Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 172
Filter
1.
Biochem Biophys Res Commun ; 691: 149306, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38056247

ABSTRACT

BACKGROUND: Inflammatory myofibroblastic tumors (IMTs) are characterized by myofibroblast proliferation and an inflammatory cell infiltrate. Our previous study on IMTs reveals that disrupt NMD pathway causes to lower the threshold for triggering the immune cell infiltration, thereby resulting in inappropriate immune activation. However, myofibroblast differentiation and proliferation is not yet known. METHODS: RT-PCR, RT-qPCR, DNA sequence, western bolt, 5'race analysis and site-specific mutagenesis were used in this study. RESULTS: Here, an alternative spliced (ALS) UPF2 mRNA skipping exon 2 and 3 and corresponding to the truncated UPF2 protein were found in 2 pancreatic IMTs. We showed that the uORF present in the 5'UTR of UPF2 mRNA is responsible for the translation inhibition, whiles ALS UPF2 is more facilitated to be translated into the truncated UPF2 protein. Several mRNA targets of the NMD were upregulated in IMT samples, indicating that the truncated UPF2 function is strongly perturbed, resulted in disrupted NMD pathway in IMTs. These upregulated NMD targets included cdkn1a expression and the generation of high levels of p21 (waf1/cip1), which may contribute to triggering IMTs. CONCLUSION: The disrupt UPFs/NMD pathway may link to molecular alteration associated with differentiation and proliferation for IMTs.


Subject(s)
Neoplasms , Humans , Nonsense Mediated mRNA Decay , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism
2.
Cell Mol Life Sci ; 80(3): 80, 2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36869202

ABSTRACT

Breast cancer is a persistent threat to women worldwide. A large proportion of breast cancers are dependent on the estrogen receptor α (ERα) for tumor progression. Therefore, targeting ERα with antagonists, such as tamoxifen, or estrogen deprivation by aromatase inhibitors remain standard therapies for ERα + breast cancer. The clinical benefits of monotherapy are often counterbalanced by off-target toxicity and development of resistance. Combinations of more than two drugs might be of great therapeutic value to prevent resistance, and to reduce doses, and hence, decrease toxicity. We mined data from the literature and public repositories to construct a network of potential drug targets for synergistic multidrug combinations. With 9 drugs, we performed a phenotypic combinatorial screen with ERα + breast cancer cell lines. We identified two optimized low-dose combinations of 3 and 4 drugs of high therapeutic relevance to the frequent ERα + /HER2-/PI3Kα-mutant subtype of breast cancer. The 3-drug combination targets ERα in combination with PI3Kα and cyclin-dependent kinase inhibitor 1 (p21). In addition, the 4-drug combination contains an inhibitor for poly (ADP-ribose) polymerase 1 (PARP1), which showed benefits in long-term treatments. Moreover, we validated the efficacy of the combinations in tamoxifen-resistant cell lines, patient-derived organoids, and xenograft experiments. Thus, we propose multidrug combinations that have the potential to overcome the standard issues of current monotherapies.


Subject(s)
Breast Neoplasms , Humans , Female , Estrogen Receptor alpha , Tamoxifen , Estrogens , Cell Line
3.
Clin Res Hepatol Gastroenterol ; 47(4): 102106, 2023 04.
Article in English | MEDLINE | ID: mdl-36849079

ABSTRACT

BACKGROUND & AIMS: Accumulating evidence suggest that Hippo-yes-associated protein (YAP) pathway plays important roles in development and repair after injuries in biliary system. We disclosed that senescent biliary epithelial cells (BECs) participate in the pathogenesis of primary biliary cholangitis (PBC). We hypothesized that dysregulation of Hippo-YAP pathway may be associated with biliary epithelial senescence in pathogenesis of PBC. APPROACH & RESULTS: Cellular senescence was induced in cultured BECs by treatment with serum depletion or glycochenodeoxycholic acid. The expression and activity of YAP1 were significantly decreased in senescent BECs (p<0.01). Cellular senescence and apoptosis were significantly increased (p<0.01) and a proliferation activity and a 3D-cyst formation activity were significantly decreased (p<0.01) by a knockdown of YAP1 in BECs. The expression of YAP1 were immunohistochemically determined in livers taken from the patients with PBC (n = 79) and 79 control diseased and normal livers and its association with senescent markers p16INK4a and p21WAF1/Cip1 was analyzed. The nuclear expression of YAP1, which indicates activation of YAP1, was significantly decreased in BECs in small bile ducts involved in cholangitis and ductular reactions in PBC, compared to control livers (p<0.01). The decreased expression of YAP1 was seen in senescent BECs showing expression of p16INK4a and p21WAF1/Cip1 in bile duct lesions. CONCLUSION: Dysregulation of Hippo-YAP1 pathway may be involved in the pathogenesis of PBC in association with biliary epithelial senescence.


Subject(s)
Liver Cirrhosis, Biliary , Humans , YAP-Signaling Proteins , Cyclin-Dependent Kinase Inhibitor p16 , Bile Ducts/pathology , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Epithelial Cells/metabolism
4.
Cells ; 12(3)2023 01 20.
Article in English | MEDLINE | ID: mdl-36766726

ABSTRACT

Senescent cells accumulate in the host during the aging process and are associated with age-related pathogeneses, including cancer. Although persistent senescence seems to contribute to many aspects of cellular pathways and homeostasis, the role of senescence in virus-induced human cancer is not well understood. Merkel cell carcinoma (MCC) is an aggressive skin cancer induced by a life-long human infection of Merkel cell polyomavirus (MCPyV). Here, we show that MCPyV large T (LT) antigen expression in human skin fibroblasts causes a novel nucleolar stress response, followed by p21-dependent senescence and senescence-associated secretory phenotypes (SASPs), which are required for MCPyV genome maintenance. Senolytic and navitoclax treatments result in decreased senescence and MCPyV genome levels, suggesting a potential therapeutic for MCC prevention. Our results uncover the mechanism of a host stress response regulating human polyomavirus genome maintenance in viral persistency, which may lead to targeted intervention for MCC.


Subject(s)
Carcinoma, Merkel Cell , Merkel cell polyomavirus , Polyomavirus Infections , Skin Neoplasms , Tumor Virus Infections , Humans , Polyomavirus Infections/genetics , Tumor Virus Infections/genetics , Tumor Virus Infections/pathology , Antigens, Viral, Tumor/genetics , Merkel cell polyomavirus/genetics , Merkel cell polyomavirus/metabolism , Carcinoma, Merkel Cell/genetics , Carcinoma, Merkel Cell/pathology , Skin Neoplasms/pathology , Cellular Senescence , Genome, Viral
5.
Cells ; 11(5)2022 02 28.
Article in English | MEDLINE | ID: mdl-35269453

ABSTRACT

In this review, we seek a novel strategy for establishing a rejuvenating microenvironment through senescent cells specific reprogramming. We suggest that partial reprogramming can produce a secretory phenotype that facilitates cellular rejuvenation. This strategy is desired for specific partial reprogramming under control to avoid tumour risk and organ failure due to loss of cellular identity. It also alleviates the chronic inflammatory state associated with ageing and secondary senescence in adjacent cells by improving the senescence-associated secretory phenotype. This manuscript also hopes to explore whether intervening in cellular senescence can improve ageing and promote damage repair, in general, to increase people's healthy lifespan and reduce frailty. Feasible and safe clinical translational protocols are critical in rejuvenation by controlled reprogramming advances. This review discusses the limitations and controversies of these advances' application (while organizing the manuscript according to potential clinical translation schemes) to explore directions and hypotheses that have translational value for subsequent research.


Subject(s)
Aging , Cellular Reprogramming , Aging/pathology , Cellular Senescence/genetics , Humans , Longevity , Rejuvenation
6.
Cells ; 11(3)2022 01 21.
Article in English | MEDLINE | ID: mdl-35159169

ABSTRACT

Cells exposed to ionizing radiation undergo a series of complex responses, including DNA damage, reproductive cell death, and altered proliferation states, which are all linked to cell cycle dynamics. For many years, a great deal of research has been conducted on cell cycle checkpoints and their regulators in mammalian cells in response to high-dose exposures to ionizing radiation. However, it is unclear how low-dose ionizing radiation (LDIR) regulates the cell cycle progression. A growing body of evidence demonstrates that LDIR may have profound effects on cellular functions. In this review, we summarize the current understanding of how LDIR (of up to 200 mGy) regulates the cell cycle and cell-cycle-associated proteins in various cellular settings. In light of current findings, we also illustrate the conceptual function and possible dichotomous role of p21Waf1, a transcriptional target of p53, in response to LDIR.


Subject(s)
Cell Cycle Proteins , Radiation, Ionizing , Animals , Cell Cycle , Cell Division , Mammals
7.
Molecules ; 26(17)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34500594

ABSTRACT

Lung cancer is the most commonly diagnosed malignant cancer in the world. Non-small-cell lung cancer (NSCLC) is the major category of lung cancer. Although effective therapies have been administered, for improving the NSCLC patient's survival, the incident rate is still high. Therefore, searching for a good strategy for preventing NSCLC is urgent. Traditional Chinese medicine (TCM) are brilliant materials for cancer chemoprevention, because of their high biological safety and low cost. Bavachinin, which is an active flavanone of Proralea corylifolia L., possesses anti-inflammation, anti-angiogenesis, and anti-cancer activities. The present study's aim was to evaluate the anti-cancer activity of bavachinin on NSCLC, and its regulating molecular mechanisms. The results exhibited that a dose-dependent decrease in the cell viability and colony formation capacity of three NSCLC cell lines, by bavachinin, were through G2/M cell cycle arrest induction. Meanwhile, the expression of the G2/M cell cycle regulators, such as cyclin B, p-cdc2Y15, p-cdc2T161, and p-wee1, was suppressed. With the dramatic up-regulation of the cyclin-dependent kinase inhibitor, p21Waf1/Cip1, the expression and association of p21Waf1/Cip1 with the cyclin B/cdc2 complex was observed. Silencing the p21Waf1/Cip1 expression significantly rescued bavachinin-induced G2/M cell accumulation. Furthermore, the expression of p21Waf1/Cip1 mRNA was up-regulated in bavachinin-treated NSCLC cells. In addition, MAPK and AKT signaling were activated in bavachinin-added NSCLC cells. Interestingly, bavachinin-induced p21Waf1/Cip1 expression was repressed after restraint p38 MAPK activation. The inhibition of p38 MAPK activation reversed bavachinin-induced p21Waf1/Cip1 mRNA expression and G2/M cell cycle arrest. Collectively, bavachinin-induced G2/M cell cycle arrest was through the p38 MAPK-mediated p21Waf1/Cip1-dependent signaling pathway in the NSCLC cells.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Cycle Checkpoints/drug effects , Flavonoids/pharmacology , G2 Phase Cell Cycle Checkpoints/drug effects , Lung Neoplasms/drug therapy , Signal Transduction/drug effects , A549 Cells , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/genetics , Cell Cycle Checkpoints/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclin B1 , Cyclin-Dependent Kinase Inhibitor p21/genetics , G2 Phase Cell Cycle Checkpoints/genetics , Humans , Lung Neoplasms/genetics , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/genetics , Signal Transduction/genetics , p38 Mitogen-Activated Protein Kinases/genetics
8.
Medicina (Kaunas) ; 57(5)2021 May 07.
Article in English | MEDLINE | ID: mdl-34066975

ABSTRACT

Background andObjective: Epigenetic modifications are believed to play a significant role in the development of cancer progression, growth, differentiation, and cell death. One of the most popular histone deacetylases inhibitors (HDACIs), suberoylanilide hydroxamic acid (SAHA), also known as Vorinostat, can directly activate p21WAF1/CIP1 gene transcription through hyperacetylation of histones by a p53 independent mechanism. In the present investigation, we evaluated the correlation between histone modifications and DNA methyltransferase enzyme levels following SAHA treatments in A2780 ovarian cancer cells. Materials and Methods: Acetylation of histones and methyltransferases levels were analyzed using RT2 profiler PCR array, immunoblotting, and immunofluorescence methods in 2D and 3D cell culture systems. Results: The inhibition of histone deacetylases (HDAC) activities by SAHA can reduce DNA methyl transferases / histone methyl transferases (DNMTs/HMTs) levels through induction of hyperacetylation of histones. Immunofluorescence analysis of cells growing in monolayers and spheroids revealed significant up-regulation of histone acetylation preceding the above-described changes. Conclusions: Our results depict an interesting interplay between histone hyperacetylation and a decrease in methyltransferase levels in ovarian cancer cells, which may have a positive impact on the overall outcomes of cancer treatment.


Subject(s)
Histone Deacetylase Inhibitors , Ovarian Neoplasms , Acetylation , Cell Line, Tumor , Female , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Histones/metabolism , Humans , Methyltransferases , Ovarian Neoplasms/drug therapy
9.
JHEP Rep ; 3(3): 100286, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34041468

ABSTRACT

BACKGROUND & AIMS: Primary sclerosing cholangitis (PSC) is a rare cholangiopathy of unknown aetiopathogenesis. The aim of this study was to evaluate cellular senescence (CS) marker expression in cholangiocytes of patients with PSC and their correlation with clinical-pathological features and prognosis. METHODS: Thirty-five patients with PSC with at least 1 available liver sampling were included. Clinical laboratory data at the time of liver sampling were collected. The endpoints were survival without liver transplantation (LT), time to LT, and survival without LT or cirrhosis decompensation. Histological grading and staging were assessed according to Nakanuma. Immunohistochemical stains for CS markers, p16INK4A (p16) and p21WAF1/Cip1 (p21), were performed and scored by a 3-tier scale based on positivity extent in native bile duct (NBD) and ductular reaction (DR).Results: p16 expression in NBD and DR was directly correlated with fibrosis (p ≤0.001 for both) and stage (p = 0.006 and p <0.001, respectively). Moreover, p16 in NBD was positively correlated with hepatitis activity (HA) (p = 0.026), whereas p16 in DR was directly correlated with bile duct loss (BDL) (p = 0.005) and metaplastic hepatocytes (MH) (p <0.01). p21 expression in NBD and DR was directly correlated with HA (p = 0.004 and p = 0.043, respectively), fibrosis (p = 0.006 and p <0.001, respectively), stage (p = 0.006 and p = 0.001, respectively), BDL (p = 0.002 and p = 0.03, respectively), and DR and MH (p ≤0.004 for all). By multivariate analysis, p16 expression in DR was independently associated with stage (p = 0.001), fibrosis (p = 0.001), and BDL (p = 0.011). p21 expression in NBD was independently associated with HA (p = 0.012), BDL (p = 0.04), and DR (p = 0.014). Finally, p21 expression in DR was independently associated with LT-free survival, time to LT, and adverse outcome-free survival (p = 0.001, p = 0.017, and p = 0.001, respectively). CONCLUSIONS: Cholangiocyte senescence is detectable in all stages of PSC and is associated with histological and clinical disease severity, potentially representing a new prognostic and therapeutic target. LAY SUMMARY: In this study, we showed that cholangiocyte senescence (CS), previously demonstrated in liver of patients with end-stage primary sclerosing cholangitis (PSC), is an early event and is detectable in all disease stages. Moreover, we observed that CS is associated with histological and clinical disease severity and patients' outcome. Thus, we suggest that CS may represent a new prognostic tool and a potential therapeutic target in PSC. CLINICAL TRIAL NUMBER: Protocol number 0034435, 08/06/2020.

10.
Front Oncol ; 11: 648045, 2021.
Article in English | MEDLINE | ID: mdl-33869046

ABSTRACT

NK2 homeobox 5 (Nkx2.5), a homeobox-containing transcription factor, is associated with a spectrum of congenital heart diseases. Recently, Nkx2.5 was also found to be differentially expressed in several kinds of tumors. In colorectal cancer (CRC) tissue and cells, hypermethylation of Nkx2.5 was observed. However, the roles of Nkx2.5 in CRC cells have not been fully elucidated. In the present study, we assessed the relationship between Nkx2.5 and CRC by analyzing the expression pattern of Nkx2.5 in CRC samples and the adjacent normal colonic mucosa (NCM) samples, as well as in CRC cell lines. We found higher expression of Nkx2.5 in CRC compared with NCM samples. CRC cell lines with poorer differentiation also had higher expression of Nkx2.5. Although this expression pattern makes Nkx2.5 seem like an oncogene, in vitro and in vivo tumor suppressive effects of Nkx2.5 were detected in HCT116 cells by establishing Nkx2.5-overexpressed CRC cells. However, Nkx2.5 overexpression was incapacitated in SW480 cells. To further assess the mechanism, different expression levels and mutational status of p53 were observed in HCT116 and SW480 cells. The expression of p21WAF1/CIP1, a downstream antitumor effector of p53, in CRC cells depends on both expression level and mutational status of p53. Overexpressed Nkx2.5 could elevate the expression of p21WAF1/CIP1 only in CRC cells with wild-type p53 (HCT116), rather than in CRC cells with mutated p53 (SW480). Mechanistically, Nkx2.5 could interact with p53 and increase the transcription of p21WAF1/CIP1 without affecting the expression of p53. In conclusion, our findings demonstrate that Nkx2.5 could act as a conditional tumor suppressor gene in CRC cells with respect to the mutational status of p53. The tumor suppressive effect of Nkx2.5 could be mediated by its role as a transcriptional coactivator in wild-type p53-mediated p21WAF1/CIP1 expression.

11.
Front Genet ; 12: 597566, 2021.
Article in English | MEDLINE | ID: mdl-33633779

ABSTRACT

Human Werner syndrome (WS) is an autosomal recessive progeria disease. A mouse model of WS manifests the disease through telomere dysfunction-induced aging phenotypes, which might result from cell cycle control and cellular senescence. Both p21Waf1/Cip1 (p21, encoded by the Cdkn1a gene) and p16Ink4a (p16, encoded by the Ink4a gene) are cell cycle inhibitors and are involved in regulating two key pathways of cellular senescence. To test the effect of p21 and p16 deficiencies in WS, we crossed WS mice (DKO) with p21 -/- or p16 -/- mice to construct triple knockout (p21-TKO or p16-TKO) mice. By studying the survival curve, bone density, regenerative tissue (testis), and stem cell capacity (intestine), we surprisingly found that p21-TKO mice displayed accelerated premature aging compared with DKO mice, while p16-TKO mice showed attenuation of the aging phenotypes. The incidence of apoptosis and cellular senescence were upregulated in p21-TKO mice tissue and downregulated in p16-TKO mice. Surprisingly, cellular proliferation in p21-TKO mice tissue was also upregulated, and the p21-TKO mice did not show telomere shortening compared with age-matched DKO mice, although p16-TKO mice displayed obvious enhancement of telomere lengthening. Consistent with these phenotypes, the SIRT1-PGC1 pathway was upregulated in p16-TKO but downregulated in p21-TKO compared with DKO mouse embryo fibroblasts (MEFs). However, the DNA damage response pathway was highly activated in p21-TKO, but rescued in p16-TKO, compared with DKO MEFs. These data suggest that p21 protected the stem cell reservoir by regulating cellular proliferation and turnover at a proper rate and that p21 loss in WS activated fairly severe DNA damage responses (DDR), which might cause an abnormal increase in tissue homeostasis. On the other hand, p16 promoted cellular senescence by inhibiting cellular proliferation, and p16 deficiency released this barrier signal without causing severe DDR.

12.
Anticancer Res ; 40(9): 4961-4968, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32878784

ABSTRACT

BACKGROUND/AIM: Despite advances in treatment modalities, the visual prognosis of retinoblastoma still remains unsatisfactory, underscoring the need to develop novel therapeutic approaches. MATERIALS AND METHODS: The effect on the growth of six human retinoblastoma cell lines and a normal human fibroblast cell line of CEP1347, a small-molecule kinase inhibitor originally developed for the treatment of Parkinson's disease and therefore with a known safety profile in humans, was examined. The role of the P53 pathway in CEP1347-induced growth inhibition was also investigated. RESULTS: CEP1347 selectively inhibited the growth of retinoblastoma cell lines expressing murine double minute 4 (MDM4), a P53 inhibitor. Furthermore, CEP1347 reduced the expression of MDM4 and activated the P53 pathway in MDM4-expressing retinoblastoma cells, which was required for the inhibition of their growth by CEP1347. CONCLUSION: We propose CEP1347 as a promising candidate for the treatment of retinoblastomas, where functional inactivation of P53 as a result of MDM4 activation is reportedly common.


Subject(s)
Antineoplastic Agents/pharmacology , Carbazoles/pharmacology , Retinoblastoma/drug therapy , Signal Transduction/drug effects , Tumor Suppressor Protein p53/metabolism , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Repositioning , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Retinoblastoma/metabolism , Retinoblastoma/pathology
13.
Int J Mol Sci ; 21(14)2020 Jul 19.
Article in English | MEDLINE | ID: mdl-32707717

ABSTRACT

The poor outcome of pancreas ductal adenocarcinomas (PDAC) is frequently linked to therapy resistance. Modulated electro-hyperthermia (mEHT) generated by 13.56 MHz capacitive radiofrequency can induce direct tumor damage and promote chemo- and radiotherapy. Here, we tested the effect of mEHT either alone or in combination with radiotherapy using an in vivo model of Panc1, a KRAS and TP53 mutant, radioresistant PDAC cell line. A single mEHT shot of 60 min induced ~50% loss of viable cells and morphological signs of apoptosis including chromatin condensation, nuclear shrinkage and apoptotic bodies. Most mEHT treatment related effects exceeded those of radiotherapy, and these were further amplified after combining the two modalities. Treatment related apoptosis was confirmed by a significantly elevated number of annexin V single-positive and cleaved/activated caspase-3 positive tumor cells, as well as sub-G1-phase tumor cell fractions. mEHT and mEHT+radioterapy caused the moderate accumulation of γH2AX positive nuclear foci, indicating DNA double-strand breaks and upregulation of the cyclin dependent kinase inhibitor p21waf1 besides the downregulation of Akt signaling. A clonogenic assay revealed that both mono- and combined treatments affected the tumor progenitor/stem cell populations too. In conclusion, mEHT treatment can contribute to tumor growth inhibition and apoptosis induction and resolve radioresistance of Panc1 PDAC cells.


Subject(s)
Carcinoma, Pancreatic Ductal/therapy , Hyperthermia, Induced/methods , Pancreatic Neoplasms/therapy , Apoptosis , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Cycle Checkpoints , Cell Line, Tumor , Cell Proliferation , Combined Modality Therapy , Cyclin-Dependent Kinase Inhibitor p21/metabolism , DNA Damage , Humans , Neoplastic Stem Cells/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , Radiation Tolerance , Radiofrequency Therapy
14.
Mol Ther Oncolytics ; 17: 471-483, 2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32490171

ABSTRACT

miR-155 is associated with the promotion of tumorigenesis. Herein, we indicate that abnormal miR-155 was negatively correlated with the expression of P21WAF1/Cip1. Our results suggest that miR-155 alters the transcriptome and inhibits the expression of H3F3A in liver cancer cells. Therefore, miR-155 inhibits the methylation modification of histone H3 on the 27th lysine. Notably, on the one hand, miR-155-dependent CTCF loops cause the CDK2 interacting with cyclin E in liver cancer cells; on the other hand, miR-155 promotes the phosphorylation modification of CDK2 by inhibiting H3F3A. Subsequently, miR-155 competitively blocks the binding of RNA polymerase II (RNA Pol II) to the P21WAF1/CIP1 promoter by increasing the phosphorylation of CDK2, inhibiting the transcription and translation of P21WAF1/CIP1. Strikingly, excessive P21WAF1/CIP1 abolishes the cancerous function of miR-155. In conclusion, miR-155 can play a positive role in the development of liver cancer and influence a series of gene expression through epigenetic regulation.

15.
Biochem Cell Biol ; 98(2): 191-202, 2020 04.
Article in English | MEDLINE | ID: mdl-32167787

ABSTRACT

Apolipoprotein E2 (ApoE2) is reportedly critical for cell proliferation and survival, and has been identified as a potential tumour-associated marker in many kinds of cancer. However, studies of the function and mechanisms of ApoE2 in pancreatic cancer proliferation and development are rare. In this study, we performed an analysis to determine the modulatory effects of ApoE2-LRP8 (lipoprotein receptor-related protein 8) pathway on cell cycle and cell proliferation, and explored its mechanisms in pancreatic cancer. High expression levels of ApoE2-LRP8/c-Myc were detected in tumour tissues and cell lines by immunohistochemistry and Western blotting. It was also shown that ApoE2-LRP8 induced phosphorylation of ERK1/2 to activate c-Myc and contribute to cell-cycle-related protein expression. ApoE2 conditions induced c-Myc binding to target gene sequences in the p21Waf1 promoter, resulting in decreased transcription. ERK/c-Myc contributes to the promotion of the expression levels of cyclin D1, cdc2, and cyclin B1, and reduces p21Waf1 activity, thereby promoting cell cycle distribution. We demonstrated the function of ApoE2-LRP8 in the activation of the ERK-c-Myc-p21Waf1 signalling cascade and the modulation of G1/S and G2/M transition, indicating ApoE2-LRP8's important role in the cancer cell proliferation. ApoE2 could serve as a diagnostic marker and chemotherapeutic target in pancreatic cancer.


Subject(s)
Apolipoprotein E2/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , LDL-Receptor Related Proteins/metabolism , Pancreatic Neoplasms/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Active Transport, Cell Nucleus , Biomarkers, Tumor , Cell Cycle , Cell Line, Tumor , Cell Proliferation , Disease Progression , Gene Expression Regulation, Neoplastic , Humans , Immunohistochemistry , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , RNA Interference , Real-Time Polymerase Chain Reaction , Signal Transduction
16.
Biochem Biophys Res Commun ; 524(3): 736-743, 2020 04 09.
Article in English | MEDLINE | ID: mdl-32035614

ABSTRACT

Deferasirox (DFX) is an iron chelator approved for the treatment of iron overload diseases. However, the role of DFX in oxidative stress-induced cell apoptosis and the exact molecular mechanisms underlying these processes remain poorly understood and require further investigation. In this study, we found that DFX rendered resistant to H2O2-induced apoptosis in HEK293T cells, reduced the intracellular levels of the labile iron pool (LIP) and oxidative stress induced by H2O2. Furthermore, DFX inhibited the ubiquitination and degradation of the cyclin-dependent kinase inhibitor p21WAF1/CIP1 (p21) via modulation of the interaction of p21 with SCF-Skp2. DFX also showed the inhibition effect on the activation of c-Jun N-terminal kinase (JNK), pro-caspase-3 and related mitochondrial apoptosis pathway induced by H2O2. These results provide novel insights into the molecular mechanism underpinning iron-mediated oxidative stress and apoptosis, and they may represent a promising target for therapeutic interventions in related pathological conditions.


Subject(s)
Apoptosis/drug effects , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cytoprotection/drug effects , Deferasirox/pharmacology , Proteolysis/drug effects , Ubiquitination/drug effects , Caspase 3/metabolism , HEK293 Cells , Humans , Hydrogen Peroxide , Iron/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Stress/drug effects , Signal Transduction/drug effects , Ubiquitin/metabolism , Up-Regulation/drug effects
17.
Andrologia ; 51(10): e13413, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31523838

ABSTRACT

As a highly evolutionarily conserved signaling pathway, Notch widely participates in cell-fate decisions and the development of various tissues and organs. In male reproduction, research on the Notch signaling pathway has mainly concentrated on germ cells and Sertoli cells. Leydig cells are the primary producers of testosterone and play important roles in spermatogenesis and maintaining secondary sexual characteristics. In this study, we used TM3 cells, a murine adult Leydig cell line, to investigate the expression profiles of Notch receptors and ligands and observe the effect of Notch signaling on the proliferation of TM3 cells. We found that Notch 1-3 and the ligands Dll-1 and Dll-4 were expressed in TM3 cells, Notch 1-3 and the ligand Dll-1 were expressed in testis interstitial Leydig cells, and Notch signaling inhibition suppressed the proliferation of TM3 cells and induced G0/G1 arrest. Inhibition of Notch signaling increased the expression of p21Waf1/Cip1 and p27. Overall, our results suggest that Notch inhibition suppresses the proliferation of TM3 cells and P21Waf1/Cip1 , and p27 may contribute to this process.


Subject(s)
Benzene Derivatives/pharmacology , G1 Phase Cell Cycle Checkpoints/drug effects , Leydig Cells/drug effects , Propionates/pharmacology , Receptors, Notch/antagonists & inhibitors , Signal Transduction/drug effects , Sulfones/pharmacology , Animals , Cell Line , Cell Proliferation/drug effects , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Leydig Cells/physiology , Male , Mice , Receptors, Notch/metabolism , Signal Transduction/physiology
18.
Biochem Biophys Res Commun ; 517(2): 238-243, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31345573

ABSTRACT

Inhibition of gamma-glutamylcyclotransferase (GGCT), which is highly expressed in various cancer tissues, exerts anticancer effects both in vitro and in vivo. Previous studies have shown that depletion of GGCT blocks the growth of MCF7 breast cancer cells via upregulation of the cyclin-dependent kinase inhibitor p21WAF1/CIP1 (p21); in addition, induction of autophagy plays a role in the upregulation of p21 upon GGCT knockdown. However, the mechanisms underlying induction of p21 in cancer cells are not fully understood. Here, we show that GGCT knockdown in PC3 human prostate cancer and A172 glioblastoma cells upregulates the mRNA and nuclear protein levels of Forkhead box O transcription factor 3a (FOXO3a), a transcriptional factor involved in tumor suppression. Simultaneous knockdown of FOXO3a and GGCT in PC3 and A172 cells attenuated upregulation of p21, followed by growth inhibition and cell death. Furthermore, simultaneous knockdown of GGCT and AMP-activated protein kinase (AMPK) α, a metabolic stress sensor, in PC3 and A172 cells led to marked attenuation of cellular responses induced by GGCT knockdown, including an increase in FOXO3a phosphorylation at Ser413, upregulation of p21, growth inhibition, and cell death. These results indicate that the AMPK-FOXO3a-p21 axis plays an important role in inhibition of cancer cell growth by depletion of GGCT.


Subject(s)
Gene Expression Regulation, Neoplastic , Neoplasms/genetics , Signal Transduction , gamma-Glutamylcyclotransferase/genetics , AMP-Activated Protein Kinases/metabolism , Cell Line, Tumor , Cell Proliferation , Down-Regulation , Forkhead Box Protein O3/metabolism , Humans , Neoplasms/metabolism , Neoplasms/pathology , Phosphorylation , gamma-Glutamylcyclotransferase/metabolism , p21-Activated Kinases/metabolism
19.
Neurosci Lett ; 708: 134354, 2019 08 24.
Article in English | MEDLINE | ID: mdl-31254559

ABSTRACT

The purpose of this study was to investigate the effects of different concentrations of ethanol on learning and memory in female mice and the corresponding interaction with histone deacetylase 1(HDAC1), estrogen receptor α(ERα) and p21 WAF1/CIP1. Data from the Morris water maze test showed that mice in the 50% ethanol group might experience cognitive impairment, while mice in the 2% ethanol group might experience enhanced cognitive capabilities. The number of damaged neurons in the hippocampal CA1 area in the 50% ethanol group was higher than the numbers observed in other groups. The expression of HDAC1 and ERα proteins was lower in the 50% ethanol group than they were in the control group, while p21 WAF1/CIP1 expression was increased. The expression of these proteins in the 2% ethanol group was completely reversed when compared to the 50% ethanol group. p21 WAF1/CIP1 was involved in the cognitive change induced by ethanol. The f2 (-400 bp to -800 bp) and f7 (-2400 bp to -2800 bp) fragments in the p21 WAF1/CIP1 promoter region were functionally active regions that experienced binding relating to HDAC1 and ERα.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p21/metabolism , Ethanol/pharmacology , Hippocampus/drug effects , Memory/drug effects , Spatial Learning/drug effects , Animals , Dose-Response Relationship, Drug , Estrogen Receptor alpha/metabolism , Female , Histone Deacetylase 1/metabolism , Mice
20.
Cancer Med ; 8(9): 4292-4303, 2019 08.
Article in English | MEDLINE | ID: mdl-31183995

ABSTRACT

OBJECTIVE: Modulated electro-hyperthermia (mEHT), a noninvasive complementary treatment of human chemo- and radiotherapy, can generate selective ~42°C heat in cancer due to elevated glycolysis (Warburg-effect) and electric conductivity in malignant tissues. Here we tested the molecular background of mEHT and its combination with doxorubicin chemotherapy using an in vitro model. METHODS: C26 mouse colorectal adenocarcinoma cultures were mEHT treated at 42°C for 2 × 60 minutes (with 120 minutes interruption) either alone or in combination with 1 µmol/L doxorubicin (mEHT + Dox). Cell stress response, apoptosis, and cell cycle regulation related markers were detected using qPCR and immunocytochemistry supported with resazurin cell viability assay, cell death analysis using flow-cytometry and clonogenic assay. RESULT: Cell-stress by mEHT alone was indicated by the significant upregulation and release of hsp70 and calreticulin proteins 3 hours posttreatment. Between 3 and 9 hours after treatment significantly reduced anti-apoptotic XIAP, BCL-2, and BCL-XL and elevated pro-apoptotic BAX and PUMA, as well as the cyclin dependent kinase inhibitor p21waf1 mRNA levels were detected. After 24 hours, major elevation and nuclear translocation of phospho-p53(Ser15) protein levels and reduced phospho-Akt(Ser473) levels were accompanied by a significant caspase-3-mediated programmed cell death response. While mEHT dominantly induced apoptosis, Dox administration primarily led to tumor cell necrosis, and both significantly reduced the number of tumor progenitor colonies 10 days post-treatment. Furthermore, mEHT promoted the uptake of Dox by tumor cells and the combined treatment additively reduced tumor cell viability and augmented cell death near to synergy. CONCLUSION: In C26 colorectal adenocarcinoma mEHT-induced irreversible cell stress can activate both caspase-dependent apoptosis and p21waf1 mediated growth arrest pathways, likely to be driven by the upregulated nuclear p53 protein. Elevated phospho-p53(Ser15) might contribute to p53 escape from mdm2 control, which was further supported by reduced phospho-Akt(Ser473) protein levels. In combinations, mEHT could promote the uptake and significantly potentiate the cytotoxic effect of doxorubicin.


Subject(s)
Colorectal Neoplasms/metabolism , Doxorubicin/pharmacology , Hyperthermia, Induced/methods , Tumor Suppressor Protein p53/metabolism , Animals , Cell Cycle/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Colorectal Neoplasms/genetics , Combined Modality Therapy , Gene Expression Regulation, Neoplastic/drug effects , Mice , Models, Biological , Phosphorylation/drug effects , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...