Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Biol Macromol ; 267(Pt 1): 131587, 2024 May.
Article in English | MEDLINE | ID: mdl-38631587

ABSTRACT

Composite films of nanofibrillated cellulose (NFC) and chitosan (CS) were prepared by spray deposition method, and the influence of polymers ratio and protonation degree (α) of chitosan was evaluated. Films were characterized using morphological, mechanical, and surface techniques. Higher NFC content increased Young's modulus of film composites and reduced air permeability, while higher CS content increased water contact angle. Variations in the degree of protonation of chitosan from non-protonated (α = 0) to fully protonated (α = 1) in the NFC/CS composite film with a fixed composition allowed to modulate surface, mechanical, and structural properties, such as water contact angle (31.3-109.2°), Young's modulus (1.7-5.3 GPa), elongation at break (3.1-1.2 %), oxygen transmission rate (9.0-5.5 cm3/m2day) and air permeability (2074-426 s). Highly protonated chitosan composite films showed similar contact angles to pure chitosan films, while low protonated chitosan composite films presented contact angles similar to pure NFC films, suggesting a possible coating effect of NFC by CS through electrostatic interactions, evidenced by microscopy and spectroscopy analysis. By mixing both polymers and adjusting composition and protonation degree it was possible to enhance their properties, making pH adjustment a useful tool for NFC/CS composite films formation.


Subject(s)
Cellulose , Chitosan , Nanofibers , Protons , Surface Properties , Chitosan/chemistry , Cellulose/chemistry , Nanofibers/chemistry , Permeability , Elastic Modulus , Mechanical Phenomena , Water/chemistry
2.
Carbohydr Polym ; 336: 122105, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38670749

ABSTRACT

In situ forming hydrogels are promising for biomedical applications, especially in drug delivery. The precursor solution can be injected at the target site, where it undergoes a sol-gel transition to afford a hydrogel. In this sense, the most significant characteristic of these hydrogels is fast gelation behavior after injection. This study describes an all-polysaccharide, rapidly in situ-forming hydrogel composed of carboxymethyl chitosan (CMCHT) and hydroxyethyl cellulose functionalized with aldehyde groups (HEC-Ald). The HEC-Ald was synthesized through acetal functionalization, followed by acid deprotection. This innovative approach avoids cleavage of pyran rings, as is inherent in the periodate oxidation approach, which is the most common method currently employed for adding aldehyde groups to polysaccharides. The resulting hydrogel exhibited fast stress relaxation, self-healing properties, and pH sensitivity, which allowed it to control the release of an encapsulated model drug in response to the medium pH. Based on the collected data, the HEC-Ald/CMCHT hydrogels show promise as pH-sensitive drug carriers.


Subject(s)
Aldehydes , Cellulose , Cellulose/analogs & derivatives , Chitosan , Chitosan/analogs & derivatives , Hydrogels , Chitosan/chemistry , Hydrogen-Ion Concentration , Cellulose/chemistry , Hydrogels/chemistry , Aldehydes/chemistry , Drug Carriers/chemistry , Drug Liberation , Polysaccharides/chemistry
3.
J Colloid Interface Sci ; 635: 406-416, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36599239

ABSTRACT

The ability to tune size and morphology of self-assemblies is particularly relevant in the development of delivery systems. By tailoring such structural parameters, one can provide larger cargo spaces or produce nanocarriers that can be loaded by hydrophilic and hydrophobic molecules starting ideally from the same polymer building unit. We herein demonstrate that the morphology of block copolymer-based pH-triggered nanoplatforms produced from poly(2-methyl-2-oxazoline)m-b-poly[2-(diisopropylamino)-ethyl methacrylate]n (PMeOxm-b-PDPAn) is remarkably influenced by the overall molecular weight of the block copolymer, and by the selected method used to produce the self-assemblies. Polymeric vesicles were produced by nanoprecipitation using a block copolymer of relatively low molecular weight (Mn âˆ¼ 10 kg.mol-1). Very exciting though, despite the high hydrophobic weight ratio (wPDPA > 0.70), this method conducted to the formation of core-shell nanoparticles when block copolymers of higher molecular weight were used, thus suggesting that the fast (few seconds) self-assembly procedure is controlled by kinetics rather than thermodynamics. We further demonstrated the formation of vesicular structures using longer chains via the solvent-switch approach when the "switching" to the bad solvent is performed in a time scale of a few hours (approximately 3 hs). We accordingly demonstrate that using fairly simple methods one can easily tailor the morphology of such block copolymer self-assemblies, thereby producing a variety of structurally different pH-triggered nanoplatforms via a kinetic or thermodynamically-controlled process. This is certainly attractive towards the development of nanotechnology-based cargo delivery systems.

4.
Int J Mol Sci ; 23(1)2021 Dec 28.
Article in English | MEDLINE | ID: mdl-35008729

ABSTRACT

Surface modification of polypropylene (PP) films was achieved using gamma-irradiation-induced grafting to provide an adequate surface capable of carrying glycopeptide antibiotics. The copolymer was obtained following a versatile two-step route; pristine PP was exposed to gamma rays and grafted with methyl methacrylate (MMA), and afterward, the film was grafted with N-vinylimidazole (NVI) by simultaneous irradiation. Characterization included Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and physicochemical analysis of swelling and contact angle. The new material (PP-g-MMA)-g-NVI was loaded with vancomycin to quantify the release by UV-vis spectrophotometry at different pH. The surface of (PP-g-MMA)-g-NVI exhibited pH-responsiveness and moderate hydrophilicity, which are suitable properties for controlled drug release.


Subject(s)
Drug Delivery Systems , Imidazoles/chemistry , Polymethyl Methacrylate/chemistry , Polypropylenes/chemistry , Polyvinyls/chemistry , Drug Liberation , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Photoelectron Spectroscopy , Polymerization , Solvents/chemistry , Spectrophotometry, Infrared , Spectroscopy, Fourier Transform Infrared , Thermogravimetry , Vancomycin/pharmacology
5.
Expert Rev Vaccines ; 18(9): 951-968, 2019 09.
Article in English | MEDLINE | ID: mdl-31487213

ABSTRACT

Introduction: The development of more efficacious vaccines, especially subunit vaccines administered via non-invasive routes, is a priority in vaccinology. Nanogels are materials that can meet the requirements to serve as efficient vaccine delivery vehicles (in terms of thermo-sensitivity, biocompatibility, and pH-responsiveness; among others); thus there is a growing interest in exploring the potential of nanogels for vaccine development. Areas covered: Herein, a critical analysis of nanogel synthesis methodologies is presented and nanogel-based vaccines under development are summarized and placed in perspective. Promising vaccine candidates based on nanogels have been reported for cancer, obesity, and infectious diseases (mainly respiratory diseases). Some of the candidates were administered by mucosal routes which are highly attractive in terms of simple administration and induction of protective responses at both mucosal and systemic levels. Expert opinion: The most advanced models of nanogel-based vaccines comprise candidates against cancer, based on cholesteryl pullulan nanogels evaluated in clinical trials with promising findings; as well as some vaccines against respiratory pathogens tested in mice thus far. Nonetheless, the challenge for this field is advancing in clinical trials and proving the protective potential in test animals for many other candidates. Implementing green synthesis approaches for nanogels is also required.


Subject(s)
Drug Delivery Systems/methods , Nanogels/chemistry , Nanoparticles/chemistry , Vaccines/immunology , Animals , Drug Carriers , Drug Development , Glucans , Humans , Mice , Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL