Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 158
Filter
1.
Mol Biotechnol ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38907071

ABSTRACT

This study was aimed to uncover the character and potential regulatory mechanism of EPB41L3 in cervical cancer (CC). CC cells were injected into BALB/c nude mice (female) to construct a xenograft tumor model. Real-time quantitative polymerase chain reaction (qRT-PCR) and western blot were performed to evaluate the expression of EPB41L3, ERK/p38 MAPK signal markers in CC tissues and cells. Cell counting kit-8 (CCK-8) and Transwell was applied to analyze the viability, invasion, and migration of CC cell lines. EPB41L3 was substantially decreased both in CC tissues and cells. Cell viability, invasion, and migration of CC cells were reduced by overexpressing EPB41L3. Bioinformatics analysis prerdicted that EPB41L3 was strongly related to the ERK/p38 MAPK pathway. Compared with Ad-nc mice, the volume and weight of tumors and ERK/p38 MAPK signal markers were down-regulated in Ad-EPB41L3 mice. After knocking down EPB41L3 with EPB41L3 siRNA (siEPB41L3), the ERK/p38 MAPK pathway was activated. Moreover, SB203580 treatment reversed the effect of EPB41L3 silencing on the improvement in viability, migration, and invasion of CC cells. EPB41L3 suppresses the progression of CC via activating the ERK/p38 MAPK pathway. EPB41L3 may serve as an effective therapeutic target for CC.

2.
J Cell Physiol ; 2024 May 19.
Article in English | MEDLINE | ID: mdl-38764331

ABSTRACT

Early-onset preeclampsia, which occurrs before 34 weeks of gestation, is the most dangerous classification of preeclampsia, which is a pregnancy-specific disease that causes 1% of maternal deaths. G protein-coupled receptor 124 (GPR124) is significantly expressed at various stages of the human reproductive process, particularly during embryogenesis and angiogenesis. Our prior investigation demonstrated a notable decrease in GPR124 expression in the placentas of patients with early-onset preeclampsia compared to that in normal pregnancy placentas. However, there is a lack of extensive investigation into the molecular processes that contribute to the role of GPR124 in placenta development. This study aimed to examine the mechanisms by which GPR124 affects the occurrence of early-onset preeclampsia and its function in trophoblast. Proliferative, invasive, migratory, apoptotic, and inflammatory processes were identified in GPR124 knockdown, GPR124 overexpression, and normal HTR8/SVneo cells. The mechanism of GPR124-mediated cell function in GPR124 knockdown HTR8/SVneo cells was examined using inhibitors of the JNK or P38 MAPK pathway. Downregulation of GPR124 was found to significantly inhibit proliferation, invasion and migration, and promote apoptosis of HTR8/SVneo cells when compared to the control and GPR124 overexpression groups. This observation is consistent with the pathological characteristics of preeclampsia. In addition, GPR124 overexpression inhibits the secretion of pro-inflammatory cytokines interleukin (IL)-8 and interferon-γ (IFN-γ) while enhancing the secretion of the anti-inflammatory cytokine interleukin (IL)-4. Furthermore, GPR124 suppresses the activation of P-JNK and P-P38 within the JNK/P38 MAPK pathway. The invasion, apoptosis, and inflammation mediated by GPR124 were partially restored by suppressing the JNK and P38 MAPK pathways in HTR8/SVneo cells. GPR124 plays a crucial role in regulating trophoblast proliferation, invasion, migration, apoptosis, and inflammation via the JNK and P38 MAPK pathways. Furthermore, the effect of GPR124 on trophoblast suggests its involvement in the pathogenesis of early-onset preeclampsia.

3.
Brain Sci ; 14(4)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38672029

ABSTRACT

The analgesic efficacy of acupuncture has been widely recognized. However, the mechanism by which manual acupuncture-generated mechanical stimuli translate into biological signals remains unclear. This study employed a CFA-induced inflammatory pain rat model. Acupuncture intervention was then performed following standardized procedures. Enzyme-linked immunosorbent assay (ELISA) assessed inflammatory cytokines levels, while immunofluorescence and qRT-PCR screened the level of p38 and F-actin expression in the ST36 acupoint area of rats. Results indicated increased inflammatory factors, including IL-1ß and TNFα, with reduced paw withdrawal mechanical threshold (PWMT) and paw withdrawal thermal latency (PWTL) in CFA rats compared to unmodeled rats. After acupuncture intervention, the heightened expression level of F-actin and p38 mRNA and the phosphorylation of p38 in the acupoint area was observed alongside decreased inflammatory factors in diseased ankle joints. The application of lifting and thrusting manipulations further enhanced the effect of acupuncture, in which the molecular expression level of muscle and connective tissue increased most significantly, indicating that these two tissues play a major role in the transformation of acupuncture stimulation. Moreover, antagonizing p38 expression hindered acupuncture efficacy, supporting the hypothesis that p38 MAPK-mediated F-actin transduces mechanical signals generated by acupuncture and related manipulation into biological signals.

4.
Viruses ; 16(4)2024 04 09.
Article in English | MEDLINE | ID: mdl-38675921

ABSTRACT

Porcine Deltacoronavirus (PDCoV) is a newly identified coronavirus that causes severe intestinal lesions in piglets. However, the understanding of how PDCoV interacts with human hosts is limited. In this study, we aimed to investigate the interactions between PDCoV and human intestinal cells (HIEC-6) by analyzing the transcriptome at different time points post-infection (12 h, 24 h, 48 h). Differential gene analysis revealed a total of 3560, 5193, and 4147 differentially expressed genes (DEGs) at 12 h, 24 h, and 48 h, respectively. The common genes among the DEGs at all three time points were enriched in biological processes related to cytokine production, extracellular matrix, and cytokine activity. KEGG pathway analysis showed enrichment of genes involved in the p53 signaling pathway, PI3K-Akt signaling pathway, and TNF signaling pathway. Further analysis of highly expressed genes among the DEGs identified significant changes in the expression levels of BUB1, DDIT4, ATF3, GBP2, and IRF1. Comparison of transcriptome data at 24 h with other time points revealed 298 DEGs out of a total of 6276 genes. KEGG analysis of these DEGs showed significant enrichment of pathways related to viral infection, specifically the PI3K-Akt and P38 MAPK pathways. Furthermore, the genes EFNA1 and KITLG, which are associated with viral infection, were found in both enriched pathways, suggesting their potential as therapeutic or preventive targets for PDCoV infection. The enhancement of PDCoV infection in HIEC-6 was observed upon inhibition of the PI3K-Akt and P38 MAPK signaling pathways using sophoridine. Overall, these findings contribute to our understanding of the molecular mechanisms underlying PDCoV infection in HIEC-6 cells and provide insights for developing preventive and therapeutic strategies against PDCoV infection.


Subject(s)
Gene Expression Profiling , Signal Transduction , Transcriptome , Animals , Humans , Cell Line , Coronavirus Infections/virology , Coronavirus Infections/genetics , Deltacoronavirus/genetics , Host-Pathogen Interactions/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Swine , Swine Diseases/virology , Swine Diseases/genetics
5.
Toxicol Ind Health ; 40(5): 244-253, 2024 May.
Article in English | MEDLINE | ID: mdl-38518383

ABSTRACT

With the widespread use of manganese dioxide nanoparticles (nano MnO2), health hazards have also emerged. The inflammatory damage of brain tissues could result from nano MnO2, in which the underlying mechanism is still unclear. During this study, we aimed to investigate the role of ROS-mediated p38 MAPK pathway in nano MnO2-induced inflammatory response in BV2 microglial cells. The inflammatory injury model was established by treating BV2 cells with 2.5, 5.0, and 10.0 µg/mL nano MnO2 suspensions for 12 h. Then, the reactive oxygen species (ROS) scavenger (20 nM N-acetylcysteine, NAC) and the p38 MAPK pathway inhibitor (10 µM SB203580) were used to clarify the role of ROS and the p38 MAPK pathway in nano MnO2-induced inflammatory lesions in BV2 cells. The results indicated that nano MnO2 enhanced the expression of pro-inflammatory cytokines IL-1ß and TNF-α, elevated intracellular ROS levels and activated the p38 MAPK pathway in BV2 cells. Controlling intracellular ROS levels with NAC inhibited p38 MAPK pathway activation and attenuated the inflammatory response induced by nano MnO2. Furthermore, inhibition of the p38 MAPK pathway with SB203580 led to a decrease in the production of inflammatory factors (IL-1ß and TNF-α) in BV2 cells. In summary, nano MnO2 can induce inflammatory damage by increasing intracellular ROS levels and further activating the p38 MAPK pathway in BV2 microglial cells.


Subject(s)
Manganese Compounds , Microglia , Oxides , p38 Mitogen-Activated Protein Kinases , p38 Mitogen-Activated Protein Kinases/metabolism , Reactive Oxygen Species/metabolism , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism , Cell Line
6.
Front Biosci (Landmark Ed) ; 29(2): 49, 2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38420814

ABSTRACT

BACKGROUND: Myogenin is well known as a crucial transcription factor in skeletal muscle development, yet its other biological functions remain unexplored. Previous research showed that myogenin suppresses apoptosis induced by angiotensin II in human induced pluripotent stem cell-derived cardiomyocytes, and offered a new perspective on myogenin's role in cardioprotection. However, the detailed mechanism of this cardioprotection, especially under oxidative stress, is still unclear. METHODS: In this study, hydrogen peroxide (H2O2) was used to generate reactive oxygen species in myogenin-overexpressing cardiomyocytes. The apoptosis was examined by flow cytometry. Transcriptome sequencing (RNA-seq) was performed to identify genes regulated by myogenin. Western blotting was used to detect the protein level of DUSP13 and the phosphorylation level of p38 mitogen-activated protein kinase (MAPK). The dual-luciferase reporter assay and ChIP assay were used to confirm the binding of myogenin to the promoter region of DUSP13. DUSP13 overexpression and knockdown assays were performed to study its anti-apoptotic role. RESULTS: Flow cytometry analysis of apoptosis showed that overexpressing myogenin for 24 and 48 hours decreased the apoptotic ratio by 47.9% and 63.5%, respectively, compared with untreated controls. Transcriptome sequencing performed on cardiomyocytes that expressed myogenin for different amounts of time (6, 12, 24, and 48 hours) identified DUSP13 as being up-regulated by myogenin. Western blotting showed that overexpression of myogenin increased the expression of DUSP13 and decreased the phosphorylation level of p38 MAPK. A dual-luciferase reporter assay proved that myogenin bound directly to the promoter region of DUSP13 and led to strong relative luciferase activity. Direct expression of DUSP13A and DUSP13B significantly reduced the rates of apoptosis and necrosis in cells treated with H2O2. Knockdown of DUSP13B significantly increased the rate of apoptosis in cells treated with H2O2. CONCLUSIONS: The present findings suggest that myogenin might attenuate apoptosis induced by reactive oxygen species by up-regulating DUSP13 and inactivating the p38 MAPK pathway.


Subject(s)
Hydrogen Peroxide , Induced Pluripotent Stem Cells , Humans , Reactive Oxygen Species/metabolism , Hydrogen Peroxide/pharmacology , Myogenin/genetics , Myogenin/metabolism , Induced Pluripotent Stem Cells/metabolism , Apoptosis , Oxidative Stress , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , Luciferases/metabolism
7.
Mol Brain ; 17(1): 12, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38409127

ABSTRACT

BACKGROUND: Autism spectrum disorder (ASD) encompasses a diverse range of neurodevelopmental disorders, but the precise underlying pathogenesis remains elusive. This study aim to explore the potential mechanism of TREM2 in regulating microglia function in ASD. MATERIALS AND METHODS: The offspring rat model of ASD was established through prenatal exposure to valproic acid (VPA), and the behavioral symptoms of the ASD model were observed. On postnatal day (PND) 7 and PND 28, the effects of prenatally exposure to VPA on synaptic development and microglia phenotype of offspring rats were observed. Primary microglia were cultured in vitro. Lentivirus and adenovirus were utilized to interfere with TREM2 and overexpress TREM2. RESULTS: Prenatally VPA exposure induced offspring rats to show typical ASD core symptoms, which led to abnormal expression of synapse-related proteins in the prefrontal cortex of offspring rats, changed the phenotype of microglia in offspring rats, promoted the polarization of microglia to pro-inflammatory type, and increased inflammatory response. The experimental results in vitro showed that overexpression of TREM2 could increase the expression of Gephyrin, decrease the content of CD86 protein and increase the content of CD206 protein. In addition, after the expression of TREM2 was interfered, the content of p-P38 MAPK protein increased and the content of p-ELK-1 protein decreased. CONCLUSION: The protective influence of TREM2 on the VPA-induced ASD model is attributed to its inhibition of the P38 MAPK pathway, this protective effect may be achieved by promoting the polarization of microglia to anti-inflammatory phenotype and improving the neuronal synaptic development.


Subject(s)
Autism Spectrum Disorder , Animals , Female , Pregnancy , Rats , Autism Spectrum Disorder/metabolism , Disease Models, Animal , Microglia/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Signal Transduction , Valproic Acid/pharmacology
8.
Brain Sci ; 14(2)2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38391735

ABSTRACT

The amygdala is a core region in the limbic system that is highly sensitive to stress. Astrocytes are key players in stress disorders such as anxiety and depression. However, the effects of stress on the morphology and function of amygdala astrocytes and its potential mechanisms remain largely unknown. Hence, we performed in vivo and in vitro experiments using a restraint stress (RS) rat model and stress-induced astrocyte culture, respectively. Our data show that norepinephrine (NE) content increased, cytotoxic edema occurred, and aquaporin-4 (AQP4) expression was up-regulated in the basolateral amygdala (BLA) obtained from RS rats. Additionally, the p38 mitogen-activated protein kinase (MAPK) pathway was also observed to be significantly activated in the BLA of rats subjected to RS. The administration of NE to in vitro astrocytes increased the AQP4 level and induced cell edema. Furthermore, p38 MAPK signaling was activated. The NE inhibitor alpha-methyl-p-tyrosine (AMPT) alleviated cytotoxic edema in astrocytes, inhibited AQP4 expression, and inactivated the p38 MAPK pathway in RS rats. Meanwhile, in the in vitro experiment, the p38 MAPK signaling inhibitor SB203580 reversed NE-induced cytotoxic edema and down-regulated the expression of AQP4 in astrocytes. Briefly, NE-induced activation of the p38 MAPK pathway mediated cytotoxic edema in BLA astrocytes from RS rats. Thus, our data provide novel evidence that NE-induced p38 MAPK pathway activation may be one of the mechanisms leading to cytotoxic edema in BLA under stress conditions, which also could enable the development of an effective therapeutic strategy against cytotoxic edema in BLA under stress and provide new ideas for the treatment of neuropsychiatric diseases.

9.
Tissue Cell ; 87: 102300, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38211409

ABSTRACT

OBJECTIVE: Abnormal proliferation and migration of biomechanical force-induced venous smooth muscle cells (VSMCs) is a major cause to limit the efficacy of coronary artery bypass grafting (CABG) for coronary heart disease (CHD). Scutellarin is the main active ingredient of Erigeron Breviscapus, and has broad-spectrum pharmacological effects. Therefore, the present study was proposed to investigate the effect of Scutellarin on VSMCs under tensile stress. METHODS: After interfering with VSMCs at different tensile stresses, the optimal tensile stress was screened. In a tensile stress environment, 100 µM Scutellarin and Hesperetin (p38 MAPK pathway activator) was used to treatment with VSMCs. CCK-8, EDU, Wound healing, flow cytometry and western blotting assays were used to detect cell proliferation, migration, apoptosis, and the expression of apoptosis-related proteins (Caspase3, Bcl2 and Bax). RESULTS: Tensile stress with 10% significantly enhanced the activity, wound-healing ratio, and EDU+ cells of VSMCs, and decreased their apoptosis ratio. Moreover, it upregulated Bcl2 expression, and downregulated cleaved-Caspase3 and Bax expression of VSMCs. Hence, 10% tensile stress was selected to creates a tensile stress environment for VSMCs. Interestingly, 100 µM Scutellarin alleviated the effect of 10% tensile stress on the phenotype of VSMCs. Notably, 10% tensile stress increased the phosphorylation level of p38 MAPK (Thr180 +Tyr182) in VSMCs, which was restricted by Scutellarin. Further, Hesperetin restored the effect of Scutellarin on the phenotype of VSMCs. CONCLUSION: Scutellarin alleviates tension stress-induced proliferation and migration of VSMCs via suppressing p38 MAPK pathway. Scutellarin may be used as an adjunctive strategy for future GABG treatment in CHD patients.


Subject(s)
Apigenin , Apoptosis Regulatory Proteins , Glucuronates , p38 Mitogen-Activated Protein Kinases , Humans , p38 Mitogen-Activated Protein Kinases/metabolism , bcl-2-Associated X Protein/metabolism , Cells, Cultured , Cell Proliferation , Apoptosis Regulatory Proteins/metabolism , Myocytes, Smooth Muscle , Cell Movement/physiology
10.
Int Immunopharmacol ; 128: 111472, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38176342

ABSTRACT

Schizandrin A (SA), also known as deoxyschizandrin, is one of the most biologically active lignans isolated from the traditional Chinese medicine Fructus schisandrae chinensis. Schisandrin A has proven benefits for anti-cancer, anti-inflammation, hepatoprotection, anti-oxidation, neuroprotection, anti-diabetes. But the influence of Schisandrin A to the innate immune response and its molecular mechanisms remain obscure. In this study, we found that Schisandrin A increased resistance to not only the Gram-negative pathogens Pseudomonas aeruginosa and Salmonella enterica but also the Gram-positive pathogen Listeria monocytogenes. Meanwhile, Schisandrin A protected the animals from the infection by enhancing the tolerance to the pathogens infection rather than by reducing the bacterial burden. Through the screening of the conserved immune pathways in Caenorhabditis elegans, we found that Schisandrin A enhanced innate immunity via p38 MAPK pathway. Furthermore, Schisandrin A increased the expression of antibacterial peptide genes, such as K08D8.5, lys-2, F35E12.5, T24B8.5, and C32H11.12 by activation PMK-1/p38 MAPK. Importantly, Schisandrin A-treated mice also enhanced resistance to P. aeruginosa PA14 infection and significantly increased the levels of active PMK-1. Thus, promoted PMK-1/p38 MAPK-mediated innate immunity by Schisandrin A is conserved from worms to mammals. Our work provides a conserved mechanism by which Schisandrin A enhances innate immune response and boosts its therapeutic application in the treatment of infectious diseases.


Subject(s)
Caenorhabditis elegans Proteins , Cyclooctanes , Lignans , Polycyclic Compounds , Animals , Mice , p38 Mitogen-Activated Protein Kinases/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/microbiology , Immunity, Innate , Mammals
11.
J Cosmet Dermatol ; 23(1): 316-325, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37545137

ABSTRACT

BACKGROUND: Ultraviolet (UV) exposure-stimulated reactive oxygen species (ROS) formation in keratinocytes is a crucial factor in skin aging. Phytochemicals have become widely popular for protecting the skin from UV-induced cell injury. Sesamin (SSM) has been shown to play a role in extensive pharmacological activity and exhibit photoprotective effects. AIM: To assess the protective effect of SSM on UVA-irradiated keratinocytes and determine its potential antiphotoaging effect. METHODS: HaCaT keratinocytes pretreated with SSM were exposed to UVA radiation at 8 J/cm2 for 10 min. Cell viability and oxidative stress indicators were evaluated using a cell counting kit-8 and lactate dehydrogenase (LDH), malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD) assay kits. Apoptosis and intracellular ROS levels were analyzed using annexin V-fluorescein isothiocyanate/propyridine iodide and dichlorodihydrofluorescein diacetate staining, respectively. Protein levels of matrix metalloprotein-1 (MMP-1), MMP-9, Bax/Bcl-2, and mitogen-activated protein kinase (MAPK) pathway proteins, phospho-apoptosis signal-regulating kinase-1 (p-ASK-1)/ASK-1, phospho-c-Jun N-terminal protein kinase (p-JNK)/JNK, and p-p38/p38 were determined using western blotting. RESULTS: Sesamin showed no cytotoxicity until 160 µmol/L on human keratinocytes. Sesamin pretreatment (20 and 40 µM) reversed the suppressed cell viability, increased LDH release and MDA content, decreased cellular antioxidants GSH and SOD, and elevated intracellular ROS levels, which were induced by UVA irradiation. Additionally, SSM inhibited the expression of Bax, MMP-1, and MMP-9 and stimulated Bcl-2 expression. In terms of the regulatory mechanisms, we demonstrated that SSM inhibits the phosphorylation of ASK-1, JNK, and p38. CONCLUSION: The results suggest that SSM attenuates UVA-induced keratinocyte injury by inhibiting the ASK-1-JNK/p38 MAPK pathways.


Subject(s)
Matrix Metalloproteinase 9 , p38 Mitogen-Activated Protein Kinases , Humans , p38 Mitogen-Activated Protein Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/pharmacology , Matrix Metalloproteinase 9/metabolism , Reactive Oxygen Species/metabolism , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/pharmacology , Matrix Metalloproteinase 1/metabolism , Keratinocytes/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/pharmacology , JNK Mitogen-Activated Protein Kinases/metabolism , JNK Mitogen-Activated Protein Kinases/pharmacology , Apoptosis , Superoxide Dismutase/metabolism , Ultraviolet Rays/adverse effects
12.
Mol Neurobiol ; 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38087171

ABSTRACT

Enhancement of oxidative stress and resultant neuronal injury play important roles in initiating cognitive impairment during the aging process. Thus, attenuating oxidative injury is regarded as a profitable therapeutic strategy for age-associated cognitive impairment. Previous studies showed that gliclazide (Gli) had a protective role in neuronal injury from cerebral ischemia/reperfusion (I/R) injury. However, whether Gli has a profitable effect on age-associated cognitive impairment remains largely unclear. The present study showed that Gli held the potential to attenuate neuronal apoptosis in D-gal-induced senescent cells and aging mice. Additionally, Gli could alleviate synaptic injury and cognitive function in D-gal-induced aging mice. Further study showed that Gli could attenuate oxidative stress in D-gal-induced senescent cells and aging mice. The p38 MAPK pathway was predicted as the downstream target of Gli retarding oxidative stress using in silico analysis. Further studies revealed that Gli attenuated D-gal-induced phosphorylation of p38 and facilitated Nrf2 nuclear expression, indicating that the anti-oxidative property of Gli may be associated with the p38 MAPK pathway. The study demonstrates that Gli has a beneficial effect on ameliorating D-gal-induced neuronal injury and cognitive impairment, making this compound a promising agent for the prevention and treatment of age-associated cognitive impairment.

13.
Cell Mol Life Sci ; 80(11): 312, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37796333

ABSTRACT

Increasing evidence indicate that the expression of defense genes at the right place and the right time are regulated by host-defense transcription factors. However, the precise mechanisms of this regulation are not well understood. Homeodomain transcription factors, encoded by homeobox genes, play crucial role for the development of multicellular eukaryotes. In this study, we demonstrated that homeodomain transcription factor CEH-37 (known as OTX2 in mammals) was a key transcription factor for host defense in Caenorhabditis elegans. Meanwhile, CEH-37 acted in the intestine to protect C. elegans against pathogen infection. We further showed that the homeodomain transcription factor CEH-37 positively regulated PMK-1/ p38 MAPK activity to promote the intestinal immunity via suppression phosphatase VHP-1. Furthermore, we demonstrated that this function was conserved, because the human homeodomain transcription factor OTX2 also exhibited protective function in lung epithelial cells during Pseudomonas aeruginosa infection. Thus, our work reveal that CEH-37/OTX2 is a evolutionarily conserved transcription factor for defense against pathogen infection. The finding provides a model in which CEH-37 decreases VHP-1 phosphatase activity, allowing increased stimulation of PMK-1/p38 MAPK phosphorylation cascade in the intestine for pathogen resistance.


Subject(s)
Caenorhabditis elegans Proteins , Transcription Factors , Animals , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Phosphoric Monoester Hydrolases/metabolism , Immunity, Innate , DNA-Binding Proteins/metabolism , Mammals/metabolism , Dual-Specificity Phosphatases
14.
J Nutr Biochem ; 122: 109453, 2023 12.
Article in English | MEDLINE | ID: mdl-37788723

ABSTRACT

Insufficient riboflavin intake has been associated with poor bone health. This study aimed to investigate the effect of riboflavin deficiency on bone health in vivo and in vitro. Riboflavin deficiency was successfully developed in rats and osteoblasts. The results indicated that bone mineral density, serum bone alkaline phosphatase, bone phosphorus, and bone calcium were significantly decreased while serum ionized calcium and osteocalcin were significantly increased in the riboflavin-deficient rats. Riboflavin deficiency also induced the reduction of Runx2, Osterix, and BMP-2/Smad1/5/9 cascade in the femur. These results were further verified in cellular experiments. Our findings demonstrated that alkaline phosphatase activities and calcified nodules were significantly decreased while intracellular osteocalcin and pro-collagen I c-terminal propeptide were significantly increased in the riboflavin-deficient osteoblasts. Additionally, the protein expression of Osterix, Runx2, and BMP-2/Smad1/5/9 cascade were significantly decreased while the protein expression of p-p38 MAPK were significantly increased in the riboflavin-deficient cells compared to the control cells. Blockage of p38 MAPK signaling pathway with SB203580 reversed these effects in riboflavin-deficient osteoblastic cells. Our data suggest that riboflavin deficiency causes osteoblast malfunction and retards bone matrix mineralization via p38 MAPK/BMP-2/Smad1/5/9 signaling pathway.


Subject(s)
Bone Density , Riboflavin Deficiency , Rats , Animals , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Osteocalcin/metabolism , Signal Transduction , Riboflavin Deficiency/metabolism , Alkaline Phosphatase/metabolism , Calcium/metabolism , Bone Morphogenetic Protein 2/genetics , Bone Morphogenetic Protein 2/metabolism , Osteoblasts , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , Riboflavin/pharmacology , Riboflavin/metabolism , Cell Differentiation
15.
Article in English | MEDLINE | ID: mdl-37817514

ABSTRACT

AIM AND OBJECTIVE: Traditional Chinese Medicine prescribes Yantiao Formula (YTF; peach kernel, mirabilite, Angelica sinensis, Radix Scrophulariae, raw rhubarb, Radix Paeoniae, Flos Lonicerae, Forsythia, and Ophiopogon japonicus) to treat sepsis. Clinically, it reduced the inflammatory response of sepsis. It also reduced lung damage by decreasing the level of TNF-α in septic rats' serum. Using network pharmacology analysis, we investigated the efficacy network and mechanism of YTF in treating sepsis. MATERIALS AND METHODS: We used the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and a Bioinformatics Analysis Tool for Molecular Mechanisms of Traditional Chinese Medicine (BATMAN-TCM) combined with literature to collect the main components in YTF and their targets. DisGeNET and GENECARDS databases were used for sepsis-related targets. Cytoscape 3.7.1 software was used to construct the herbcomponent- target and ingredient-target-disease interaction protein-protein interaction networks of YTF. The jvenn was used to perform the intersection of YTF targets and sepsis targets. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed. We also created a sepsis rat model using cecal ligation and perforation and stimulated alveolar macrophages (NR8383) with endotoxin to investigate the mechanisms of YTF. RESULTS: GO, and KEGG enrichment analysis revealed that these targets involved mineralocorticoid secretion, aldosterone secretion, active regulation of chronic inflammatory response, the exogenous coagulation pathway, and other pathophysiology. It was linked to various inflammatory factors and the MAPK pathway. YTF inhibits the p38MAPK pathway and decreases TNF- α, IL-6, and CXCL8 levels. CONCLUSION: YTF has a multi-component, multi-target, and multi-channel role in treating sepsis. The primary mechanisms may involve inhibiting the p38MAPK pathway to reduce the inflammatory response.

16.
Int J Mol Sci ; 24(19)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37833891

ABSTRACT

Bone morphogenetic proteins (BMPs) are a group of structurally and functionally related signaling molecules that comprise a subfamily, belonging to the TGF-ß superfamily. Most BMPs play roles in the regulation of embryonic development, stem cell differentiation, tumor growth and some cardiovascular and cerebrovascular diseases. Although evidence is emerging for the antiviral immunity of a few BMPs, more BMPs are needed to determine whether this function is universal. Here, we identified the zebrafish bmp4 ortholog, whose expression is up-regulated through challenge with grass carp reovirus (GCRV) or its mimic poly(I:C). The overexpression of bmp4 in epithelioma papulosum cyprini (EPC) cells significantly decreased the viral titer of GCRV-infected cells. Moreover, compared to wild-type zebrafish, viral load and mortality were significantly increased in both larvae and adults of bmp4-/- mutant zebrafish infected with GCRV virus. We further demonstrated that Bmp4 promotes the phosphorylation of Tbk1 and Irf3 through the p38 MAPK pathway, thereby inducing the production of type I IFNs in response to virus infection. These data suggest that Bmp4 plays an important role in the host defense against virus infection. Our study expands the understanding of BMP protein functions and opens up new targets for the control of viral infection.


Subject(s)
Bone Morphogenetic Proteins , Immunity, Innate , Zebrafish , Animals , Bone Morphogenetic Proteins/metabolism , Mitogen-Activated Protein Kinases , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , Reoviridae/physiology , Virus Diseases/genetics , Zebrafish/genetics , Zebrafish/metabolism
17.
Zhongguo Zhong Yao Za Zhi ; 48(18): 4843-4851, 2023 Sep.
Article in Chinese | MEDLINE | ID: mdl-37802826

ABSTRACT

To investigate the mechanism by which Cangxi Tongbi Capsules promote chondrocyte autophagy to inhibit knee osteoarthritis(KOA) progression by regulating the circRNA_0008365/miR-1271/p38 mitogen-activated protein kinase(MAPK) pathway. The cell and animal models of KOA were established and intervened with Cangxi Tongbi Capsules, si-circRNA_0008365, si-NC, and Cangxi Tongbi Capsules combined with si-circRNA_0008365. Flow cytometry and transmission electron microscopy were employed to determine the level of apoptosis and observe autophagosomes, respectively. Western blot was employed to reveal the changes in the protein levels of microtubule-associated protein light chain 3(LC3)Ⅱ/Ⅰ, Beclin-1, selective autophagy junction protein p62/sequestosome 1, collagen Ⅱ, a disintegrin and metalloproteinase with thrombospondin motifs 5(ADAMTS-5), and p38 MAPK. The mRNA levels of circRNA_0008365, miR-1271, collagen Ⅱ, and ADAMTS-5 were determined by qRT-PCR. Hematoxylin-eosin staining was employed to reveal the pathological changes of the cartilage tissue of the knee, and enzyme-linked immunosorbent assay to measure the levels of interleukin-1ß(IL-1ß) and tumor necrosis factor-alpha(TNF-α). The chondrocytes treated with IL-1ß showed down-regulated expression of circRNA_0008365, up-regulated expression of miR-1271 and p38 MAPK, lowered autophagy level, increased apoptosis rate, and accelerated catabolism of extracellular matrix. The intervention with Cangxi Tongbi Capsules up-regulated the expression of circRNA_0008365, down-regulated the expression of miR-1271 and p38 MAPK, increased the autophagy level, decreased the apoptosis rate, and weakened the catabolism of extracellular matrix. However, the effect of Cangxi Tongbi Capsules was suppressed after interfering with circRNA_0008365. The in vivo experiments showed that Cangxi Tongbi Capsules dose-dependently inhibited the p38 MAPK pathway, enhanced chondrocyte autophagy, and mitigated articular cartilage damage and inflammatory response, thereby inhibiting the progression of KOA in rats. This study indicated that Cangxi Tongbi Capsules promoted chondrocyte autophagy by regulating the circRNA_0008365/miR-1271/p38 MAPK pathway to inhibit the development of KOA.


Subject(s)
MicroRNAs , Osteoarthritis, Knee , Rats , Animals , Chondrocytes , Osteoarthritis, Knee/metabolism , Osteoarthritis, Knee/pathology , RNA, Circular/genetics , RNA, Circular/metabolism , RNA, Circular/pharmacology , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Apoptosis , Autophagy/genetics , Collagen/metabolism
18.
Immunopharmacol Immunotoxicol ; 45(6): 742-753, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37459395

ABSTRACT

BACKGROUND: The association between S100 calcium-binding protein A8 (S100A8) and angiogenesis has been reported in previous reports. This study focuses on the roles of S100A8 in the angiogenesis of human dermal microvascular endothelial cells (HDMECs) and in cutaneous wound healing in mice. METHODS: Candidate genes related to angiogenesis activity were screened using a GSE83582 dataset. The overexpression DNA plasmid of S100A8 was transfected into HDMECs to analyze its effect on cell proliferation, migration, and angiogenesis. Full-thickness skin wounds were induced on mice, followed by adenovirus treatments to analyze the function of gene alteration in wound healing and pathological changes. The upstream regulator of S100A8 was predicted by bioinformatics analysis and verified by luciferase and immunoprecipitation assays. The role of the forkhead box A1 (FOXA1)-S100A8 interaction in p38 MAPK activation and angiogenesis were validated by rescue experiments. RESULTS: S100A8 was identified as a gene significantly correlated with angiogenesis. The S100A8 upregulation promoted the proliferation, migration, and angiogenesis of HDMECs, and it promoted p38 MAPK phosphorylation. Treatment of SB203580, a p38 MAPK inhibitor, blocked the promoting effect of S100A8. FOXA1 was identified as an upstream factor of S100A8 promoting its transcription. FOXA1 overexpression in HDMECs increased p38 MAPK phosphorylation and enhanced the activity of cells, which were blocked by the S100A8 inhibition. Similar results were reproduced in vivo where FOXA1 overexpression accelerated whereas the S100A8 knockdown retarded the cutaneous wound healing in mice. CONCLUSION: FOXA1 mediates the phosphorylation of p38 MAPK through transcription activation of S100A8, thereby inducing angiogenesis and promoting cutaneous wound healing.


Subject(s)
Endothelial Cells , p38 Mitogen-Activated Protein Kinases , Animals , Humans , Mice , Cell Movement , Endothelial Cells/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Phosphorylation , Skin , Wound Healing
19.
Appl Environ Microbiol ; 89(7): e0052723, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37428035

ABSTRACT

Hirudomacin (Hmc) belongs to the Macin family of antimicrobial peptides, which can be used for bactericidal purposes in vitro by cleaving cell membranes. Although the Macin family has broad-spectrum antibacterial properties, few studies have been reported on bacterial inhibition by enhancing innate immunity. To further investigate the mechanism of Hmc inhibition, we chose the classical innate immune model organism Caenorhabditis elegans as the study subject. In this investigation, we found that Hmc treatment directly reduced the number of Staphylococcus aureus and Escherichia coli in the intestine of infected wild-type nematodes and infected pmk-1 mutant nematodes. Hmc treatment significantly prolonged the life span of infected wild-type nematodes and increased the expression of antimicrobial effectors (clec-82, nlp-29, lys-1, lys-7), and Hmc treatment still significantly increased the expression of antimicrobial effectors (clec-82, nlp-29, lys-7) in wild-type nematodes in the absence of bacterial stimulation. In addition, Hmc treatment significantly increased the expression of key genes of the pmk-1/p38 MAPK pathway (pmk-1, tir-1, atf-7, skn-1) under both infected and uninfected conditions but failed to increase the life span of infected pmk-1 mutant nematodes as well as the expression of antimicrobial effector genes. Western blot results further demonstrated that Hmc treatment significantly elevated pmk-1 protein expression levels in infected wild-type nematodes. In conclusion, our data suggest that Hmc has both direct bacteriostatic and immunomodulatory effects and may upregulate antimicrobial peptides in response to infection via the pmk-1/p38 MAPK pathway. It has the potential to serve as a new antibacterial agent and immune modulator. IMPORTANCE In today's world, bacterial drug resistance is becoming increasingly serious, and natural antibacterial proteins are attracting attention because of advantages such as their diverse and complex antibacterial modes, lack of residue, and harder-to-develop drug resistance. Notably, there are few antibacterial proteins with multiple effects such as direct antibacterial and innate immunity enhancement at the same time. We believe that an ideal antimicrobial agent can be developed only through a more comprehensive and in-depth study of the bacteriostatic mechanism of natural antibacterial proteins. The significance of our study is that based on the known in vitro bacterial inhibition of Hirudomacin (Hmc), we further clarified its mechanism in vivo, which can be subsequently developed as a natural bacterial inhibitor for various applications in medicine, food, farming, and daily chemicals.


Subject(s)
Caenorhabditis elegans Proteins , Animals , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/pharmacology , Immunity, Innate , Caenorhabditis elegans/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Antimicrobial Peptides
20.
Phytother Res ; 37(5): 2168-2186, 2023 May.
Article in English | MEDLINE | ID: mdl-37039761

ABSTRACT

In the search for compounds that inhibit the SARS-CoV-2 after the onset of the COVID-19 pandemic, isoquinoline-containing alkaloids have been identified as compounds with high potential to fight the disease. In addition to having strong antiviral activities, most of these alkaloids have significant anti-inflammatory effects which are often manifested through the inhibition of a promising host-based anti-COVID-19 target, the p38 MAPK signaling pathway. In the present review, our pharmacological and medicinal chemistry evaluation resulted in highlighting the potential of anti-SARS-CoV-2 isoquinoline-based alkaloids for the treatment of COVID-19 patients. Considering critical parameters of the antiviral and anti-inflammatory activities, mechanism of action, as well as toxicity/safety profile, we introduce the alkaloids emetine, cephaeline, and papaverine as high-potential therapeutic agents for use in the treatment of COVID-19. Although preclinical studies confirm that some isoquinoline-based alkaloids reviewed in this study have a high potential to inhibit the SARS-CoV-2, their entry into drug regimens of COVID-19 patients requires further clinical trial studies and toxicity evaluation.


Subject(s)
Alkaloids , COVID-19 , Humans , Chemistry, Pharmaceutical , SARS-CoV-2 , Pandemics , Isoquinolines/pharmacology , Isoquinolines/therapeutic use , Alkaloids/pharmacology , Alkaloids/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...