Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75.716
Filter
1.
J Environ Sci (China) ; 147: 382-391, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003056

ABSTRACT

Arsenic-related oxidative stress and resultant diseases have attracted global concern, while longitudinal studies are scarce. To assess the relationship between arsenic exposure and systemic oxidative damage, we performed two repeated measures among 5236 observations (4067 participants) in the Wuhan-Zhuhai cohort at the baseline and follow-up after 3 years. Urinary total arsenic, biomarkers of DNA oxidative damage (8-hydroxy-2'-deoxyguanosine (8-OHdG)), lipid peroxidation (8-isoprostaglandin F2alpha (8-isoPGF2α)), and protein oxidative damage (protein carbonyls (PCO)) were detected for all observations. Here we used linear mixed models to estimate the cross-sectional and longitudinal associations between arsenic exposure and oxidative damage. Exposure-response curves were constructed by utilizing the generalized additive mixed models with thin plate regressions. After adjusting for potential confounders, arsenic level was significantly and positively related to the levels of global oxidative damage and their annual increased rates in dose-response manners. In cross-sectional analyses, each 1% increase in arsenic level was associated with a 0.406% (95% confidence interval (CI): 0.379% to 0.433%), 0.360% (0.301% to 0.420%), and 0.079% (0.055% to 0.103%) increase in 8-isoPGF2α, 8-OHdG, and PCO, respectively. More importantly, arsenic was further found to be associated with increased annual change rates of 8-isoPGF2α (ß: 0.147; 95% CI: 0.130 to 0.164), 8-OHdG (0.155; 0.118 to 0.192), and PCO (0.050; 0.035 to 0.064) in the longitudinal analyses. Our study suggested that arsenic exposure was not only positively related with global oxidative damage to lipid, DNA, and protein in cross-sectional analyses, but also associated with annual increased rates of these biomarkers in dose-dependent manners.


Subject(s)
Arsenic , Environmental Exposure , Oxidative Stress , Adult , Female , Humans , Male , Middle Aged , 8-Hydroxy-2'-Deoxyguanosine , Arsenic/toxicity , Biomarkers/urine , China , Cross-Sectional Studies , DNA Damage , East Asian People , Environmental Exposure/adverse effects , Environmental Pollutants/toxicity , Lipid Peroxidation/drug effects , Longitudinal Studies , Oxidative Stress/drug effects
2.
Mech Ageing Dev ; 221: 111961, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38960099

ABSTRACT

This comprehensive review elucidates the critical role of antioxidants to mitigate oxidative stress, a common denominator in an array of neurodegenerative disorders. Oxidative stress-induced damage has been linked to the development of diseases such as Alzheimer's, Parkinson's, Huntington's disease and amyotrophic lateral sclerosis. This article examines a wide range of scientific literature and methodically delineates the several methods by which antioxidants exercise their neuroprotective benefits. It also explores into the complex relationship between oxidative stress and neuroinflammation, focusing on how antioxidants can alter signaling pathways and transcription factors to slow neurodegenerative processes. Key antioxidants, such as vitamins C and E, glutathione, and polyphenolic compounds, are tested for their ability to combat reactive oxygen and nitrogen species. The dual character of antioxidants, which operate as both direct free radical scavengers and regulators of cellular redox homeostasis, is investigated in terms of therapeutic potential. Furthermore, the study focuses on new antioxidant-based therapy techniques and their mechanisms including Nrf-2, PCG1α, Thioredoxin etc., which range from dietary interventions to targeted antioxidant molecules. Insights into ongoing clinical studies evaluating antioxidant therapies in neurodegenerative illnesses offer an insight into the translational potential of antioxidant research. Finally, this review summarizes our present understanding of antioxidant processes in neurodegenerative illnesses, providing important possibilities for future study and treatment development.

3.
Toxicon ; 247: 107855, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38996975

ABSTRACT

OBJECTIVE: The hepatoprotective effects of resveratrol against α-Amanitin (α-AMA)-induced liver toxicity were investigated in an experimental rat model, focusing on oxidative stress, inflammation, apoptosis, and liver function. METHODS: Thirty-two male Sprague-Dawley rats were divided into four groups (n = 8 per group): Control, resveratrol, α-AMA, and resveratrol+α-AMA. The resveratrol group received 20 mg/kg resveratrol orally for 7 days. The α-AMA group received 3 mg/kg α-AMA intraperitoneally on the 8th day. The resveratrol+α-AMA group received 20 mg/kg resveratrol orally (7 days) followed by 3 mg/kg α-AMA intraperitoneally on the 8th day. Liver tissues and blood samples were collected 48 h after α-amanitin administration for histopathological, immunohistochemical (NFkB, LC3B), and biochemical analyses (GSH, MDA, CAT, GPx, MPO, NOS, AST, ALT). RESULTS: α-AMA significantly increased AST and ALT levels, oxidative stress marker (MDA), and inflammatory marker (MPO), while reducing antioxidant levels (GSH, CAT, GPx) and NOS concentration (P < 0.001 for all parameters). Histopathological analysis showed severe liver damage with increased NFkB and LC3B expression. resveratrol treatment significantly reduced AST and ALT levels (P < 0.01 for both parameters), decreased MDA and MPO levels, and increased NOS concentration, GSH, CAT, and GPx levels (P < 0.05 for all parameters). Reduced NFkB and LC3B expression in the resveratrol+α-AMA group and showed histopathological improvements. CONCLUSION: Resveratrol demonstrated substantial hepatoprotective effects against α-AMA induced liver toxicity by reducing oxidative stress, inflammation, and apoptosis, and improving liver function. These findings suggest that resveratrol could be a potential therapeutic agent for treating liver damage caused by potent hepatotoxins like α-AMA.

4.
Animals (Basel) ; 14(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38998041

ABSTRACT

The gastrointestinal tract has a pivotal role in nutrient absorption, immune function, and overall homeostasis. The ileum segment of the small intestine plays respective roles in nutrient breakdown and absorption. The purpose of this study was to investigate the impact of heat-induced oxidative stress and the potential mitigating effects of an astaxanthin antioxidant treatment on the ileum of broilers. By comparing the growth performance and gene expression profiles among three groups-thermal neutral, heat stress, and heat stress with astaxanthin-thermal neutral temperature conditions of 21-22 °C and heat stress temperature of 32-35 °C, this research aims to elucidate the role of astaxanthin in supporting homeostasis and cellular protection in the ileum. Results showed both treatments under heat stress experienced reduced growth performance, while the group treated with astaxanthin showed a slightly lesser decline. Results further showed the astaxanthin treatment group significantly upregulated in the cytoprotective gene expression for HSF2, SOD2, GPX3, and TXN, as well as the upregulation of epithelial integrity genes LOX, CLDN1, and MUC2. In conclusion, our experimental findings demonstrate upregulation of cytoprotective and epithelial integrity genes, suggesting astaxanthin may effectively enhance the cellular response to heat stress to mitigate oxidative damage and contribute to cytoprotective capacity.

5.
Chem Biol Interact ; 399: 111145, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39002876

ABSTRACT

Imidacloprid (IMI) is a widely used neonicotinoid insecticide that poses risks for developmental neurotoxicity in mammals. The present study investigated the effects of maternal exposure to IMI on behaviors and adult neurogenesis in the hippocampal dentate gyrus (DG) of rat offspring. Dams were exposed to IMI via diet (83, 250, or 750 ppm in diet) from gestational day 6 until day 21 post-delivery on weaning, and offspring were maintained until adulthood on postnatal day 77. In the neurogenic niche, 750-ppm IMI decreased numbers of late-stage neural progenitor cells (NPCs) and post-mitotic immature granule cells by suppressing NPC proliferation and ERK1/2-FOS-mediated synaptic plasticity of granule cells on weaning. Suppressed reelin signaling might be responsible for the observed reductions of neurogenesis and synaptic plasticity. In adulthood, IMI at ≥ 250 ppm decreased neural stem cells by suppressing their proliferation and increasing apoptosis, and mature granule cells were reduced due to suppressed NPC differentiation. Behavioral tests revealed increased spontaneous activity in adulthood at 750 ppm. IMI decreased hippocampal acetylcholinesterase activity and Chrnb2 transcript levels in the DG on weaning and in adulthood. IMI increased numbers of astrocytes and M1-type microglia in the DG hilus, and upregulated neuroinflammation and oxidative stress-related genes on weaning. In adulthood, IMI increased malondialdehyde level and number of M1-type microglia, and downregulated neuroinflammation and oxidative stress-related genes. These results suggest that IMI persistently affected cholinergic signaling, induced neuroinflammation and oxidative stress during exposure, and increased sensitivity to oxidative stress after exposure in the hippocampus, causing hyperactivity and progressive suppression of neurogenesis in adulthood. The no-observed-adverse-effect level of IMI for offspring behaviors and hippocampal neurogenesis was determined to be 83 ppm (5.5-14.1 mg/kg body weight/day).

6.
J Steroid Biochem Mol Biol ; 243: 106587, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004377

ABSTRACT

The abusive use of anabolic androgenic steroids has become a serious health problem worldwide, but its effects on oral health are still poorly understood. Therefore, the objective of this study was to evaluate the effects of a supraphysiological dose of testosterone cypionate (TC) on salivary biochemical, histomorphology, immunohistochemistry, and redox state parameters of parotid and submandibular glands. Twenty male Wistar rats, 12 weeks old, were divided into two groups (n=10/group): a control group and TC group, which received a dose of 20 mg/kg, once a week, for 6 weeks. Post treatment, the saliva and glands were collected. A supraphysiological dose of TC increased plasma and salivary testosterone concentrations. Although TC did not alter salivary flow, pH, and buffering capacity, the treatment increased the salivary secretion of total protein and reduced amylase, calcium, phosphate, and potassium. TC reduced the connective tissue area in the parotid gland and acinar area of the submandibular gland, while increasing the granular convoluted tubule area in the submandibular gland. Proliferating cell nuclear antigen was higher in the acinar cells of the submandibular glands from the TC group. Moreover, TC increased concentrations of total oxidant capacity and damaged lipids in both salivary glands, while total antioxidant activity and uric acid were lower in the submandibular gland, and reduced glutathione was higher in both glands. Superoxide dismutase, catalase, and glutathione peroxidase activities were higher in the parotid gland, while only glutathione peroxidase activity was lower in the submandibular gland of the TC group. In conclusion, TC abuse may be a potential factor for dysfunction of the parotid and submandibular glands, becoming a risk factor for the oral and systemic health of users.

7.
Sci Total Environ ; 948: 174725, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39009158

ABSTRACT

The ubiquitous presence of nanoplastics (NPLs) in the environment is considered of great health concern. Due to their size, NPLs can cross both the intestinal and pulmonary barriers and, consequently, their presence in the blood compartment is expected. Understanding the interactions between NPLs and human blood components is required. In this study, to simulate more adequate real exposure conditions, the whole blood of healthy donors was exposed to five different NPLs: three polystyrene NPLs of approximately 50 nm (aminated PS-NH2, carboxylated PS-COOH, and pristine PS- forms), together with two true-to-life NPLs from polyethylene terephthalate (PET) and polylactic acid (PLA) of about 150 nm. Internalization was determined in white blood cells (WBCs) by confocal microscopy, once the different main cell subtypes (monocytes, polymorphonucleated cells, and lymphocytes) were sorted by flow cytometry. Intracellular reactive oxygen species (iROS) induction was determined in WBCs and cytokine release in plasma. In addition, hemolysis, coagulation, and platelet activation were also determined. Results showed a differential uptake between WBC subtypes, with monocytes showing a higher internalization. Regarding iROS, lymphocytes were those with higher levels, which was observed for different NPLs. Changes in cytokine release were also detected, with higher effects observed after PLA- and PS-NH2-NPL exposure. Hemolysis induction was observed after PS- and PS-COOH-NPL exposure, but no effects on platelet functionality were observed after any of the treatments. To our knowledge, this is the first study comprehensively evaluating the bloodstream kinetics and toxicity of NPL from different polymeric types on human whole blood, considering the role played by the cell subtype and the NPLs physicochemical characteristics in the effects observed after the exposures.

8.
Free Radic Biol Med ; 222: 569-578, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39009245

ABSTRACT

Mitophagy is a mechanism that maintains mitochondrial integrity and homeostasis and is thought to promote longevity and reduce the risk of age-related neurodegenerative diseases, including Alzheimer's disease (AD). Here, we investigate the abundance of mitochondrial reactive oxygen species (ROS), mitochondrial function, and mitophagy in primary fibroblasts from patients with sporadic AD (sAD) and normal healthy controls. The results show increased levels of mitochondrial ROS, changes in mitochondrial morphology, altered bioenergetic properties, and defects in autophagy, mitophagy, and lysosome-mediated degradation pathways in sAD fibroblasts relative to control fibroblasts. Interestingly, lysosome abundance and the staining of lysosomal markers remained high, while the capacity of lysosome-dependent degradation was lower in sAD fibroblasts than in controls fibroblasts. Nicotinamide riboside supplementation decreased mitochondrial ROS, while capacity for lysosomal degradation remained unchanged in sAD fibroblasts relative to healthy control fibroblasts. These findings provide insight into molecular mechanisms involving the dysregulation of lysosome and autophagy/mitophagy pathways that may contribute significantly to clinical signs and pathological features of sAD.

9.
J Ethnopharmacol ; 334: 118582, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39009325

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Radiation-induced heart disease (RIHD) is one of the most serious complications in patients receiving chest radiotherapy, partially offsetting its benefits. At present, there is a lack of effective treatments for RIHD. Ferroptosis is a newly discovered type of cell death that results from iron-dependent lipid peroxide accumulation. It was recently shown that irradiation generates severe ferroptosis, providing new insights for the treatment of RIHD. Abelmoschus manihot (L.) possesses excellent pharmacological properties and is widely used in treating various ischemic heart and brain diseases; however, its efficacy and mechanism in treating RIHD are unknown. AIM: This study aimed to investigate the efficacy and mechanism of total extracts from A. manihot (L.) (TEA) in treating RIHD. MATERIALS AND METHODS: C57BL/6 mice and H9C2 cells were exposed to irradiation to induce RIHD in vivo and in vitro, respectively. In vivo, we evaluated the protective effects of TEA (150 and 300 mg/kg) on RIHD. Body and heart weight changes of mice were calculated in each group, and malondialdehyde (MDA) level, glutathione/oxidized glutathione (GSH/GSSH) and nicotinamide adenine dinucleotide phosphate (NADPH/NADP+) ratios, western blot, heart histology, and immunohistochemistry were used to evaluate TEA effectiveness. We identified the potential mechanism of radiation-induced cardiomyocyte injury in H9C2 cells treated with small interfering RNA. We determined the effective dose of TEA (0.6 mg/mL) using a Cell Counting Kit-8 assay. Intracellular Fe2+ and lipid peroxidation levels were detected by Phen Green™ SK diacetate probe, BODIPY 581/591 C11 staining, and MDA, GSH, and NADPH kits, and the level of target protein was evaluated by immunofluorescence and western blot. RESULTS: Radiation inhibited system Xc-cystine (xCT)/glutathione peroxidase 4 (GPX4) expression and activity in cardiomyocytes in a time and dose-dependent manner. After silencing xCT/GPX4, MDA significantly increased and GSH/GSSH and NADPH/NADP+ ratios were reduced. xCT/GPX4 inhibition drove ferroptosis in radiation-induced H9C2 injury. Oxidative stress in H9C2 was significantly enhanced by irradiation, which also significantly increased NADPH oxidase 4 (NOX4) expression and inhibited nuclear factor E2-related factor 2 (Nrf2) expression in vivo and in vitro. Inhibition of xCT/GPX4 drove ferroptosis in radiation-induced H9C2 injury, which was aggravated by inactivation of Nrf2 and alleviated by inhibition of NOX4. Compared with the ionizing radiation-only group, TEA improved body weight loss, MDA levels, and histological changes induced by irradiation in mice hearts, and increased the ratio of GSH/GSSH and NADPH/NADP+in vivo; it also reduced lipid peroxidation and intracellular Fe2+ accumulation, restored MDA levels, and elevated the ratios of GSH/GSSH and NADPH/NADP+ in irradiation-injured H9C2 cells. TEA up-regulated Nrf2, xCT, and GPX4 expression and inhibited NOX4 expression in vivo and in vitro. CONCLUSIONS: Ferroptosis induced by redox imbalance mediated through the NOX4/xCT/GPX4 axis is a potential mechanism behind radiation-induced cardiomyocyte injury, and can be prevented by TEA.

10.
Redox Rep ; 29(1): 2377870, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39010730

ABSTRACT

OBJECTIVES: To observe the CISD2 expression among PCOS patients and to explore its profound impact on the follicular microenvironment. Moreover, we want to elucidate the intricate mechanistic contribution of CISD2 to the onset and progression of PCOS. METHODS: Oxidase NOX2, mitophagy-related proteins, and CISD2 were detected by WB. The changes in mitochondrial structure and quantity were observed by transmission electron microscopy. Mitochondrial and lysosome colocalization was used to detect the changes of mitophagy. MDA kit, GSH and GSSG Assay kit and ROS probe were used to detect oxidative stress damage. RESULTS: We found that CISD2, mitophagy and oxidase in the GCs of PCOS patients were significantly increased. Testosterone stimulation leads to the increase of oxidase, mitophagy, and CISD2 in KGN cells. CISD2 inhibition promoted the increase of mitophagy, and the activation of mitochondria-lysosome binding, while alleviating the oxidative stress. CONCLUSIONS: Inhibition of CISD2 can improve the occurrence of oxidative stress by increasing the level of mitophagy, thus affecting the occurrence and development of PCOS diseases.


Subject(s)
Mitophagy , Oxidative Stress , Polycystic Ovary Syndrome , Humans , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/pathology , Female , Mitophagy/drug effects , Mitophagy/physiology , Mitochondria/metabolism , Mitochondria/drug effects , Adult , Cellular Microenvironment/physiology
11.
Ren Fail ; 46(2): 2378212, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39011587

ABSTRACT

PURPOSE: The present study investigated the nephron-testicular protective effects of sesamin against cisplatin (CP)-induced acute renal and testicular injuries. METHODS: Thirty-two male Wistar rats were allocated to receive carboxymethylcellulose (0.5%, as sesamin vehicle), CP (a single i.p. 5 mg/kg dose), CP plus sesamin at 10 or 20 mg/kg orally for 10 days. RESULTS: Data analysis showed significant increases in serum urea, creatinine, interleukin (IL)-1, IL-6, and tumor necrosis factor-α (TNF-α), as well as renal and testicular tissue malondialdehyde and nitric-oxide concentrations in CP-intoxicated rats in comparison to control animals. On the contrary, rats treated with CP only exhibited significantly lower (p < .05) serum testosterone, tissue glutathione, and activities of endogenous antioxidant enzymes compared to control rats. Histopathologically examining CP-intoxicated rats' tissues using H&E and PAS stains showed atrophied glomeruli, interstitial inflammatory cells, atypic tubular epithelium with focal apoptosis, and reduced mucopolysaccharide content. Further, immunohistochemical staining of the same group revealed an increase in p53 and cyclooxygenase-II (Cox-II) expression in renal and testicular tissues. Treatment with sesamin alleviated almost all the changes mentioned above in a dose-dependent manner, with the 20 mg/kg dose restoring several parameters' concentrations to normal ranges. CONCLUSIONS: In brief, sesamin could protect the kidneys and testes against CP toxicity through its antioxidant, anti-inflammatory, and anti-apoptotic effects.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Apoptosis , Cisplatin , Dioxoles , Kidney , Lignans , Rats, Wistar , Testis , Animals , Male , Lignans/pharmacology , Lignans/therapeutic use , Cisplatin/toxicity , Cisplatin/adverse effects , Rats , Dioxoles/pharmacology , Antioxidants/pharmacology , Testis/drug effects , Testis/pathology , Testis/metabolism , Apoptosis/drug effects , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Anti-Inflammatory Agents/pharmacology , Oxidative Stress/drug effects , Acute Kidney Injury/chemically induced , Acute Kidney Injury/prevention & control , Acute Kidney Injury/pathology , Acute Kidney Injury/metabolism , Antineoplastic Agents/toxicity
12.
Sci Rep ; 14(1): 16427, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013912

ABSTRACT

The ecotoxicological consequences of azoxystrobin on land snails have not yet been addressed. Therefore, the present study aims to provide novel data on the threat of a commercial grade azoxystrobin (AMISTAR) at two environmentally relevant concentrations (0.3 µg/ml) and tenfold (3 µg/ml) on the model species, Theba pisana by physiological, biochemical, and histopathological markers for 28 days. Our results showed a reduction in animal food consumption and growth due to exposure to both azoxystrobin concentrations. It also induced oxidative stress and led to a significant decrease in lipid peroxidation (LPO) levels after 7 days of exposure, while the opposite effect occurred after 28 days. Except for the 7-day exposure, all treated snails had significantly reduced glutathione (GSH) content and increased catalase (CAT) activity at all-time intervals. Glutathione peroxidase (GPx), glutathione-S-transferase (GST) activities, and protein content (PC) were elevated in treated snails at all-time intervals. Moreover, alterations in acetylcholinesterase (AChE) activity between a decrease and an increase were noticed. Additionally, azoxystrobin exerted changes in T. pisana hepatopancreas architecture. Our study suggests that azoxystrobin may have negative ecological consequences for T. pisana and highlights its potential risks to the natural environment.


Subject(s)
Fungicides, Industrial , Glutathione , Methacrylates , Oxidative Stress , Pyrimidines , Snails , Strobilurins , Animals , Strobilurins/toxicity , Pyrimidines/toxicity , Oxidative Stress/drug effects , Fungicides, Industrial/toxicity , Methacrylates/toxicity , Snails/drug effects , Snails/metabolism , Glutathione/metabolism , Lipid Peroxidation/drug effects , Glutathione Transferase/metabolism , Acetylcholinesterase/metabolism , Ecotoxicology , Catalase/metabolism , Glutathione Peroxidase/metabolism
13.
Biomed Pharmacother ; 177: 117112, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39018869

ABSTRACT

Ferroptosis is a novel form of cell demise characterized primarily by the reduction of trivalent iron to divalent iron, leading to the release of reactive oxygen species (ROS) and consequent induction of intense oxidative stress. In atherosclerosis (AS), highly accumulated lipids are modified by ROS to promote the formation of lipid peroxides, further amplifying cellular oxidative stress damage to influence all stages of atherosclerotic development. Macrophages are regarded as pivotal executors in the progression of AS and the handling of iron, thus targeting macrophage iron metabolism holds significant guiding implications for exploring potential therapeutic strategies against AS. In this comprehensive review, we elucidate the potential interplay among iron overload, inflammation, and lipid dysregulation, summarizing the potential mechanisms underlying the suppression of AS by alleviating iron overload. Furthermore, the application of Traditional Chinese Medicine (TCM) is increasingly widespread. Based on extant research and the pharmacological foundations of active compounds of TCM, we propose alternative therapeutic agents for AS in the context of iron overload, aiming to diversify the therapeutic avenues.

14.
Free Radic Biol Med ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019096

ABSTRACT

BACKGROUND: Acute lung injury (ALI) can cause multiple organ dysfunction and a high mortality rate. Inflammatory responses, oxidative stress, and immune damage contribute to their pathogenic mechanisms. We studied the role of the newly discovered lncRNA, Lncmir155hg, in ALI. METHODS: The levels of Lncmir155hg and miR-450b-5p from mice with ALI were detected via polymerase chain reaction analysis (qRT-PCR) and Fluorescence in situ hybridization (FISH). Pathological changes of lung were detected by HE (hematoxylin and eosin) staining, and HIF-1α, NOD-like receptor 3 (NLRP3) and caspase-1 protein changes were detected by immunohistochemistry. MLE-12 cells proliferation was detected by Cell-Counting Kit 8 analysis, and reactive oxygen species (ROS) was detected via flow cytometry. NLRP3, apoptosis-associated speck-like protein (ASC), and caspase-1 were measured via western blotting, and enzyme-linked immunosorbent assays detected the expression of Inflammatory factors. Lncmir155hg, miR-450b-5p, miR-450b-5p, and HIF-1α targets were predicted using LncTar and miRWalk and confirmed in dual-luciferase reporter assays. RESULTS: In mice with ALI and MLE-12 cells induced by lipopolysaccharide (LPS), Lncmir155hg was high-expressed and miR-450b-5p was low-expressed. sh-Lncmir155hg reduced the damage of lung tissue, the production of inflammatory cytokines and oxidative stress reaction induced by LPS,miR-450b-5p reverses the effect of Lncmir155hg in mice. sh-Lncmir155hg decreased the protein levels of HIF-1α, NLRP3 and caspase-1 in LPS-induced lung tissues. sh-Lncmir155hg+miR-450b-5p inhibitor transfection reversed the effect of sh-Lncmir155hg on the expression of HIF-1α, NLRP3 and caspase-1. Lncmir155hg knockdown induced proliferation and inhibited NLRP3-inflammasome activation and oxidative stress in MLE-12 cells of ALI. miR-450b-5p was identified to have binding with Lncmir155hg, and inhibition of miR-450b-5p eliminated the effect of si-Lncmir155hg in MLE-12 cells of ALI. More importantly, miR-450b-5p was directly combined with HIF-1α, miR-450b-5p mimic promoted proliferation and inhibited activation of inflammasome associated proteins and reaction of oxidative stress, and HIF-1α overexpression abolished these effects. CONCLUSION: Lncmir155hg aggravated ALI via the miR-450b-5p/HIF-1α axis.

15.
Chemosphere ; : 142851, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019171

ABSTRACT

The uncontrolled disposal of N95 face masks, widely used during the recent COVID-19 pandemic can release significant amounts of microplastics and other additives into aquatic bodies. This study aimed to: (i) to quantify and analyze the released microplastics and heavy metals from N95 face masks weathered for various time periods (24, 48, 72, 96, 120, and 144 h) and (ii) to assess the cytotoxicity potential of the leachates on a model organism, freshwater alga Scenedesmus obliquus. The mask leachates contained microplastics, polypropylene in different shapes and sizes, and heavy metals like Cu, Cd, and Zn. The leachates significantly reduced cell viability and increased reactive oxygen species (ROS) generation, antioxidant enzyme activity, and membrane damage. The effects were also accompanied by a significant drop in the photosynthetic yield. All of the examined parameters indicated a dose-response relationship, with longer leaching periods resulting in higher microplastic concentrations. Mask leachates severely damaged the structural integrity of the algal cells, as seen in scanning electron microscopy images. The findings of our study confirm that the releases from disposable N95 face masks pose a severe threat to freshwater microalgae, and the cascading effects would harm the aquatic ecosystems.

16.
Exp Cell Res ; : 114170, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019426

ABSTRACT

Diabetic retinopathy (DR) is a major cause of vision loss and blindness in adults. Cellular senescence was involved in the pathogenesis of early-stage DR and is positively correlated with progression. Thus, our study aimed at exploring the effect and potential mechanism of Mesenchymal stem cells-derived exosomes (MSCs-EXOs) on Retinal Pigment Epithelial (RPE) cells senescence at an early stage of DR in vivo and in vitro. ARPE-19 cells were incubated in high glucose (HG) medium mixed with MSCs-EXOs to observe the changes in cell viability. Senescence-associated ß-galactosidase (SA-ß-gal) staining, western blot and qRT-PCR were used to assess the expression of senescence-related genes and antioxidant mediators. Quantitative Real-Time polymerase chain reaction (qRT-PCR), Optical coherence tomography (OCT) Hematoxylin and eosin (HE) staining and Electroretinogram (ERG) were respectively used to verify cellular senescence, the structure and function of the retina. Our findings demonstrated that MSCs-EXOs inhibited HG-induced senescence in ARPE-19 cells. Furthermore, MSCs-EXOs reduced HG-induced cell apoptosis and oxidative stress levels while promoting cell proliferation. Mechanistically, HG suppressed PI3K/AKT phosphorylation as well as nuclear factor erythroid 2-related factor 2 (Nrf2) expression along with its downstream target gene expression in ARPE-19 cells. However, MSCs-EXOs reversed these changes by alleviating cellular senescence while enhancing antioxidant activity. In line with our results in vitro, MSCs-EXOs significantly ameliorated hyperglycemia-induced senescence in DR mice by downregulating mRNA expression of P53, P21, P16, and SASP. Additionally, MSCs-EXOs improved the functional and structural integrity of the retina in DR mice. Our study revealed the protective effect of MSCs-EXOs on cellular senescence, offering new insights for the treatment of DR.

17.
Trends Pharmacol Sci ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39019763

ABSTRACT

Transient receptor potential melastatin (TRPM) channels have emerged as potential therapeutic targets for cerebral ischemia-reperfusion (I/R) injury. We highlight recent findings on the involvement of TRPM channels in oxidative stress, mitochondrial dysfunction, inflammation, and calcium overload. We also discuss the challenges and future directions in targeting TRPM channels for cerebral I/R injury.

18.
EMBO J ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020149

ABSTRACT

Tumor necrosis factor receptors (TNFRs) control pleiotropic pro-inflammatory functions that range from apoptosis to cell survival. The ability to trigger a particular function will depend on the upstream cues, association with regulatory complexes, and downstream pathways. In Drosophila melanogaster, two TNFRs have been identified, Wengen (Wgn) and Grindelwald (Grnd). Although several reports associate these receptors with JNK-dependent apoptosis, it has recently been found that Wgn activates a variety of other functions. We demonstrate that Wgn is required for survival by protecting cells from apoptosis. This is mediated by dTRAF1 and results in the activation of p38 MAP kinase. Remarkably, Wgn is required for apoptosis-induced regeneration and is activated by the reactive oxygen species (ROS) produced following apoptosis. This ROS activation is exclusive for Wgn, but not for Grnd, and can occur after knocking down Eiger/TNFα. The extracellular cysteine-rich domain of Grnd is much more divergent than that of Wgn, which is more similar to TNFRs from other animals, including humans. Our results show a novel TNFR function that responds to stressors by ensuring p38-dependent regeneration.

19.
Cell Signal ; 121: 111285, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969192

ABSTRACT

TST has been mainly studied for its anti-tumor proliferation and antimicrobial effects, but not widely used in dermatological diseases. The mechanism of cellular damage by TST in response to H2O2-mediated oxidative stress was investigated in human skin immortalized keratinocytes (HaCaT) as an in vitro model. The findings reveal that TST treatment leads to increased oxidative stress in the cells by reducing levels of superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT). This effect is further supported by an upsurge in the expression of malondialdehyde (MDA, a pivotal marker of lipid peroxidation). Additionally, dysregulation of FoxM1 at both gene and protein levels corroborates its involvement TST associated effects. Analysis of ferroptosis-related genes confirms dysregulation following TST treatment in HaCaT cells. Furthermore, TST treatment exhibits effects on mitochondrial morphology and function, affirming its induction of apoptosis in the cells through heightened oxidative stress due to mitochondrial damage and dysregulation of mitochondrial membrane potential.

20.
J Med Food ; 27(7): 651-660, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38975681

ABSTRACT

Purpose: This study aimed to investigate the protective effects of gallic acid (GA) against ovarian damage induced by bisphenol A (BPA) exposure in female rats. We evaluated whether GA can mitigate the adverse effects of BPA on ovarian structure, inflammatory markers, oxidative stress, apoptosis, and reproductive hormone levels. Methods: Thirty-two female rats were categorized into four groups: control, GA, BPA, and GA+BPA. Histopathological evaluations of ovarian tissue were performed using hematoxylin-eosin staining. The immunohistochemical analysis was conducted for inflammatory, oxidative DNA damage, and apoptotic markers (Tumor necrosis factor alpha [TNFα], cyclooxygenase-2 [COX2], interleukin-1 beta [IL-1ß], 8-hydroxydeoxyguanosine [8-OHdG], and caspase 3). Oxidative stress was assessed by measuring malondialdehyde and superoxide dismutase levels. Furthermore, follicle-stimulating hormone (FSH), luteinizing hormone (LH), estrogen, and progesterone levels were quantified using enzyme-linked immunosorbent assay. Results: Histopathological outcomes revealed that BPA significantly induced follicular degeneration, which was effectively mitigated by GA treatment (P < 0.05). Immunohistochemical analysis highlighted the exacerbation of inflammatory responses and oxidative DNA damage and apoptosis (TNFα, COX-2, IL-1ß, 8-OHdG, and caspase 3) in BPA-exposed tissues, which were reduced in the presence of GA (P < 0.05). The assessment of oxidative stress demonstrated that GA could significantly decrease lipid peroxidation and partially restore antioxidant defense mechanisms disrupted by BPA (P < 0.05). Hormonal profiling indicated that BPA exposure altered the levels of FSH, LH, estrogen, and progesterone, with GA treatment showing a capacity to modulate these changes, especially in progesterone levels (P < 0.05). Conclusions: The findings suggest that GA exhibits protective properties against BPA-induced ovarian damage through its antioxidative and anti-inflammatory activities, alongside its ability to modulate hormonal imbalances. This research underscores the therapeutic potential of GA in safeguarding reproductive health against environmental toxicants.


Subject(s)
Apoptosis , Benzhydryl Compounds , DNA Damage , Endocrine Disruptors , Gallic Acid , Ovary , Oxidative Stress , Phenols , Animals , Female , Gallic Acid/pharmacology , Benzhydryl Compounds/toxicity , Ovary/drug effects , Ovary/metabolism , Oxidative Stress/drug effects , Endocrine Disruptors/toxicity , Rats , DNA Damage/drug effects , Apoptosis/drug effects , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/genetics , Protective Agents/pharmacology , Luteinizing Hormone/blood , Follicle Stimulating Hormone/blood , Follicle Stimulating Hormone/metabolism , Rats, Sprague-Dawley , 8-Hydroxy-2'-Deoxyguanosine/metabolism , Progesterone , Humans , Antioxidants/pharmacology , Malondialdehyde/metabolism , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...