Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.444
Filter
1.
Dis Res ; 4(1): 31-39, 2024.
Article in English | MEDLINE | ID: mdl-38962090

ABSTRACT

As key modulators of the immune response, interferons play critical roles following infection and during the pathogenesis of cancer. The idea that these cytokines might be developed as new therapies emerged soon after their discovery. While enthusiasm for this approach to cancer therapy has waxed and waned over the ensuing decades, recent advances in cancer immunotherapy and our improved understanding of the tumor immune environment have led to a resurgence of interest in this unique class of biologic drug. Here, we review how interferons influence the growth of colorectal cancers (CRCs) and highlight new insights into how interferons and drugs that modulate interferon expression might be most effectively deployed in the clinic.

2.
Oncol Lett ; 28(2): 395, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38966586

ABSTRACT

Anal squamous cell carcinoma (SCC) treated with definitive radiotherapy (RT)/chemoradiotherapy (CRT) has shown high success rates, yet challenges such as treatment resistance and recurrence persist. The present study aimed to investigate the associations between immunohistochemical (IHC) evaluation, treatment response and prognosis in anal SCC. A retrospective cohort analysis included 42 patients with anal SCC treated at a single institution between 2006 and 2022. Human papillomavirus (HPV) status was determined, and the IHC analysis of p16, p53 and PD-L1 expression was conducted using formalin-fixed, paraffin-embedded biopsies. A complete response to RT/CRT was observed in 71.4% of patients. Recurrence occurred in 38.1% of cases, of which 7.1% had local-regional recurrence (LRR), 14.3% had distant recurrence (DR), and 16.7% had both LRR and DR. HPV positivity (71.4%) was significantly associated with p16 positivity. Lack of complete response was associated with HPV-negative status, p16-negative status, increased recurrence and DR. In addition, recurrence was significantly associated with p53-positive status, and p53 positivity was significantly associated with increased LRR. PD-L1 positivity, defined as a combined positive score (CPS) ≥1% was found in 73.8% of the patients, and exhibited significant associations with HPV positivity and p16 positivity. PD-L1 CPS ≥ 1% was also associated with an increased LRR. Univariate analysis revealed that age <65 years, a complete response and HPV positivity were associated with increased 5-year overall survival (OS), while a complete response, HPV positivity and p53-negative status were associated with increased 5-year disease-free survival (DFS). Multivariate analysis identified that age <65 years and HPV positivity are independent prognostic factors for 5-year OS, and a complete response and p53-negative status are independent prognostic factors for 5-year DFS. In conclusion, these findings suggust that the identification of HPV status and poor prognostic biomarkers at diagnosis may be used to guide personalized treatment strategies, with the combination of immunotherapy with standard CRT potentially providing improved outcomes.

3.
Eur Urol Oncol ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38964997

ABSTRACT

BACKGROUND: Salvage radiation therapy (SRT) is a mainstay of treatment for biochemical relapse following radical prostatectomy; however, few studies have examined genomic biomarkers in this context. OBJECTIVE: We characterized the prognostic impact of previously identified deleterious molecular phenotypes-loss of PTEN, ERG expression, and TP53 mutation-for patients undergoing SRT. DESIGN, SETTING, AND PARTICIPANTS: We leveraged an institutional database of 320 SRT patients with available tissue and follow-up. Tissue microarrays were used for genetically validated immunohistochemistry assays. INTERVENTION: All men underwent SRT with or without androgen deprivation therapy OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Univariable and multivariable Cox-proportional hazard models assessed the association of molecular phenotypes with biochemical recurrence-free (bRFS) and metastasis-free (MFS) survival after SRT. RESULTS AND LIMITATIONS: Loss of PTEN (n = 123, 43%) and ERG expression (n = 118, 39%) were common in this cohort, while p53 overexpression (signifying TP53 missense mutation) was infrequent (n = 21, 7%). In univariable analyses, any loss of PTEN portended worse bRFS (hazard ratio [HR] 1.86; 95% confidence interval 1.36-2.57) and MFS (HR 1.89; 1.21-2.94), with homogeneous PTEN loss being associated with the highest risk of MFS (HR 2.47; 1.54-3.95). Similarly, p53 overexpression predicted worse bRFS (HR 1.95; 1.14-3.32) and MFS (HR 2.79; 1.50-5.19). ERG expression was associated with worse MFS only (HR 1.6; 1.03-2.48). On the multivariable analysis adjusting for known prognostic features, homogeneous PTEN loss remained predictive of adverse bRFS (HR 1.82; 1.12-2.96) and MFS (HR 2.08; 1.06-4.86). The study is limited by its retrospective and single-institution design. CONCLUSIONS: PTEN loss by immunohistochemistry is an independent adverse prognostic factor for bRFS and MFS in prostate cancer patients treated with SRT. Future trials will determine the optimal approach to treating SRT patients with adverse molecular prognostic features. PATIENT SUMMARY: Loss of the PTEN tumor suppressor protein is associated with worse outcomes after salvage radiotherapy, independent of other clinical or pathologic patient characteristics.

4.
Eur J Obstet Gynecol Reprod Biol ; 300: 23-28, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38972163

ABSTRACT

OBJECTIVE: Prognostic stratification of endometrial cancer involves the assessment of stage, uterine risk factors, and molecular classification. This process can be further refined through annotation of prognostic biomarkers, notably L1 cell adhesion molecule (L1CAM) and hormonal receptors. Loss of asparaginase-like protein 1 (ASRGL1) has been shown to correlate with poor outcome in endometrial cancer. Our objective was to assess prognostication of endometrial cancer by ASRGL1 in conjunction with other available methodologies. STUDY DESIGN: This was a retrospective study of patients who underwent primary treatment at a single tertiary center. Tumors were molecularly classified by the Proactive Molecular Risk Classifier for Endometrial Cancer. Expression of ASRGL1, L1CAM, estrogen receptor, and progesterone receptor was determined by immunohistochemistry. ASRGL1 expression intensity was scored into four classes. RESULTS: In a cohort of 775 patients, monitored for a median time of 81 months, ASRGL1 expression intensity was related to improved disease-specific survival in a dose-dependent manner (P < 0.001). Low expression levels were associated with stage II-IV disease and presence of uterine factors, i.e. high grade, lymphovascular space invasion, and deep myometrial invasion (P < 0.001 for all). Among the molecular subgroups, low expression was most prevalent in p53 abnormal carcinomas (P < 0.001). Low ASRGL1 was associated with positive L1CAM expression and negative estrogen and progesterone receptor expression (P < 0.001 for all). After adjustment for stage and uterine factors, strong ASRGL1 staining intensity was associated with a lower risk for cancer-related deaths (hazard ratio 0.56, 95 % confidence interval 0.32-0.97; P = 0.038). ASRGL1 was not associated with the outcome when adjusted for stage, molecular subgroups, L1CAM, and hormonal receptors. When analyzed separately within the different molecular subgroups, ASRGL1 showed an association with disease-specific survival specifically in "no specific molecular profile" subtype carcinomas (P < 0.001). However, this association became nonsignificant upon controlling for confounders. CONCLUSIONS: Low ASRGL1 expression intensity correlates with poor survival in endometrial cancer. ASRGL1 contributes to more accurate prognostication when controlled for stage and uterine factors. However, when adjusted for stage and other biomarkers, including molecular subgroups, ASRGL1 does not improve prognostic stratification.

5.
Free Radic Biol Med ; 222: 456-466, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950659

ABSTRACT

Hepatocellular carcinoma (HCC), the primary form of liver cancer, is the third leading cause of cancer-related death globally. Hernandonine is a natural alkaloid derived from Hernandia nymphaeifolia that has been shown to exert various biological functions. In a previous study, hernandonine was shown to suppress the proliferation of several solid tumor cell lines without affecting normal human cell lines. However, little is known about the effect of hernandonine on HCC. Therefore, this study aimed to investigate the effect and mechanism of hernandonine on HCC in relation to autophagy. We found that hernandonine inhibited HCC cell growth in vitro and in vivo. In addition, hernandonine elicited autophagic cell death and DNA damage in HCC cells. RNA-seq analysis revealed that hernandonine upregulated p53 and Hippo signaling pathway-related genes in HCC cells. Small RNA interference of p53 resulted in hernandonine-induced autophagic cell death attenuation. However, inhibition of YAP sensitized HCC cells to hernandonine by increasing the autophagy induction. This is the first study to illustrate the complex involvement of p53 and YAP in the hernandonine-induced autophagic cell death in human HCC cells. Our findings provide novel evidence for the potential of hernandonine as a therapeutic agent for HCC treatment.

7.
World J Gastroenterol ; 30(23): 2931-2933, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38946877

ABSTRACT

In this editorial we comment on the article published in a recent issue of the World Journal of Gastroenterology. Acute liver failure (ALF) is a critical condition characterized by rapid hepatocellular injury and organ dysfunction, and it often necessitates liver transplant to ensure patient survival. Recent research has elucidated the involvement of distinct cell death pathways, namely ferroptosis and pyroptosis, in the pathogenesis of ALF. Ferroptosis is driven by iron-dependent lipid peroxidation, whereas pyroptosis is an inflammatory form of cell death; both pathways contribute to hepatocyte death and exacerbate tissue damage. This comprehensive review explores the interplay between ferroptosis and pyroptosis in ALF, highlighting the role of key regulators such as silent information regulator sirtuin 1. Insights from clinical and preclinical studies provide valuable perspectives on the dysregulation of cell death pathways in ALF and the therapeutic potential of targeting these pathways. Collaboration across multiple disciplines is essential for translating the experimental insights into effective treatments for this life-threatening condition.


Subject(s)
Ferroptosis , Liver Failure, Acute , Pyroptosis , Animals , Humans , Hepatocytes/metabolism , Iron/metabolism , Lipid Peroxidation , Liver/metabolism , Liver/pathology , Liver Failure, Acute/metabolism , Liver Failure, Acute/therapy , Liver Transplantation , Signal Transduction , Sirtuin 1/metabolism
8.
J Inflamm Res ; 17: 4093-4104, 2024.
Article in English | MEDLINE | ID: mdl-38948198

ABSTRACT

Purpose: Acute graft-versus-host disease (aGVHD) poses a significant impediment to achieving a more favourable therapeutic outcome in allogeneic hematopoietic stem cell transplantation (allo-HSCT). The tumour suppressor p53 plays a pivotal role in preventing aGVHD development. However, whether P53 pathway which contains p53 family members and other related genes participates in aGVHD development remains an unsolved question. Patients and Methods: Transcriptomic data was obtained from Gene Expression Omnibus (GEO) database. Gene set enrichment analysis was applied to determine the enrichment degree of signaling pathways. CIBERSORT and ssGSVA were used to evaluate immune cell compositions. Univariate and multivariate logistic regression analysis were performed to examine the independent diagnostic variables. qRT-PCR was utilized to validate the genes expression levels in our cohort. Results: A total number of 102 patients (42 aGVHD patients vs 60 non-aGVHD patients) were obtained after integrating two datasets in GEO database (GSE73809 and GSE4624). P53 pathway was remarkably suppressed in T cells from aGVHD patients and negatively associated with activated T cells as well as T cells activation related signaling pathways, including T-cell receptor (TCR), mTORC1, MYC and E2F target pathways. A risk model for aGVHD built by four genes (DDIT3, FBXW7, TPRKB and TOB1) in P53 pathway, exhibiting high differentiate and predictive value. DDIT3 and FBXW7 mRNA expression levels significantly decreased in peripheral blood mononuclear cells (PBMCs) from aGVHD patients compared with non-aGVHD group in our patient cohort, consisting with bioinformatics analysis. Conclusion: P53 pathway plays a potential role in impeding T cell activation through suppressing its related signaling pathways, thereby preventing aGVHD development. P53 pathway may emerge as a promising therapeutic target in aGVHD treatment.

9.
Mol Divers ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951417

ABSTRACT

Four new series of curcumin derivatives bearing NO-donating moiety were synthesized via etherification, nucleophilic substitution, and Knoevenagel condensation etc. The cytotoxicity activity of curcumin derivatives against five human tumor cell lines (A549, Hela, HepG2, MCF-7 and HT-29) and two normal cell lines (LO-2 and HK-2) has been studied. The results showed that compound 6a could inhibit the proliferation of MCF-7 cells remarkably and exhibit low toxicity to normal cells. Also, the underlying mechanism in vitro of compound 6a on MCF-7 was investigated. It has been found that compound 6a induced G2/M arrest and apoptosis of MCF-7 in a dose-dependent manner. Compound 6a-induced the fluorescence changes of ROS in MCF-7 cells confirmed the occurrence of apoptosis. Western Blot suggested that compound 6a decreased the expression of PI3K, as well as increased the expression of p53, cleaved caspase-9 and cleaved caspase-3. Furthermore, molecular docking revealed that compound 6a could bind well at active site of PI3K (3zim) with total score 9.59. Together, compound 6a, a potential PI3K inhibitor, may inhibit the survival of MCF-7 cells via interfering with PI3K/Akt/p53 pathway.

10.
EMBO J ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951610

ABSTRACT

Cells have evolved a robust and highly regulated DNA damage response to preserve their genomic integrity. Although increasing evidence highlights the relevance of RNA regulation, our understanding of its impact on a fully efficient DNA damage response remains limited. Here, through a targeted CRISPR-knockout screen, we identify RNA-binding proteins and modifiers that participate in the p53 response. Among the top hits, we find the m6A reader YTHDC1 as a master regulator of p53 expression. YTHDC1 binds to the transcription start sites of TP53 and other genes involved in the DNA damage response, promoting their transcriptional elongation. YTHDC1 deficiency also causes the retention of introns and therefore aberrant protein production of key DNA damage factors. While YTHDC1-mediated intron retention requires m6A, TP53 transcriptional pause-release is promoted by YTHDC1 independently of m6A. Depletion of YTHDC1 causes genomic instability and aberrant cancer cell proliferation mediated by genes regulated by YTHDC1. Our results uncover YTHDC1 as an orchestrator of the DNA damage response through distinct mechanisms of co-transcriptional mRNA regulation.

11.
Heliyon ; 10(11): e32455, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38961902

ABSTRACT

Long-time hypoxia induced cardiomyocyte apoptosis is an important mechanism of myocardial ischemia (MI) injury. Interestingly, long noncoding RNA myocardial infarction-associated transcript (LncMIAT) has been involved in the regulation of MI injury; however, the underlying mechanism by which LncMIAT affects the progression of hypoxia-induced cardiomyocyte apoptosis remains unclear. In the present study, hypoxia was found to promote cardiomyocyte apoptosis through an increased expression of LncMIAT in vitro. Biological investigations and dual-luciferase gene reporter assay further revealed that LncMIAT was able to bind with miR-708-5p to upregulate the p53-mediated cell death of the cardiomyocytes. Silencing of LncMIAT or overexpression of miR-708-5p led to a significant reduction in p53-mediated cardiomyocyte apoptosis. The methylated RNA immunoprecipitation (MeRIP)-qPCR results showed that hypoxia exerted its effects on LncMIAT through AKLBH5-N6-methyladenosine (m6A) methylation and therefore hypoxia was shown to trigger HL-1 cardiomyocyte apoptosis via the m6A methylation-mediated LncMIAT/miR-708-5p/p53 axis. Silencing of AKLBH5 significantly alleviated the m6A methylation-mediated LncMIAT upregulation and p53-mediated cardiomyocyte apoptosis, while promoted miR-708-5p expression. Taken together, the present study highlighted that LncMIAT could act as a key biological target during hypoxia-induced cardiomyocyte apoptosis. In addition, it was shown that hypoxia could promote cardiomyocyte apoptosis through regulation of the m6A methylation-mediated LncMIAT/miR-708-5p/p53 signaling axis.

12.
Cureus ; 16(6): e62895, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39040787

ABSTRACT

Serous tubal intraepithelial carcinoma, serous tubal intraepithelial lesions (STILs), and the p53 signature are considered to be related to precursor lesions of high-grade serous carcinomas (HGSCs). However, the clinical significance and prognostic implications of these lesion types are currently unknown. We diagnosed three patients with STILs according to the morphological evaluation criteria and combined this with p53 and Ki-67 immunostaining. One patient had an HGSC of the ovary that was incidentally discovered at the time of ovarian cyst resection, and the HGSC in the other two patients was characterized after they underwent risk-reducing salpingo-oophorectomy. Herein, we present a report of three patients with STILs diagnosed based on clinical data and pathological findings, along with a review of the literature.

13.
Virchows Arch ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39078430

ABSTRACT

Uteri from women undergoing chemoradiotherapy (CRT) may show reactive atypia which may mimic serous endometrial intraepithelial carcinoma (SEIC). We aimed to assess the prevalence and morphological/immunohistochemical features of post-radiotherapy serous-like endometrial changes (PoRSEC) in women undergone CRT for locally advanced cervical cancer, with a focus on the differential diagnosis with SEIC. Consecutive patients with locally advanced cervical cancer undergone CRT between 2011 and 2018 were reviewed. Endometrial histological specimens were assessed for the presence of PoRSEC. Twenty-two cases of SEIC were included for comparison. Immunohistochemistry for p53, p16, and Ki67 was performed. Out of 244 reviewed patients, 36 (14.7%) showed PoRSEC. The degree of nuclear atypia was similar between PoRSECs and SEIC. However, a papillary architecture with areas of confluent papillae was only observed in SEIC. SEIC cases showed a high mitotic activity as opposed to PoRSEC cases. The expression of p53 was aberrant in all SEICs but in none of the PoRSECs; however, 13/36 PoRSECs showed p53 positivity in most tumor cells, potentially mimicking a mutation pattern. A block-type p16 expression was observed in all SEICs and in 16/36 PoRSECs. Mean Ki67 expression was 26.9% in SEIC (range 5-70%) and 8.16% in PoRSEC (range 5-35%). While SEIC showed sharp morphological and immunohistochemical demarcation, PoRSEC were more heterogenous and merged imperceptibly with normal endometrium. In conclusion, PoRSEC may mimic SEIC both morphologically and immunohistochemically. However, a papillary architecture with cytological demarcation is typically observed in SEIC but not in PoRSEC.

14.
Article in English | MEDLINE | ID: mdl-39030705

ABSTRACT

In this study we investigate the role of Zipper-interacting protein kinase (ZIPK) in high glucose-induced vascular injury, focusing on its interaction with STAT5A and its effects on p53 and inducible nitric oxide synthase (NOS2) expression. Human umbilical vein endothelial cells (HUVECs) are cultured under normal (5 mM) and high (25 mM) glucose conditions. Protein and gene expression levels are assessed by western blot analysis and qPCR respectively, while ROS levels are measured via flow cytometry. ZIPK expression is manipulated using overexpression plasmids, siRNAs, and shRNAs. The effects of the ZIPK inhibitor TC-DAPK6 are evaluated in a diabetic rat model. Our results show that high glucose significantly upregulates ZIPK, STAT5A, p53, and NOS2 expressions in HUVECs, thus increasing oxidative stress. Silencing of STAT5A reduces p53 and NOS2 expressions and reactive oxygen species (ROS) accumulation. ZIPK is essential for high glucose-induced p53 expression and ROS accumulation, while silencing of ZIPK reverses these effects. Overexpression of ZIPK combined with STAT5A silencing attenuates glucose-induced alterations in p53 and NOS2 expression, thereby preventing cell damage. Coimmunoprecipitation reveals a direct interaction between ZIPK and STAT5A in the nucleus under high-glucose condition. In diabetic rats, TC-DAPK6 treatment significantly decreases ZIPK, p53, and NOS2 expressions. Our findings suggest that ZIPK plays a critical role in high glucose-induced vascular injury via STAT5A-mediated pathways, proposing that ZIPK is a potential therapeutic target for diabetic vascular complications.

15.
Open Life Sci ; 19(1): 20220919, 2024.
Article in English | MEDLINE | ID: mdl-39071496

ABSTRACT

The mortality rate of acute-on-chronic liver failure (ACLF) remains significantly elevated; hence, this study aimed to investigate the impact of heat shock protein family B (small) member 1 (HSPB1) on ACLF in vivo and in vitro and the underlying mechanism. This study used the ACLF mouse model, and liver damage extent was studied employing Masson trichrome, hematoxylin and eosin (H&E), Sirius red staining, and serum biochemical indices. Similarly, hepatocyte injury in lipopolysaccharide (LPS)-induced L02 cells was evaluated using cell counting kit-8 assay, enzymatic activity, flow cytometry, and TUNEL assay, while the underlying mechanism was investigated using western blot. Results showed that the morphology of liver tissue in ACLF mice was changed and was characterized by cirrhosis, fibrosis, collagen fiber deposition, inflammatory cell infiltration, and elevated liver injury indices. Moreover, HSPB1 was upregulated in both ACLF patients and mice, where overexpressing HSPB1 was found to inhibit ACLF-induced liver damage. Similarly, the HSPB1 expression in LPS-treated L02 cell lines was also increased, where overexpressing HSPB1 was found to promote cell viability, inhibit liver injury-related enzyme activity, and suppress apoptosis. Mechanistic investigations revealed that HSPB1 was responsible for inhibiting p-P53 and Bax protein levels, where activated P53 counteracted HSPB1's effects on cellular behaviors. In conclusion, HSPB1 attenuated ACLF-induced liver injury in vivo and inhibited LPS-induced hepatocyte damage in vitro, suggesting that HSPB1 may be a novel target for ACLF therapy.

16.
Article in English | MEDLINE | ID: mdl-39074166

ABSTRACT

Primary spinal cord gliomas are rare and are associated with high mortality. Unlike brain tumors, the clinicopathological features of spinal cord gliomas are not well defined. We analyzed clinical, histopathology, and immunohistochemical features and overall survival (OS) of 25 patients with primary spinal cord gliomas treated between 1994 and 2023 at 4 institutions. IDH1 R132H, H3K27M, and p53 were assessed by immunohistochemistry (IHC). Four (16%), 5 (20%), 2 (8%), and 13 (52%) patients were diagnosed as having grades 1, 2, 3, and 4 gliomas according to the World Health Organization (WHO) 2021 classification, respectively. One case (4%), with a circumscribed diffuse midline glioma, H3K27-altered, had a rare molecular profile and could not be graded. IHC demonstrated H3K27M positivity, indicative of H3F3A K27M or HIST1H3B K27M mutation, in 9 (36%) patients. H3K27me3-loss was evident in 13 (52%) patients. In one patient with a grade 1 tumor that showed negative staining for H3K27M and H3K27me3 loss, numbers of EZHIP-positive cells were increased, suggesting diffuse midline glioma, H3K27-altered (WHO grade 4). H3K27me3 loss, frequency of p53 positive cells (≥10%), MIB-1 index (≥10%), and high histopathological grades significantly correlated with poor OS. These results indicate the pathological and immunohistochemical characteristics of primary spinal cord gliomas that impact prognosis.

17.
Eur Radiol ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075300

ABSTRACT

OBJECTIVES: Li-Fraumeni syndrome (LFS) is a cancer syndrome associated with early-onset neoplasias. The use of whole-body magnetic resonance imaging (WBMRI) is recommended for regular cancer screening, however, evidence supporting the benefits in asymptomatic LFS patients is limited. This study aims to assess the clinical utility of WBMRI in germline TP53 mutation carriers at baseline and follow-up. MATERIALS AND METHODS: We systematically searched PubMed, Cochrane, and Embase databases for studies evaluating WBMRI as an early detection method for tumor screening in patients with LFS. We pooled the prevalence of the included variables along with their corresponding 95% confidence intervals (CIs). Statistical analyses were performed using R software, version 4.3.1. RESULTS: From 1687 results, 11 comprising 703 patients (359 females (51%); with a median age of 32 years (IQR 1-74)) were included. An estimated detection rate of 31% (95% CI: 0.28, 0.34) for any suspicious lesions was found in asymptomatic TP53 carriers who underwent baseline WBMRI. A total of 277 lesions requiring clinical follow-up were identified in 215 patients. Cancer was confirmed in 46 lesions across 39 individuals. The estimated cancer diagnosis rate among suspicious lesions was 18% (95% CI: 0.13, 0.25). WBMRI detected 41 of the 46 cancers at an early-disease stage, with an overall detection rate of 6% (95% CI: 0.05, 0.08). The incidence rate was 2% per patient round of WBMRI (95% CI: 0.01, 0.04), including baseline and follow-up. CONCLUSION: This meta-analysis provides evidence that surveillance with WBMRI is effective in detecting cancers in asymptomatic patients with LFS. CLINICAL RELEVANCE STATEMENT: Our study demonstrates that whole-body MRI is an effective tool for early cancer detection in asymptomatic Li-Fraumeni Syndrome patients, highlighting its importance in surveillance protocols to improve diagnosis and treatment outcomes. KEY POINTS: Current evidence for whole-body MRI screening of asymptomatic Li-Fraumeni Syndrome (LFS) patients remains scarce. Whole-body MRI identified 41 out of 46 cancers at an early stage, achieving an overall detection rate of 6%. Whole-body MRI surveillance is a valuable method for detecting cancers in asymptomatic LFS patients.

18.
Respir Res ; 25(1): 287, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39061007

ABSTRACT

BACKGROUND: Asthma's complexity, marked by airway inflammation and remodeling, is influenced by hypoxic conditions. This study focuses on the role of Hypoxia-Inducible Factor-1 Alpha (HIF-1α) and P53 ubiquitination in asthma exacerbation. METHODS: High-throughput sequencing and bioinformatics were used to identify genes associated with asthma progression, with an emphasis on GO and KEGG pathway analyses. An asthma mouse model was developed, and airway smooth muscle cells (ASMCs) were isolated to create an in vitro hypoxia model. Cell viability, proliferation, migration, and apoptosis were assessed, along with ELISA and Hematoxylin and Eosin (H&E) staining. RESULTS: A notable increase in HIF-1α was observed in both in vivo and in vitro asthma models. HIF-1α upregulation enhanced ASMCs' viability, proliferation, and migration, while reducing apoptosis, primarily via the promotion of P53 ubiquitination through MDM2. In vivo studies showed increased inflammatory cell infiltration and airway structural changes, which were mitigated by the inhibitor IDF-11,774. CONCLUSION: The study highlights the critical role of the HIF-1α-MDM2-P53 axis in asthma, suggesting its potential as a target for therapeutic interventions. The findings indicate that modulating this pathway could offer new avenues for treating the complex respiratory disorder of asthma.


Subject(s)
Asthma , Hypoxia-Inducible Factor 1, alpha Subunit , Myocytes, Smooth Muscle , Tumor Suppressor Protein p53 , Asthma/metabolism , Asthma/pathology , Asthma/genetics , Animals , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mice , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Cells, Cultured , Mice, Inbred BALB C , Apoptosis/physiology , Cell Proliferation/physiology , Proto-Oncogene Proteins c-mdm2/metabolism , Proto-Oncogene Proteins c-mdm2/genetics , Hypoxia/metabolism , Hypoxia/pathology , Disease Models, Animal , Cell Hypoxia/physiology , Female , Humans , Cell Movement/physiology , Ubiquitination
19.
Biomedicines ; 12(7)2024 Jun 22.
Article in English | MEDLINE | ID: mdl-39061962

ABSTRACT

Chronic lymphocytic leukemia (CLL) is a genetically and clinically diverse hematological cancer affecting middle-aged and elderly individuals. Novel targeted therapy options are needed for patients who relapse following initial responses or who are intrinsically resistant to current treatments. There is a growing body of investigation currently underway on MDM2 inhibitors in clinical trials, reflecting the increasing interest in including these drugs in cancer treatment regimens. One of the developed compounds, idasanutlin (RG7388), has shown promise in early-stage clinical trials. It is a second-generation MDM2-p53-binding antagonist with enhanced potency, selectivity, and bioavailability. In addition to the TP53 status, which is an important determinant of the response, we have shown in our previous studies that the SF3B1 mutational status is also an independent predictive biomarker of the ex vivo CLL patient sample treatment response to RG7388. The objective of this study was to identify novel biomarkers associated with resistance to RG7388. Gene set enrichment analysis of differentially expressed genes (DEGs) between RG7388-sensitive and -resistant CLL samples showed that the increased p53 activity led to upregulation of pro-apoptosis pathway genes while DNA damage response pathway genes were additionally upregulated in resistant samples. Furthermore, differential expression of certain genes was detected, which could serve as the backbone for novel combination treatment approaches. This research provides preclinical data to guide the exploration of drug combination strategies with MDM2 inhibitors, leading to future clinical trials and associated biomarkers that may improve outcomes for CLL patients.

20.
Biomedicines ; 12(7)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39062022

ABSTRACT

The p53 tumor suppressor protein activates various sets of genes depending on its covalent modifications, which are controlled by the nature and intensity of cellular stress. We observed that actinomycin D and nutlin-3a (A + N) collaborate in inducing activating phosphorylation of p53. Our recent transcriptomic data demonstrated that these substances strongly synergize in the upregulation of DUSP13, a gene with an unusual pattern of expression, coding for obscure phosphatase having two isoforms, one expressed in the testes and the other in skeletal muscles. In cancer cells exposed to A + N, DUSP13 is expressed from an alternative promoter in the intron, resulting in the expression of an isoform named TMDP-L1. Luciferase reporter tests demonstrated that this promoter is activated by both endogenous and ectopically expressed p53. We demonstrated for the first time that mRNA expressed from this promoter actually produces the protein, which can be detected with Western blotting, in all examined cancer cell lines with wild-type p53 exposed to A + N. In some cell lines, it is also induced by clinically relevant camptothecin, by nutlin-3a acting alone, or by a combination of actinomycin D and other antagonists of p53-MDM2 interaction-idasanutlin or RG7112. This isoform, fused with green fluorescent protein, localizes in the perinuclear region of cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...