Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Chemosphere ; : 143495, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39384140

ABSTRACT

This research developed five ensemble-based machine learning (ML) models to predict the adsorption capacity of both pristine and metal-doped activated carbon (AC) and identified key influencing features. Results indicated that Extreme Gradient Boosting (XGB) model provided the most accurate predictions for both types of AC, with metal-doped AC exhibiting 1.7 times higher adsorption capacity than pristine AC showing 254.66 and 148.28 mg/g, respectively. Feature analysis using SHAP values revealed that adsorbent characteristics accounted for 53.5 % of the adsorption capacity in pristine AC, while experimental conditions were crucial for metal-doped AC (61.3%), with surface area and initial concentration being the most significant features, showing mean SHAP values of 0.317 and 0.117, respectively. Statistical comparisons of adsorbent characteristics between pristine and metal-doped AC showed that metal doping significantly altered surface area (p-value = 0.0014), pore volume (p-value = 0.0029), and elemental composition (C% (p-value = 3.9513*10ˆ-7) and O% (p-value = 0.0007)) of AC. Despite the reduction in surface area and consistent pore volume after metal doping, the enhanced adsorption capacity of metal-doped AC was attributed to increased oxygen content from 10.89% to 17.28 % as mean values. This suggests that oxygen-containing functional groups play a critical role in the improved adsorption capacity of metal-doped AC. This research lays the groundwork for optimizing AC adsorbents by identifying key factors in metal-doped AC and suggest further studies on the interaction between specific metal dopants and resulting functional groups to improve adsorption capacity and reduce repeated labor work.

2.
Materials (Basel) ; 17(17)2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39274599

ABSTRACT

In this study, recycled carbon fibers (rCFs) recovered from waste carbon composites were used to manufacture wet-laid nonwoven fabrics. The aim was to improve dispersibility by investigating the changes in the dispersibility of carbon fibers (CFs) based on the content of the dispersant carboxymethyl cellulose (CMC) and the binder polyvinyl alcohol (PVA), and the length and basis weight of the CFs. In addition, the chemical property changes and oxygen functional group mechanisms based on the content of the CMC dispersant and PVA binder were investigated. The nonwoven fabrics made with desized CFs exhibited significantly improved dispersibility. For nonwoven fabrics produced with a fixed binder PVA content of 10%, optimal dispersibility was achieved at a dispersant CMC concentration of 0.4%. When the dispersant CMC concentration was fixed at 0.4% and the binder PVA content at 10%, the best dispersibility was observed at a CF length of 3 mm, while the maximum tensile strength was achieved at a fiber length of 6 mm. Dispersibility remained almost consistent across different basis weights. As the dispersant CMC concentration increased from 0.2% to 0.6%, the oxygen functional groups, such as carbonyl group (C=O), lactone group (O=C-O), and natrium hydroxide (NaOH), also increased. However, hydroxyl group (C-O) decreased. Moreover, the contact angle decreased, while the surface free energy increased. On the other hand, when the dispersant CMC concentration was fixed at 0.4%, the optimal binder PVA content was found to be 3%. As the binder PVA content increased from 0% to 10%, the formation of hydrogen bonds between the CMC dispersant and the PVA binder led to an increase in C=O and O=C-O bonds, while C-O and NaOH decreased. As the amount of oxygen increased, the contact angle decreased and the surface free energy increased.

3.
Materials (Basel) ; 17(14)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39063873

ABSTRACT

Surfactant-based wet spinning is a promising route toward the eco-friendly production of carbon nanotube fibers (CNTFs). However, currently, the properties of surfactant-based wet-spun CNTFs lag behind those produced by other methods, indicating the need for further understanding and research. Here, we explored the surface characteristics of carbon nanotubes (CNTs) that are advantageous for the properties of CNTFs produced by wet spinning, using sodium cholate as a surfactant. Our finding indicates that appropriate thermal oxidation of CNTs enhances the fiber properties, while excessive oxidation undermines them. This implies that the bonding mechanism between CNTs and sodium cholate involves hydrophobic interaction and π-π interaction. Therefore, it is crucial to preserve a clean surface of CNTs in wet spinning using sodium cholate. We believe our research will contribute to the advancement of surfactant-based wet spinning of CNTFs.

4.
Chemosphere ; 311(Pt 1): 136884, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36265698

ABSTRACT

In this study, crayfish shell biochar (CSB) was modified by introducing vitamin C (VC) with abundant surface functional groups. CSB was impregnated with VC at different ratios and its capacity to adsorb tetracycline (TC) from water was analyzed. The physicochemical properties of CSB were determined by N2 adsorption-desorption isotherm analysis, X-ray diffraction, and Fourier transform infrared spectroscopy. The effects of various factors on adsorption such as the pH, TC concentration, time, and salt ion concentrations were also investigated. Based on the chemical structure of VC, VC can provide CSB with more oxygen-containing functional groups such as hydroxyl groups. The results showed that the CSB modified with VC (CSB-VC) exhibited excellent adsorption of TC, and CSB-VC2 with an impregnation ratio of 2 (gVC/gCSB) had the greatest adsorption performance (saturated adsorption capacity, Qm = 293.36 mg/g), whereas the adsorption performance of CSB alone was about 50% lower (Qm = 172.16 mg/g). The optimal impregnation ratio VC improved the adsorption performance of CSB after modification to 70.4% of the original. Hydrogen bonding, p-p conjugation, pi-pi electron donor-acceptor effect, and π-π interactions were identified as the main adsorption mechanisms. CSB-VC2 was highly effective over a wide range of pH values and at high ion concentrations. Experiments demonstrated the effective regeneration of the adsorbent after multiple cycles, thereby indicating its excellent reusability. It should be noted that the adsorption capacity was good under different water quality conditions, and thus it should exhibit stable adsorption performance under complex water environment conditions.


Subject(s)
Astacoidea , Water Pollutants, Chemical , Animals , Ascorbic Acid , Water Pollutants, Chemical/chemistry , Kinetics , Charcoal/chemistry , Tetracycline/chemistry , Adsorption , Anti-Bacterial Agents/chemistry , Spectroscopy, Fourier Transform Infrared
5.
Environ Sci Pollut Res Int ; 29(20): 29870-29886, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34993772

ABSTRACT

Coalbed methane not only is a new clean energy source, but also has potential damage to ecological environment. Water and methane coexist in coal reservoir; understanding the adsorption of water on coal and its impact on pore structure and methane adsorption of coal is vital to evaluate the reserves and productivity of coalbed methane. In the paper, water adsorption characteristics of various rank coals are firstly investigated by ten mathematical models. The modified Dent model provides a best fit, followed by GAB and Dent models. For GAB model, the primary site adsorption is more difficult to reach saturation, and the contribution rate of the secondary site adsorption is surprisingly high at P/P0 approaching 0, which can be attributed to the possible overestimation of GAB monolayer adsorption capacity and secondary site adsorption. Besides, the low-rank coal sample YZG2 exhibits more prominent hysteresis than middle- to high-rank coals. The low-pressure hysteresis can be attributed to the water-water interactions over the primary site and the strengthened binding forces of water molecules in the water desorption process. In contrast, the high-pressure hysteresis largely depends on pore structure of coal such as ink-bottle pores, especially for the studied sample YZG2. Besides, pore analyses by low-temperature nitrogen adsorption method show that the pre-adsorbed water has remarkable influence on micropores smaller than 10 nm, and the micropores smaller than 4 nm almost disappear for water-equilibrated coals, which is closely related to the formed water clusters and capillary water in pore throats. This finding reveals that more methane gas can only be adsorbed in the larger pores of moist coal, and provides an explanation for water weakening methane adsorption capacity.


Subject(s)
Coal , Methane , Adsorption , Coal/analysis , Methane/analysis , Nitrogen/analysis , Water
6.
Front Chem ; 9: 736954, 2021.
Article in English | MEDLINE | ID: mdl-34660532

ABSTRACT

Graphene oxide is an important member of the graphene family which has a wide range of applications. The chemical method, especially the liquid phase method, is one of the most common and important methods for its preparation. However, the complex solution environment not only gives them rich structure, but also brings great challenges for its large-scale industrial synthesis. In order to better realize its industrial application, it is important to understand its structure, such as the source of oxygen-containing functional groups. Here we studied the contribution of four oxygenated acids to oxygen-containing functional groups in Hummers' method using first principles. We found that the permanganic acid molecules that exist instantaneously due to energy fluctuations can be the source of oxygen-containing functional group. In addition, Stone-Wales defect have a certain effect on the formation of oxygen-containing functional groups, but this effect is not as good as that of solvation effect. This work provides a guide for exploring the source of oxygen-containing functional groups on graphene oxide.

7.
Nanomaterials (Basel) ; 11(7)2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34206221

ABSTRACT

Unzipping of carbon nanotubes (CNTs) has been widely explored to obtain new nanocarbon structures with promising properties. In this work, we report that unzipping of CNTs according to the well-established modified Hummers method produces unzipped CNTs (uCNTs) that exhibit self-photoluminescence that depends on the diameter of pristine CNTs. The uCNTs were characterized using FTIR spectroscopy, XRD, XPS, and Raman spectroscopy indicating that unzipping is accompanied by the introduction of defects and oxygen-containing functional groups. The morphology of CNTs and uCNTs was determined by TEM showing longitude unzipping of CNTs. Our study shows that increasing the diameter of pristine CNTs results in decreasing the edge etching effect and decreasing the functionality of uCNTs. Based on the UV-Vis spectra, the band gap of uCNTs was calculated using the Kubelka-Munk function. The band gap of uCNTs increased with decreasing diameter of pristine CNTs. The uCNTs exhibited photoluminescence with a good emission in the visible light region. The uCNTs with the largest band gap and the highest oxygen content had the strongest fluorescence intensity. Moreover, different metal ions produced different degrees of fluorescence quenching for uCNT-15, which verified the self-photoluminescence of uCNTs.

8.
Chemosphere ; 275: 130021, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33647678

ABSTRACT

Surface oxygen-containing functional groups (OFGs) at different sites of carbonaceous materials showed different effects on the normalized monolayer adsorption capacity (QBET/A) obtained from the modified BET model. The OFGs on mesoporous surfaces inhibited the adsorption via the water competition, whereas those on the external surface promoted the adsorption due to the enhanced hydrophobic driving force and electrostatic forces, as analyzed from the adsorption molar free energy. Multiple linear relationships were established between the monolayer adsorption capacity QBET/A and the amounts of OFGs on mesoporous and the external surfaces ([O]meso and [O]external, respectively). The properties of aromatic adsorbate compounds, the polar area radio of aromatic molecule to water (PAad/w), and the log Kow together influenced the inhibition or promotion effects of OFGs. These results would allow predictions of adsorption behavior of aromatic compounds on carbonaceous materials on the basis of OFGs parameters. Theoretical calculations and simulations projected the configuration of aromatic molecules being parallel to the graphene sheets of carbonaceous materials. The symmetry-adapted perturbation theory (SAPT) energy decomposition showed that the electrostatic forces intensified with the increase of adsorbate polarity. These analyses revealed that the electrostatic forces were enhanced in the presence of OFGs and that the π-π EDA (electron donor-acceptor) was the main force.


Subject(s)
Graphite , Oxygen , Adsorption , Hydrophobic and Hydrophilic Interactions , Organic Chemicals
9.
Materials (Basel) ; 13(24)2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33348796

ABSTRACT

Oxygen-containing functional groups tend to induce a strong interaction between solid adsorbents and iodine molecules, yet have not been systematically investigated. Herein, on the basis of a series of nitric acid-treated graphene oxide (GO) with different contents of oxygen functional groups for iodine adsorption, it was found that the iodine uptake capacity is proportionate to the oxygen content and the diversities of oxygen-containing groups. The density functional theory (DFT) calculation results also suggest that oxygen-containing groups result in strong interactions between iodine molecules and the adsorbents through a covalent bond-forming process, among which -OH groups possess a higher adsorption energy averagely. Such theoretical and experimental work deepens our understanding of the effects of oxygen functional groups on iodine adsorption and provides novel ideas for future design and synthesis of high-performance solid adsorbents for radioactive iodine.

10.
Huan Jing Ke Xue ; 41(6): 2963-2971, 2020 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-32608814

ABSTRACT

A batch of biochar was produced from pyrolysis of Typha angustifolia (TBCs) at 200-500℃ for 2 h and 6 h to investigate the effects of pyrolytic temperature and heating retention time on the physico-chemical properties. Moreover, Escherichia coli (E. coli) HB101 and the seeds of Helianthus annuus were used to preliminarily test the ecological risk of the TBCs. Results showed that the heating retention time (i.e., 2 and 6 h) had no significant effect on the properties of TBCs, while pyrolytic temperature significantly affected TBCs' characteristics. As the pyrolysis temperature increased from 200 to 500℃, the mass yield and contents of hydrogen (H) and oxygen (O) decreased, while the contents of carbon (C) and ash increased. The pH and surface pores also increased with increasing pyrolytic temperature, whereas the O-containing functional group (e.g., -COOH and -OH) decreased. These results indicated the increased carbonization and aromatization of the TBCs. For the inherent nutrients of TBCs, the total phosphorus (TP) and available potassium (K) contents significantly increased as temperature increased. The main components of dissolved organic matter (DOM) of TBCs were humic acid-like and fulvic acid-like organic compounds. As the pyrolysis temperature increased, the content of humic acid-like organic compounds decreased, while the content of fulvic acid-like organic compounds increased. All the TBCs had no significant effect on the growth of E. coli HB101 and the seed germination of Helianthus annuus, indicating the little ecological risk of TBCs under the experimental conditions. These findings provide an alternative way for resource utilization of waste wetland biomass and provide important theoretical data for screening biochar in soil reclamation.


Subject(s)
Pyrolysis , Typhaceae , Charcoal , Escherichia coli , Temperature
11.
Environ Sci Pollut Res Int ; 25(32): 32721-32734, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30244443

ABSTRACT

Hydrochar prepared from the hydrothermal liquefaction of microalgae is characterized and investigated for copper removal from aqueous solution. Two hydrochars were prepared at 210 °C (HD210) and 250 °C (HD250). The effect of the initial solution pH, the initial Cu(II) concentration, the contact time, and the temperature will be investigated. According to the elemental analysis, the volatile matter in the hydrochars was lower and ash content was higher than those of microalgae. Also, pore characteristic analysis revealed that the surface area of the HD250 was higher than that of the HD210 suggesting a higher potential for the adsorption process. FTIR analysis and Boehm titration showed that both hydrochars contained oxygen-containing functional groups (OFG) on the surface which were effective for the copper removal. The adsorption experiments indicated that the amount of copper adsorbed reached a maximum value at the pH of 5 which was considered as the optimum solution pH. In addition, HD250 had a higher amount of copper adsorption than that of HD210 at all values of the solution pH. The adsorption data at the optimum solution pH was well fitted by the Langmuir's isotherm model and the adsorption process could be well described by the pseudo-2nd order kinetic model. Moreover, thermodynamic analysis revealed that copper adsorption onto the hydrochar was a physical endothermic process.


Subject(s)
Copper/chemistry , Microalgae/chemistry , Models, Chemical , Water Pollutants, Chemical/chemistry , Water Purification/methods , Adsorption , Hydrogen-Ion Concentration , Kinetics , Solutions , Temperature , Thermodynamics , Water/chemistry
12.
J Mol Model ; 24(6): 130, 2018 May 07.
Article in English | MEDLINE | ID: mdl-29736591

ABSTRACT

Graphene oxide with different degrees of oxidation was prepared and selected as a model compound of lignite to study quantitatively, using both experiment and theoretical calculation methods, the effect on water-holding capacity of oxygen-containing functional groups. The experimental results showed that graphite can be oxidized, and forms epoxy groups most easily, followed by hydroxyl and carboxyl groups. The prepared graphene oxide forms a membrane-state as a single layer structure, with an irregular surface. The water-holding capacity of lignite increased with the content of oxygen-containing functional groups. The influence on the configuration of water molecule clusters and binding energy of water molecules of different oxygen-containing functional groups was calculated by density functional theory. The calculation results indicated that the configuration of water molecule clusters was totally changed by oxygen-containing functional groups. The order of binding energy produced by oxygen-containing functional groups and water molecules was as follows: carboxyl > edge phenol hydroxyl >epoxy group. Finally, it can be concluded that the potential to form more hydrogen bonds is the key factor influencing the interaction energy between model compounds and water molecules.

SELECTION OF CITATIONS
SEARCH DETAIL