gases led to distinct movement reduction after mean 8 min. Embryos exposed to desflurane 6% showed residual movements. Isoflurane 6% and sevoflurane 8% produced motion-free time intervals of mean 70 min after discontinuation of narcotic gas exposure. Only one embryo death occurred after narcotic gas exposure with desflurane 6%. This study shows that isoflurane, desflurane and sevoflurane are suitable for ostrich embryo immobilization, which is a prerequisite for motion-artifact free imaging. Application of isoflurane 6% and sevoflurane 8% is a) safe as no embryonal deaths occurred after exposure and b) effective as immobilization was observed for approx. 70 min after the end of narcotic gas exposure. These results should be interpreted with caution regarding transferability to other avian species as differences in embryo size and incubation duration exist.


Subject(s)
Desflurane , Embryo, Nonmammalian , Isoflurane , Struthioniformes , Animals , Struthioniformes/embryology , Embryo, Nonmammalian/drug effects , Anesthetics, Inhalation , Sevoflurane/adverse effects , Sevoflurane/pharmacology , Narcotics/toxicity , Immobilization
6.
Poult Sci ; 103(7): 103821, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823160

ABSTRACT

The aim of the current study was to investigate the potential of in ovo-fed amino acids (AA) to reduce the effects of heat stress on finishing broiler chickens. To achieve this, a total of 1,400 fertile hatching eggs were randomly distributed into 5 groups (n = 280/group) and injected with one of the following in ovo treatments on embryonic day 18: 52 µL of sterile diluent/egg (CTRL), CTRL + 1.0 mg of L-Leucine (T1), CTRL + 0.45 mg of leucine + 1.15 mg of methionine (T2), CTRL + 3.0 mg of methionine + 2.0 mg of cysteine (T3), and CTRL + 0.40 mg of leucine + 1.60 mg of methionine + 1.60 mg of cysteine (T4). After hatch, chicks were allocated according to a complete randomized block design comprising 2 thermal conditions: thermoneutral (24°C, 45% RH) and heat stress (34°C, 55-60% RH) with 5 pens/group/condition. The cyclical heat stress regimen (10 h/d) was then applied from d 29 to d 34. Compared to the CTRL group, T3 and T4 exhibited a higher BW during the starter phase (P < 0.001). T4 also had a lower feed conversion ratio (FCR) than CTRL during this same phase (P = 0.03). During the grower phase, males of all treatment groups consistently exhibited higher BW compared to the CTRL group, which was not observed among female birds (PSex × TRT = 0.005). During the finisher phase, the in ovo treatment effect on performance was not significant. However, heat-stressed birds from treatment group T3 and T4 exhibited lower facial temperatures (Pday × TRT < 0.001) as well as lower plasma (Pcondition x TRT = 0.039) and liver (Pcondition x TRT < 0.001) malonaldehyde concentrations compared to the CTRL group. In conclusion, in ovo-fed AA have the potential to modulate the effects of heat stress on finishing broiler chickens by limiting its detrimental consequences, including increased body temperature and oxidative damage.


Subject(s)
Chickens , Oxidative Stress , Animals , Chickens/physiology , Chickens/growth & development , Male , Female , Oxidative Stress/drug effects , Amino Acids/administration & dosage , Body Temperature , Random Allocation , Heat-Shock Response/drug effects , Ovum/physiology , Ovum/drug effects , Hot Temperature/adverse effects , Chick Embryo/drug effects , Chick Embryo/physiology
7.
Microsc Microanal ; 30(3): 552-563, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38833344

ABSTRACT

Grainyhead-like 2 (Grhl2) is a transcription factor that regulates cell adhesion genes in mammary ductal development and serves as a repressor of the epithelial-mesenchymal transition. Conversely, Ovo-like2 (Ovol2) is a target gene of Grhl2 but functions as a substitute in Grhl2-deficient mice, facilitating successful epithelial barrier formation and lumen expansion in kidney-collecting ductal epithelial cells. Our objective was to examine the expression patterns of Grhl2, Ovol2, and their associated genes during the intricate phases of mouse mammary gland development. The mRNA expression of Grhl2 and Ovol2 increased after pregnancy. We observed Grhl2 protein presence in the epithelial cell's region, coinciding with acini formation, and its signal significantly correlated with E-cadherin (Cdh1) expression. However, Ovol2 was present in the epithelial region without a correlation with Cdh1. Similarly, Zeb1, a mesenchymal transcription factor, showed Cdh1-independent expression. Subsequently, we explored the interaction between Rab25, a small G protein, and Grhl2/Ovol2. The expressions of Grhl2 and Ovol2 exhibited a strong correlation with Rab25 and claudin-4, a tight junction protein. These findings suggest that Grhl2 and Ovol2 may collaborate to regulate genes associated with cell adhesion and are crucial for maintaining epithelial integrity during the different phases of mammary gland development.


Subject(s)
Lactation , Mammary Glands, Animal , Transcription Factors , Weaning , Animals , Female , Mice , Transcription Factors/genetics , Transcription Factors/metabolism , Mammary Glands, Animal/growth & development , Mammary Glands, Animal/metabolism , Pregnancy , Lactation/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Epithelial Cells/metabolism , Claudin-4/genetics , Claudin-4/metabolism , Cadherins
8.
ACS Appl Mater Interfaces ; 16(27): 34480-34495, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38923892

ABSTRACT

Clinical therapies, including dermatology and oncology, require safe application. In vitro experiments allow only limited conclusions about in vivo effects, while animal studies in, e.g., rodents have ethical constraints at a large scale. Chicken embryos lack pain reception until day 15 postfertilization, making the in ovo model a suitable alternative to in vivo safety assessment. In addition, the hen's egg test on chorioallantoic membrane assay allows irritation potential analysis for topical treatments, but standardized analysis has been limited so far. Medical gas plasma is a topical, routine, approved dermatology treatment. Recent work suggests the potential of this technology in oncology. Its main mode of action is the release of various reactive species simultaneously. Intriguingly, varying plasma feed gas compositions generates customized reactive species profiles previously shown to be optimized for specific applications, such as skin cancer treatment. To support clinical implications, we developed a novel chicken embryo CAM scoring and study scheme and employed the model to analyze 16 different plasma feed gas settings generated by the atmospheric pressure plasmajet kINPen, along with common anticancer drugs (e.g., cisplatin) and physiological mediators (e.g., VEGF). Extensive gas- and liquid-phase plasma reactive species profiling was done and was found to have a surprisingly low correlation with irritation potential parameters. Despite markedly different reactive species patterns, feed gas-modulated kINPen plasma was equally tolerated compared to standard argon plasma. CAM irritation with gas plasmas but not anticancer agents was reversed 48 h after treatment, underlining the only temporary tissue effects of medical gas plasma. Our results indicate a safe therapeutic application of reactive species.


Subject(s)
Antineoplastic Agents , Chorioallantoic Membrane , Plasma Gases , Animals , Plasma Gases/chemistry , Chick Embryo , Chorioallantoic Membrane/drug effects , Chorioallantoic Membrane/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Humans , Risk Assessment , Reactive Oxygen Species/metabolism , Chickens
9.
Poult Sci ; 103(8): 103914, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38905757

ABSTRACT

Delivering natural antioxidants via in ovo feeding holds promise for enhancing the antioxidant status and performance of chickens. Therefore, The objective of this study was to evaluate the impacts of in ovo feeding during early embryonic development using grape pomace extract as a natural antioxidant on hatchability, productive performance, immune response, and antioxidant status in broilers. A total of 900 fertile broiler eggs from the Arbor Acres strain were utilized. Each egg was individually weighed, with egg weights ranging from 61.88 ± 3 g. On the 17.5th d of incubation (DOI), the fertile eggs were divided into 6 groups. The first treatment group was untreated and designated as the control (C). The second group was the sham group (Sh), receiving a simulated injection. The third group, designated as the vehicle group (V), was injected with 100 µl of dimethyl sulfoxide (DMSO). The fourth group received an injection of 100 µL of grape pomace dissolved in DMSO at a concentration of 2 mg (T2). Similarly, the fifth and sixth groups were injected with 100 µL of grape pomace dissolved in DMSO at concentrations of 4 mg and 6 mg, (T4), (T6) respectively. Subsequently, all groups were raised under uniform conditions in terms of management, environment, and nutrition till 5 wk of age. The grape pomace extract (GPE), obtained is rich in total phenolic content (16.07 mg/g), total flavonoid content (7.42 mg/g), and total anthocyanin (8.37 mg/g). Grape pomace extract has exhibited significant antioxidant properties as evidenced by its effectiveness in DPPH scavenging and reducing power assays. Significant improvements in body weight at hatch were observed with in ovo feeding of grape pomace extract, particularly at the 4 mg level, surpassing the effectiveness of the 2 mg and 6 mg grape pomace levels, and this enhancement in body weight continued until the age of 5 wk. GPE injection also led to a significant reduction in cholesterol levels, with the lowest levels recorded for the T4 group. Plasma total Antioxidant Capacity (TAC) levels were significantly elevated in groups treated with T4, T6, and T2 compared to the control group. Conversely, the control group showed a significant increase (P < 0.01) in plasma malondialdehyde (MDA) levels. The immune response of hatched chicks from grape pomace extract-injected groups, especially the T4 group, exhibited improvement through increased IgM and IgG. These findings demonstrate that in ovo feeding of GPE, particularly at a dosage of 4 mg, enhances growth performance, immune response, and antioxidant status in hatched chicks. Thus, administering natural antioxidants, such as grape pomace extract, to developing broiler embryos via in ovo feeding could serve as a valuable strategy for enhancing the subsequent post-hatch productive performance, as well as bolstering the antioxidant and immunological status of broiler chicks.

10.
Article in English | MEDLINE | ID: mdl-38890818

ABSTRACT

This investigation was directed to examine the influence of copper oxide nanoparticles (CuO-NPs) on the hatchability traits, and chick quality of newly hatched broiler chicks. A total of 480 eggs were randomly divided into four treatment groups, each consisting of three duplicates. As a negative control (NC), the first group was not injected; the second group was injected with saline and served as a positive control (PC), the third and fourth groups were injected with 30 and 60 ppm of (CuO-NPs)/egg. Eggs were injected into the amniotic fluid on the eighteenth day of the incubation period. Results showed that the hatchability, chick yield %, yolk free-body mass (YFBM), chick length, shank length (SL), and relative weight of the heart, gizzard and intestine of day-old broiler chicks were all unaffected by the in ovo injection of CuO-NPs. The Pasgar Score was slightly improved compared to the NC and PC groups. Also, the in ovo administration of CuO-NPs (60 ppm/egg) significantly increased the intestine length. Both levels of CuO-NPs significantly increased the concentration of Cu ions in the hepatic tissue. Additionally, different levels of tissue damage were seen in the liver of the birds that were given low or high dosages of CuO-NPs. Conclusively, the in ovo injection of CuO-NPs has a good result on the appearance of the chicks (Pasgar score). However, negative effect of CuO-NPs on liver tissue may raise concerns about the potential risks of applying CuO-NPs in ovo administration.

11.
J Sci Food Agric ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38873999

ABSTRACT

BACKGROUND: Insufficient endogenous nutrients in the broiler embryo can lead to muscle gluconeogenesis, which ultimately affects the post-hatching performance of chicks. This study investigated the effects of in ovo feeding (IOF) of N-carbamylglutamate (NCG) on the growth hormones, carcass yield, and meat quality in broilers. Fertile eggs from a 30-week-old Ross 308 breeder flock were divided into three treatment groups: NC (non-injection), SC (100 µL saline-injection), and NCG (2 mg NCG injection). Each group had six replicates, with 70 eggs per replicate during incubation. Injections were administered on the 17.5th day of embryonic development. After hatching, 270 chicks were selected for 42-day rearing for further sampling. RESULTS: Chicks in the NCG group had significantly higher body weight (BW) and average daily gain (ADG) at the growing phase, increased growth and testosterone hormone in both feeding phases (21 and 42 days), and improved average daily gain (ADG) and food conversion ratio (FCR) in both grower and entire feeding phases (P < 0.05). Triiodothyronine (T3) and tetraiodothyronine (T4) levels, carcass yield, dressing, drum weight, breast muscle weight, drumstick weights, thighs, pectoralis major, and their part percentage of carcass were improved in the NCG group (P < 0.05), these effects were varied along feeding phases. Moreover, IOF of the NCG also improved pectoralis breast muscle color values at 24 h post mortem (P < 0.05). CONCLUSION: These results suggest that NCG injection at the late embryonic age of broiler enhances growth performance and meat quality throughout the lifespan and this can probably be attributed to an increase in thyroid and testosterone hormones, indicating potential involvement in metabolic and nutrient partitioning pathway regulation. © 2024 Society of Chemical Industry.

12.
Animal ; 18(6): 101201, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38850576

ABSTRACT

First-week survival and egg hatchability are lower in chicks from younger broiler breeder hen flocks. Creatine is a naturally occurring compound synthesised from the amino acid arginine or obtained from the diet and is important in the storage and transport of energy. Previous research found an improvement in the hatch rate but no posthatch performance improvements when fertile eggs from young breeder hens were injected with creatine monohydrate (CrM) on embryonic day 14. This pilot study aimed to further investigate the possibility of early posthatch improvements by examining the activity of chicks during the 1st week posthatch. Behaviours were broadly classified as active or inactive, the pen was split into three areas, and the amount of time spent in the heat lamp, feed hopper, or drinker line areas was recorded. Chicks given in ovo CrM spent less time in the heat lamp area over the whole 7 days compared to saline (t = 2.352, P = 0.021) and control groups (t = 3.336, P = 0.003) and more time in the feed hopper area during the first 4 days compared to the control group (t = 2.174, P = 0.033). This finding suggests that creatine may improve energy reserves in young chicks allowing them to spend more time away from the heat lamp.


Subject(s)
Chickens , Creatine , Animals , Chickens/growth & development , Creatine/administration & dosage , Pilot Projects , Female , Behavior, Animal/drug effects
13.
Animals (Basel) ; 14(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731311

ABSTRACT

The effects of the Marek's disease vaccine (MDV) on the live performance, breast meat yield, and incidence of woody breast myopathy (WBM) of Ross 708 broilers were investigated when administered alone or in conjunction with in ovo and dietary supplemental 25-hydroxycholecalciferol (25OHD3). At 18 d of incubation (doi), four in ovo injection treatments were randomly assigned to live embryonated Ross 708 broiler hatching eggs: (1) non-injected; (2) commercial MDV alone; or MDV containing either (3) 1.2 or (4) 2.4 µg of 25OHD3. An Inovoject multi-egg injector was used to inject a 50 µL solution volume into each egg. The birds were provided a commercial diet that contained 250 IU of cholecalciferol/kg of feed (control) or a commercial diet that was supplemented with an additional 2760 IU of 25OHD3/kg of feed (HyD-diet). In the growout period, 14 male broilers were placed in each of 48 floor pens resulting 6 replicated pens per in ovo x dietary treatment combination. Live performance variable were measured at each dietary phases from 0 to 14, 15 to 28, and 29 to 40 d of age (doa). At 14 and 40 doa, pectoralis major (P. major) and pectoralis minor (P. minor) muscles were determined for one bird within each of the six replicate pens. At 41 doa, WBM incidence was determined. No significant main or interaction effects occurred for WBM among the dietary or in ovo injection treatments. However, in response to in ovo 25OHD3 supplementation, BW and BWG in the 29 to 40 doa period and BWG and FCR in the 0 to 40 doa period improved. In addition, at 40 and 41 doa, breast meat yield increased in response to in ovo and dietary 25OHD3 supplementation. Future research is needed to determine the possible reasons that may have been involved in the aforementioned improvements.

14.
J Anim Sci Biotechnol ; 15(1): 62, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38702804

ABSTRACT

BACKGROUND: Dietary supplementation of xylooligosaccharides (XOS) has been found to influence gut health by manipulating cecal microbiota and producing microbe-origin metabolites. But no study investigated and compared the effect of in ovo feeding of xylobiose (XOS2) and xylotriose (XOS3) in chickens. This study investigated the effect of in ovo feeding of these XOS compounds on post-hatch gut health parameters in chickens. A total of 144 fertilized chicken eggs were divided into three groups: a) non-injected control (CON), b) XOS2, and c) XOS3. On the 17th embryonic day, the eggs of the XOS2 and XOS3 groups were injected with 3 mg of XOS2 and XOS3 diluted in 0.5 mL of 0.85% normal saline through the amniotic sac. After hatching, the chicks were raised for 21 d. Blood was collected on d 14 to measure plasma immunoglobulin. Cecal digesta were collected for measuring short-chain fatty acids (SCFA) on d 14 and 21, and for microbial ecology and microbial metabolic pathway analyses on d 7 and 21. RESULTS: The results were considered significantly different at P < 0.05. ELISA quantified plasma IgA and IgG on d 14 chickens, revealing no differences among the treatments. Gas chromatography results showed no significant differences in the concentrations of cecal SCFAs on d 14 but significant differences on d 21. However, the SCFA concentrations were lower in the XOS3 than in the CON group on d 21. The cecal metagenomics data showed that the abundance of the family Clostridiaceae significantly decreased on d 7, and the abundance of the family Oscillospiraceae increased on d 21 in the XOS2 compared to the CON. There was a reduction in the relative abundance of genus Clostridium sensu stricto 1 in the XOS2 compared to the CON on d 7 and the genus Ruminococcus torques in both XOS2 and XOS3 groups compared to the CON on d 21. The XOS2 and XOS3 groups reduced the genes for chondroitin sulfate degradation I and L-histidine degradation I pathways, which contribute to improved gut health, respectively, in the microbiome on d 7. In contrast, on d 21, the XOS2 and XOS3 groups enriched the thiamin salvage II, L-isoleucine biosynthesis IV, and O-antigen building blocks biosynthesis (E. coli) pathways, which are indicative of improved gut health. Unlike the XOS3 and CON, the microbiome enriched the pathways associated with energy enhancement, including flavin biosynthesis I, sucrose degradation III, and Calvin-Benson-Bassham cycle pathways, in the XOS2 group on d 21. CONCLUSION: In ovo XOS2 and XOS3 feeding promoted beneficial bacterial growth and reduced harmful bacteria at the family and genus levels. The metagenomic-based microbial metabolic pathway profiling predicted a favorable change in the availability of cecal metabolites in the XOS2 and XOS3 groups. The modulation of microbiota and metabolic pathways suggests that in ovo XOS2 and XOS3 feeding improved gut health during the post-hatch period of broilers.

15.
J Agric Food Chem ; 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38613504

ABSTRACT

The day-old male chick culling remains a welfare issue in the poultry industry. Several governments have prohibited this practice, pushing hatcheries to seek alternatives. Although different solutions exist for solving this problem, sex determination during the embryo's incubation (in ovo sexing) is considered the most suitable one among the consumers and industry. However, to be industrialized, in ovo sexing technologies must meet several requirements: compatibility with all egg colors and early developmental stages while maintaining a high hatchability rate and accuracy at low cost and high throughput. To meet these requirements, we studied the use of the sexual genes HINTW (female-specific) and DMRT-1 (both sexes) at incubation days 6-9. By utilizing the quantitative polymerase chain reaction in allantoic fluid (AF) samples, our study confirmed female-specific HINTW detection on all days without any significant detrimental effects on embryo development. We achieved 95% sexing accuracy using the HINTW cycle threshold (Ct) alone and 100% accuracy rate when using Δλ values (difference between the HINTW and DMRT-1 Ct). In conclusion, the developed assay can provide information about AF as a sample for in ovo sexing and open new industrial possibilities for faster and cheaper assays.

16.
Ecotoxicol Environ Saf ; 276: 116304, 2024 May.
Article in English | MEDLINE | ID: mdl-38626606

ABSTRACT

Short-chain chlorinated paraffins (SCCPs) are listed as a category of globally controlled persistent organic pollutants (POPs) by the Stockholm Convention in 2017. However, SCCP toxicity, particularly their developmental toxicity in avian embryos, has not been well studied. In this study, we observed the early development of chicken embryos (Gallus gallus domesticus) by applying a shell-less (ex-ovo) incubation system developed in our previous studies. After exposing embryos at Hamburger Hamilton stage (HHS) 1 to SCCPs (control, 0.1% DMSO; SCCPs-L, 200 ng/g; SCCPs-M, 2000 ng/g; SCCPs-H, 20,000 ng/g), we observed the development of embryos from the 3rd to 9th incubation day. Exposure to SCCPs-M and -H induced a significant reduction in survival, with an LD50 of 3100 ng/g on the 9th incubation day. Significant dose-dependent decreases in body length were observed from days 4-9. We also found that SCCPs-H decreased the blood vessel length and branch number on the 4th incubation day. Additionally, SCCPs-H significantly reduced the heart rate on the 4th and 5th incubation days. These findings suggest that SCCPs may have potential of developmental and cardiovascular toxicity during the early stages of chicken embryos. Quantitative PCR of the mRNA of genes related to embryonic development showed that SLC16A10 (a triiodothyronine transporter) level decreased in the SCCPs-H group, showing a significant positive correlation with the body length of embryos. THRA level, a thyroid hormone receptor, was significantly decreased in the SCCPs-H group, whereas that of DIO3 level, a deiodinase was significantly increased. These results suggest that SCCPs exposure induces developmental delays via the thyroxine signaling pathway. Analysis of thyroid hormones (THs) in blood plasma also indicated a significant reduction in thyroxine (T4) levels in the SCCPs-H group on the 9th incubation day of embryos. In conclusion, SCCPs induce developmental toxicity by disrupting thyroid functions at the early-life stage of chicken embryos.


Subject(s)
Hydrocarbons, Chlorinated , Animals , Chick Embryo/drug effects , Hydrocarbons, Chlorinated/toxicity , Embryonic Development/drug effects , Paraffin/toxicity , Persistent Organic Pollutants/toxicity , Chickens
17.
Vet Med Sci ; 10(3): e1443, 2024 05.
Article in English | MEDLINE | ID: mdl-38595026

ABSTRACT

BACKGROUND: Selenium is an essential mineral for poultry. The conflicting reports about its in ovo injection are the justification for the more detailed investigation. OBJECTIVES: The aim of this study was to investigate the effects of in ovo injection of organic selenium on the hatching traits of broiler chickens and their performance. METHODS: Three hundred and twenty eggs of Ross 308 strain with an average weight of 65 g and 160 chicks were randomly divided into 4 treatment groups (each with 8 replicates of 10 eggs each for hatching parameters and 4 replicates of 10 chicks for broiler farming parameters): negative control (no injection), positive control (in ovo injection of 0.272 mL of normal saline solution) and 2 selenium treatments (in ovo injection of 2.72 or 5.44 µg of organic selenium). Injection was into the amniotic sac on the 10th day of incubation. Effects of in ovo injection on hatching and performance traits, blood parameters, immune responses, carcass characteristics, meat fatty acid profile, cecal microbial population and selenium consternation in the tibia were measured. RESULTS: Fewer chicks from the injected treatments hatched than from the negative control group (p < 0.01). However, the injection of selenium increased feed intake and the final weight of the birds (p < 0.01). Blood parameters were also affected. Glucose and cholesterol in experimental treatment chicks was lower than those of the controls (p < 0.01), whereas blood lipoproteins (VLDL, LDL and HDL) and the ratio of cholesterol to HDL was significantly increased in the treatments injected with selenium (p < 0.01). There was no significant difference in the immune response or microbial population between the experimental groups, but carcass components, such as thigh, breast, wing and abdominal fat weight, were significantly greater in the selenium treatments. CONCLUSIONS: Intra-egg injection of organic selenium produced favourable effects on performance of broiler chickens, although it had no effect on immune response or microbial population. However, the negative effect on hatching of chickens needs to be prevented to result in an acceptable economic return for the producer.


Subject(s)
Chickens , Selenium , Animals , Female , Chickens/physiology , Selenium/pharmacology , Meat , Injections/veterinary , Cholesterol
18.
Viruses ; 16(4)2024 04 04.
Article in English | MEDLINE | ID: mdl-38675905

ABSTRACT

Highly pathogenic avian influenza (HPAI) H5-viruses are circulating in wild birds and are repeatedly introduced to poultry causing outbreaks in the Netherlands since 2014. The largest epizootic ever recorded in Europe was caused by HPAI H5N1 clade 2.3.4.4b viruses in the period 2021-2022. The recent H5-clade 2.3.4.4 viruses were found to differ in their virulence for chickens and ducks. Viruses causing only mild disease may remain undetected, increasing the risk of virus spread to other farms, wild birds and mammals. We developed in ovo models to determine the virulence of HPAI viruses for chickens and ducks, which are fast and have low costs. The virulence of five contemporary H5-viruses was compared studying replication rate, average time to death and virus spread in the embryo. Remarkable differences in virulence were observed between H5-viruses and between poultry species. The H5N1-2021 virus was found to have a fast replication rate in both the chicken and duck in ovo models, but a slower systemic virus dissemination compared to three other H5-clade 2.3.4.4b viruses. The results show the potential of in ovo models to quickly determine the virulence of novel HPAI viruses, and study potential virulence factors which can help to better guide the surveillance in poultry.


Subject(s)
Chickens , Ducks , Influenza in Birds , Virus Replication , Animals , Ducks/virology , Influenza in Birds/virology , Chickens/virology , Virulence , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H5N1 Subtype/genetics , Chick Embryo , Poultry Diseases/virology
19.
Poult Sci ; 103(6): 103749, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670054

ABSTRACT

The broiler industry is adversely affected by the rise in global temperature. This study investigated the effects of in ovo feeding of α-ketoglutaric acid (AKG) on growth performance, organ weight, plasma metabolite, plasma oxidative stress, rectal temperature (RT), and hepatic mRNA expression of antioxidant-related genes in Arbor Acres broilers subjected to cyclic heat stress (HS). Three hundred fifty fertile eggs during incubation were divided into 5 groups according to AKG concentrations and temperature conditions. After dissolving AKG in distilled water at 0, 0.5, 1.0, and 1.5, 0% AKG was in ovo administered to 2 of the 5 groups whereas the remaining 3 groups received 0.5, 1.0, and 1.5%, respectively. From d 29 to 34 of age, 4 groups of birds received heat stress (HS) at 31°C ± 1°C for 6 h per day while the other group was kept at room temperature (21°C ± 1°C; NT). So, the 5 treatment groups were: 1) 0AKG-NT, where chicks hatched from eggs receiving 0% AKG were reared under thermoneutral conditions. 2) 0AKG-HS, where chicks hatched from eggs receiving 0% AKG were reared under cyclic HS conditions. 3) 0.5AKG-HS, where chicks hatched from eggs receiving 0.5% AKG were reared under cyclic HS conditions. 4) 1.0AKG-HS, where chicks hatched from eggs receiving 1.0% AKG were reared under cyclic HS conditions. 5) 1.5AKG-HS, where chicks hatched from eggs receiving 1.5% AKG were reared under cyclic HS conditions. HS significantly reduced body weight change (ΔBW %) and average daily gain (ADG) without affecting average daily feed intake (ADFI). Feed conversion ratio (FCR) was significantly increased (P = 0.003) in all HS-treated groups. A significant linear decrease in the final RT (P = 0.005) and a change in RT (P = 0.003) were detected with increasing AKG concentration. Total antioxidant capacity (P = 0.029) and antioxidant balance (P = 0.001) in plasma increased linearly with increasing AKG concentration whereas malondialdehyde concentrations were linearly decreased (P = 0.001). Hepatic gene expression of CAT (P = 0.026) and GPX1 (P = 0.001) were dose-dependently upregulated while nicotinamide adenine dinucleotide phosphate oxidase (NOX)1, NOX4, and heat shock protein (HSP)70 were linearly downregulated (P < 0.05). Hence, in ovo injection of AKG was effective in mitigating HS-induced oxidative stress without attenuating the adverse effects on broiler growth.


Subject(s)
Antioxidants , Chickens , Ketoglutaric Acids , Liver , Animals , Chickens/physiology , Chickens/growth & development , Antioxidants/metabolism , Liver/metabolism , Liver/drug effects , Ketoglutaric Acids/administration & dosage , Ketoglutaric Acids/pharmacology , Body Temperature/drug effects , Hot Temperature , Body Weight/drug effects , Gene Expression/drug effects , Ovum/drug effects , Ovum/physiology , Male , Dose-Response Relationship, Drug , Random Allocation
20.
J Exp Biol ; 227(Suppl_1)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38449334

ABSTRACT

In recent years, the impact of prenatal sound on development, notably for programming individual phenotypes for postnatal conditions, has increasingly been revealed. However, the mechanisms through which sound affects physiology and development remain mostly unexplored. Here, I gather evidence from neurobiology, developmental biology, cellular biology and bioacoustics to identify the most plausible modes of action of sound on developing embryos. First, revealing often-unsuspected plasticity, I discuss how prenatal sound may shape auditory system development and determine individuals' later capacity to receive acoustic information. I also consider the impact of hormones, including thyroid hormones, glucocorticoids and androgen, on auditory plasticity. Second, I review what is known about sound transduction to other - non-auditory - brain regions, and its potential to input on classical developmental programming pathways. Namely, the auditory pathway has direct anatomical and functional connectivity to the hippocampus, amygdala and/or hypothalamus, in mammals, birds and anurans. Sound can thus trigger both immediate and delayed responses in these limbic regions, which are specific to the acoustic stimulus and its biological relevance. Third, beyond the brain, I briefly consider the possibility for sound to directly affect cellular functioning, based on evidence in earless organisms (e.g. plants) and cell cultures. Together, the multi-disciplinary evidence gathered here shows that the brain is wired to allow multiple physiological and developmental effects of sound. Overall, there are many unexplored, but possible, pathways for sound to impact even primitive or immature organisms. Throughout, I identify the most promising research avenues for unravelling the processes of acoustic developmental programming.


Subject(s)
Acoustics , Sound , Humans , Animals , Female , Pregnancy , Amygdala , Anura , Auditory Pathways , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL
...