Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters











Publication year range
1.
J Chromatogr A ; 1736: 465350, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39270567

ABSTRACT

Ostreopsis cf. ovata, a benthic/epiphytic marine dinoflagellate, is currently spreading in tropical, sub-tropical and temperate areas, causing periodic Harmful Algal Blooms (HABs). It produces a wide array of palytoxin-like compounds named ovatoxins (OVTXs), with OVTX-a generally the most abundant congener. Despite numerous cases of human poisonings and environmental damage associated with the presence of OVTXs and O. cf. ovata proliferations, a complete characterization of the toxicity of this class of molecules cannot be performed until Reference Material (RM) for individual congeners is available. This, in turn, requires the availability of sufficient amounts of toxin at a high purity grade. To achieve this goal, herein an analytical re-evaluation of critical-steps of OVTX-a isolation from O. cf. ovata cell pellets is reported. The overall procedure consists of four steps, namely an extraction, a Medium Pressure Liquid Chromatography (MPLC) separation, and two preparative High Performance Liquid Chromatography (HPLC) steps. Particular attention was paid to the extraction step to evaluate the repeatability in OVTX-a yields. For subsequent steps, loading sample preparation and chromatographic conditions were refined. As a result, a significant increase in recovery yields (from 12.5 to 20 ± 3%) and in purity grade (from 51% to 94%) of the isolated OVTX-a was achieved in comparison to previous studies. The improved procedure can easily be applied to isolate sufficient quantities of a good candidate RM for OVTX-a.

2.
Genome Biol Evol ; 16(9)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39240721

ABSTRACT

Zoantharia is an order among the Hexacorallia (Anthozoa: Cnidaria), and includes at least 300 species. Previously reported genomes from scleractinian corals and actiniarian sea anemones have illuminated part of the hexacorallian diversification. However, little is known about zoantharian genomes and the early evolution of hexacorals. To explore genome evolution in this group of hexacorals, here, we report de novo genome assemblies of the zoantharians Palythoa mizigama (Pmiz) and Palythoa umbrosa (Pumb), both of which are members of the family Sphenopidae, and uniquely live in comparatively dark coral reef caves without symbiotic Symbiodiniaceae dinoflagellates. Draft genomes generated from ultra-low input PacBio sequencing totaled 373 and 319 Mbp for Pmiz and Pumb, respectively. Protein-coding genes were predicted in each genome, totaling 30,394 in Pmiz and 24,800 in Pumb, with each set having ∼93% BUSCO completeness. Comparative genomic analyses identified 3,036 conserved gene families, which were found in all analyzed hexacoral genomes. Some of the genes related to toxins, chitin degradation, and prostaglandin biosynthesis were expanded in these two Palythoa genomes and many of which aligned tandemly. Extensive gene family loss was not detected in the Palythoa lineage and five of ten putatively lost gene families likely had neuronal function, suggesting biased gene loss in Palythoa. In conclusion, our comparative analyses demonstrate evolutionary conservation of gene families in the Palythoa lineage from the common ancestor of hexacorals. Restricted loss of gene families may imply that lost neuronal functions were effective for environmental adaptation in these two Palythoa species.


Subject(s)
Anthozoa , Multigene Family , Animals , Anthozoa/genetics , Genome , Phylogeny , Evolution, Molecular , Neurons/metabolism
3.
Food Res Int ; 190: 114585, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945605

ABSTRACT

Haff disease typically develops after eating contaminated marine or freshwater species, especially fish. Despite still having an unknown etiology, recent reports have suggested its possible correlation with palytoxins. Therefore, the present work aimed to optimize and perform a validation of a sensitive method using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) for the analysis of palytoxin and some of its analogs, with the main purpose of investigating their presence in marine and freshwater food samples associated with Haff disease in Brazil. The method optimization was performed using a central composite rotatable design and fish samples fortified with the palytoxin standard. Then, the optimized method was validated for different food matrices, including freshwater and marine fish, mollusks, and crustaceans. The sample preparation involved a solid-liquid extraction using methanol and water, solid-phase extraction using Strata-X cartridges, and on-column palytoxin oxidation. The detection of the main oxidized fragments (amino and amide aldehydes) was achieved by LC-MS/MS with electrospray ionization in positive mode, using a C18 column, as well as acetonitrile and water as mobile phases, both acidified with 0.1 % of formic acid. After optimization and validation, the etiological investigation involved the analysis of 16 Brazilian Haff disease-related food samples (in natura and leftover meals) from 2022. The method was demonstrated to be appropriate for quantitative analysis of freshwater and marine species. So far, it has proven to be one of the most sensitive methods related to palytoxin detection (LOD 10 µg/kg), being able to work in a range that includes the provisional ingestion limit (30 µg/kg). Regarding the Haff disease-related samples analysis, there is a strong indication of palytoxin contamination since the amino aldehyde (common fragment for all palytoxins) was detected in 15 of the 16 samples. Selected results were confirmed using liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS).


Subject(s)
Acrylamides , Cnidarian Venoms , Food Contamination , Fresh Water , Seafood , Animals , Acrylamides/analysis , Brazil , Fishes , Food Contamination/analysis , Fresh Water/chemistry , Limit of Detection , Liquid Chromatography-Mass Spectrometry/methods , Polyether Toxins , Reproducibility of Results , Seafood/analysis , Solid Phase Extraction/methods , Tandem Mass Spectrometry/methods
4.
Toxicon ; 240: 107631, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38331106

ABSTRACT

Blooms of the dinoflagellate Ostreopsis cf. ovata are regularly associated with human intoxications that are attributed to ovatoxins (OVTXs), the main toxic compounds produced by this organism and close analogs to palytoxin (PlTX). Unlike for PlTX, information on OVTXs'toxicity are scarce due to the absence of commercial standards. Extracts from two cultures of Mediterranean strains of O. cf. ovata (MCCV54 and MCCV55), two fractions containing or not OVTXs (prepared from the MCCV54 extract) and OVTX-a and -d (isolated from the MCCV55 extract) were generated. These chemical samples and PlTX were tested on a panel of cell types from several organs and tissues (skin, intestine, lung, liver and nervous system). The MCCV55 extract, containing a 2-fold higher amount of OVTXs than MCCV54 extract, was shown to be more cytotoxic on all the cell lines and more prone to increase interleukin-8 (IL-8) release in keratinocytes. The fraction containing OVTXs was also cytotoxic on the cell lines tested but induced IL-8 release only in liver cells. Unexpectedly, the cell lines tested showed the same sensitivity to the fraction that does not contain OVTXs. With this fraction, a pro-inflammatory effect was shown both in lung and liver cells. The level of cytotoxicity was similar for OVTX-a and -d, except on intestinal and skin cells where a weak difference of toxicity was observed. Among the 3 toxins, only PlTX induced a pro-inflammatory effect mostly on keratinocytes. These results suggest that the ubiquitous Na+/K+ ATPase target of PlTX is likely shared with OVTX-a and -d, although the differences in pro-inflammatory effect must be explained by other mechanisms.


Subject(s)
Acrylamides , Cnidarian Venoms , Dinoflagellida , Polyether Toxins , Humans , Marine Toxins/chemistry , Interleukin-8 , Cnidarian Venoms/toxicity , Dinoflagellida/chemistry
5.
Am J Emerg Med ; 75: 197.e1-197.e3, 2024 01.
Article in English | MEDLINE | ID: mdl-37945412

ABSTRACT

We describe a case of a young male who presented to the emergency department with unilateral eye pain, blurred vision, conjunctival injection, and ocular pH of 9, one day after direct ocular exposure to palytoxin (PTX) from coral in a home saltwater fish tank. Although uncommon, ocular PTX toxicity is a potentially vision-threatening condition that requires prompt recognition. This case report documents the successful management of presumed ocular PTX exposure and suggests additional workup and treatment considerations for future patients.


Subject(s)
Anthozoa , Cnidarian Venoms , Animals , Humans , Male , Cnidarian Venoms/toxicity , Acrylamides/toxicity , Face
6.
Mar Drugs ; 21(4)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37103372

ABSTRACT

Palytoxin is considered one of the most potent biotoxins. As palytoxin-induced cancer cell death mechanisms remain to be elucidated, we investigated this effect on various leukemia and solid tumor cell lines at low picomolar concentrations. As palytoxin did not affect the viability of peripheral blood mononuclear cells (PBMC) from healthy donors and did not create systemic toxicity in zebrafish, we confirmed excellent differential toxicity. Cell death was characterized by a multi-parametric approach involving the detection of nuclear condensation and caspase activation assays. zVAD-sensitive apoptotic cell death was concomitant with a dose-dependent downregulation of antiapoptotic Bcl-2 family proteins Mcl-1 and Bcl-xL. Proteasome inhibitor MG-132 prevented the proteolysis of Mcl-1, whereas the three major proteasomal enzymatic activities were upregulated by palytoxin. Palytoxin-induced dephosphorylation of Bcl-2 further exacerbated the proapoptotic effect of Mcl-1 and Bcl-xL degradation in a range of leukemia cell lines. As okadaic acid rescued cell death triggered by palytoxin, protein phosphatase (PP)2A was involved in Bcl-2 dephosphorylation and induction of apoptosis by palytoxin. At a translational level, palytoxin abrogated the colony formation capacity of leukemia cell types. Moreover, palytoxin abrogated tumor formation in a zebrafish xenograft assay at concentrations between 10 and 30 pM. Altogether, we provide evidence of the role of palytoxin as a very potent and promising anti-leukemic agent, acting at low picomolar concentrations in cellulo and in vivo.


Subject(s)
Leukemia , Leukocytes, Mononuclear , Animals , Humans , Leukocytes, Mononuclear/metabolism , Zebrafish/metabolism , Down-Regulation , Myeloid Cell Leukemia Sequence 1 Protein , Proto-Oncogene Proteins c-bcl-2/metabolism , Apoptosis , Apoptosis Regulatory Proteins/metabolism , Cell Line, Tumor , bcl-X Protein/metabolism , bcl-X Protein/pharmacology
7.
Toxins (Basel) ; 15(3)2023 03 02.
Article in English | MEDLINE | ID: mdl-36977079

ABSTRACT

This study aimed to improve the understanding of the nutrient modulation of Ostreopsis cf. ovata toxin content. During the 2018 natural bloom in the NW Mediterranean, the total toxin content (up to ca. 57.6 ± 7.0 pg toxin cell-1) varied markedly. The highest values often coincided with elevated O. cf. ovata cell abundance and with low inorganic nutrient concentrations. The first culture experiment with a strain isolated from that bloom showed that cell toxin content was higher in the stationary than in the exponential phase of the cultures; phosphate- and nitrate-deficient cells exhibited similar cell toxin variability patterns. The second experiment with different conditions of nitrogen concentration and source (nitrate, urea, ammonium, and fertilizer) presented the highest cellular toxin content in the high-nitrogen cultures; among these, urea induced a significantly lower cellular toxin content than the other nutrient sources. Under both high- and low-nitrogen concentrations, cell toxin content was also higher in the stationary than in the exponential phase. The toxin profile of the field and cultured cells included ovatoxin (OVTX) analogues -a to -g and isobaric PLTX (isoPLTX). OVTX-a and -b were dominant while OVTX-f, -g, and isoPLTX contributed less than 1-2%. Overall, the data suggest that although nutrients determine the intensity of the O. cf. ovata bloom, the relationship of major nutrient concentrations, sources and stoichiometry with cellular toxin production is not straightforward.


Subject(s)
Dinoflagellida , Nitrates , Nitrogen
8.
Mar Drugs ; 20(12)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36547882

ABSTRACT

The frequent occurrence of marine dinoflagellates producing palytoxin (PLTX) or okadaic acid (OA) raises concern for the possible co-presence of these toxins in seafood, leading to additive or synergistic adverse effects in consumers. Thus, the acute oral toxicity of PLTX and OA association was evaluated in mice: groups of eight female CD-1 mice were administered by gavage with combined doses of PLTX (30, 90 or 270 µg/kg) and OA (370 µg/kg), or with each individual toxin, recording signs up to 24 h (five mice) and 14 days (three mice). Lethal effects occurred only after PLTX (90 or 270 µg/kg) exposure, alone or combined with OA, also during the 14-day recovery. PLTX induced scratching, piloerection, abdominal swelling, muscle spasms, paralysis and dyspnea, which increased in frequency or duration when co-administered with OA. The latter induced only diarrhea. At 24 h, PLTX (90 or 270 µg/kg) and OA caused wall redness in the small intestine or pale fluid accumulation in its lumen, respectively. These effects co-occurred in mice co-exposed to PLTX (90 or 270 µg/kg) and OA, and were associated with slight ulcers and inflammation at forestomach. PLTX (270 µg/kg alone or 90 µg/kg associated with OA) also decreased the liver/body weight ratio, reducing hepatocyte glycogen (270 µg/kg, alone or combined with OA). No alterations were recorded in surviving mice after 14 days. Overall, the study suggests additive effects of PLTX and OA that should be considered for their risk assessment as seafood contaminants.


Subject(s)
Cnidarian Venoms , Mice , Animals , Female , Okadaic Acid/toxicity , Cnidarian Venoms/toxicity , Acrylamides/toxicity , Liver
9.
Environ Toxicol Pharmacol ; 94: 103909, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35718322

ABSTRACT

Human intoxications in the Mediterranean Sea have been linked to blooms of the dinoflagellate Ostreopsis cf. ovata, producer of palytoxin (PlTX)-like toxins called ovatoxins (OVTXs). Exposure routes include only inhalation and contact, although PlTX-poisoning by seafood has been described in tropical regions. To address the impact of OVTXs on the intestinal barrier, dinoflagellate extracts, purified OVTX-a and -d and PlTX were tested on differentiated Caco-2 cells. Viability, inflammatory response and barrier integrity were recorded after 24 h treatment. OVTX-a and -d were not cytotoxic up to 20 ng/mL but increased IL-8 release, although to a lesser extent compared to PlTX. While PlTX and OVTX-a (at 0.5 and 5 ng/mL respectively) affected intestinal barrier integrity, OVTX-d up to 5 ng/mL did not. Overall, OVTX-d was shown to be less toxic than OVTX-a and PlTX. Therefore, oral exposure to OVTX-a and -d could provoked lower acute toxicity than PlTX.


Subject(s)
Dinoflagellida , Acrylamides , Caco-2 Cells , Cnidarian Venoms , Humans , Marine Toxins/toxicity
10.
Article in English | MEDLINE | ID: mdl-35457784

ABSTRACT

Among marine biotoxins, palytoxins (PlTXs) and cyclic imines (CIs), including spirolides, pinnatoxins, pteriatoxins, and gymnodimines, are not managed in many countries, such as the USA, European nations, and South Korea, because there are not enough poisoning cases or data for the limits on these biotoxins. In this article, we review unregulated marine biotoxins (e.g., PlTXs and CIs), their toxicity, causative phytoplankton species, and toxin extraction and detection protocols. Due to global warming, the habitat of the causative phytoplankton has expanded to the Asia-Pacific region. When ingested by humans, shellfish that accumulated toxins can cause various symptoms (muscle pain or diarrhea) and even death. There are no systematic reports on the occurrence of these toxins; however, it is important to continuously monitor causative phytoplankton and poisoning of accumulating shellfish by PlTXs and CI toxins because of the high risk of toxicity in human consumers.


Subject(s)
Foodborne Diseases , Shellfish Poisoning , Foodborne Diseases/epidemiology , Humans , Imines , Marine Toxins , Phytoplankton , Seafood , Shellfish/analysis , Shellfish Poisoning/epidemiology
11.
Toxins (Basel) ; 14(4)2022 04 10.
Article in English | MEDLINE | ID: mdl-35448878

ABSTRACT

Palytoxin (PLTX) is a polyether marine toxin isolated from sea anemones. It is one of the most toxic nonprotein substances, causing many people to be poisoned every year and to die in severe cases. Despite its known impact on Na+,K+-ATPase, much still remains unclear about PLTX's mechanism of action. Here, we tested different concentrations of PLTX on HaCaT cells and studied its distributions in cells, its impact on gene expression, and the associated pathways via proteomics combined with bioinformatics tools. We found that PLTX could cause ferroptosis in HaCaT cells, a new type of programmed cell death, by up-regulating the expression of VDAC3, ACSL4 and NCOA4, which lead to the occurrence of ferroptosis. PLTX also acts on the MAPK pathway, which is related to cell apoptosis, proliferation, division and differentiation. Different from its effect on ferroptosis, PLTX down-regulates the expression of ERK, and, as a result, the expressions of MAPK1, MAP2K1 and MAP2K2 are also lower, affecting cell proliferation. The genes from these two mechanisms showed interactions, but we did not find overlap genes between the two. Both ferroptosis and MAPK pathways can be used as anticancer targets, so PLTX may become an anticancer drug with appropriate modification.


Subject(s)
Cnidarian Venoms , HaCaT Cells , Acrylamides/toxicity , Cnidarian Venoms/toxicity , Humans , Proteomics
12.
Mar Drugs ; 20(2)2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35200611

ABSTRACT

Palytoxin (PLTX) is a highly toxic polyether identified in various marine organisms, such as Palythoa soft corals, Ostreopsis dinoflagellates, and Trichodesmium cyanobacteria. In addition to adverse effects in humans, negative impacts on different marine organisms have been often described during Ostreopsis blooms and the concomitant presence of PLTX and its analogues. Considering the increasing frequency of Ostreopsis blooms due to global warming, PLTX was investigated for its effects on Artemia franciscana, a crustacean commonly used as a model organism for ecotoxicological studies. At concentrations comparable to those detected in culture media of O. cf. ovata (1.0-10.0 nM), PLTX significantly reduced cysts hatching and induced significant mortality of the organisms, both at larval and adult stages. Adults appeared to be the most sensitive developmental stage to PLTX: significant mortality was recorded after only 12 h of exposure to PLTX concentrations > 1.0 nM, with a 50% lethal concentration (LC50) of 2.3 nM (95% confidence interval = 1.2-4.7 nM). The toxic effects of PLTX toward A. franciscana adults seem to involve oxidative stress induction. Indeed, the toxin significantly increased ROS levels and altered the activity of the major antioxidant enzymes, in particular catalase and peroxidase, and marginally glutathione-S-transferase and superoxide dismutase. On the whole, these results indicate that environmentally relevant concentrations of PLTX could have a negative effect on Artemia franciscana population, suggesting its potential ecotoxicological impact at the marine level.


Subject(s)
Acrylamides/toxicity , Artemia/drug effects , Cnidarian Venoms/toxicity , Marine Toxins/toxicity , Oxidative Stress/drug effects , Acrylamides/administration & dosage , Animals , Cnidarian Venoms/administration & dosage , Dose-Response Relationship, Drug , Ecotoxicology , Lethal Dose 50 , Life Cycle Stages , Marine Toxins/administration & dosage , Reactive Oxygen Species/metabolism , Time Factors
13.
Am J Ophthalmol Case Rep ; 25: 101326, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35128163

ABSTRACT

PURPOSE: This case report describes the therapeutic management of a 61-year-old male who experienced aquarium coral keratoconjunctivitis caused by exposure to palytoxin and provides an additional resource to raise awareness and treat patients with ocular exposure to palytoxin. OBSERVATIONS: A 61-year-old male inadvertently touched his left eye while cleaning an aquarium. Within 24 hours, pain, redness and visual blurring was noted. After 48 hours his best corrected visual acuity was measured at 20/25 on the right eye and 20/200 on the left. A thick mucopurulent discharge was present with associated conjunctival edema. The corneal epithelium was denuded centrally and inferiorly with subepithelial infiltrates peripherally. The patient was treated with topical moxifloxacin (0.5%) drops 6x/day and prednisolone acetate (1%) 4x/day. He was seen for follow up 48 hours later with a significant improvement in discomfort. Vision had improved to 20/60 with resolution of conjunctival edema, partial corneal epithelialization and reduced erythema. Cultures for culture and sensitivity returned as normal. The patient's steroid regime was gradually tapered during reassessments at four and ten days by which time the left eye acuity had returned to 20/25 with no symptoms. Therapy was discontinued with the exception of artificial tears. The patient continued to do well at his 42-day follow-up appointment with persistent corneal epithelialization, absence of infiltrates and a stable visual acuity of 20/25 in the affected eye. His local optometrist confirmed that the acuity was consistent with measurements obtained prior to the insult. CONCLUSIONS: The combination of moxifloxacin eye drops and prednisolone acetate eye drops were effective in treating the patient's aquarium coral keratoconjunctivitis as after being treated the patient regained his baseline visual acuity in the affected eye (best corrected visual acuity of 20/25). IMPORTANCE: Currently, there are only a handful of case-reports published on ocular exposure to palytoxin. This case report will add to the literature by providing an additional resource for health care providers, in the treatment of patients with ocular exposure to palytoxin and increasing awareness to this rare condition.

14.
Lancet Reg Health Am ; 5: 100092, 2022 Jan.
Article in English | MEDLINE | ID: mdl-36776458

ABSTRACT

Background: From late 2016 to early 2021, cases of Haff disease, a rare cause of rhabdomyolysis, possibly due to poisoning by palytoxin-like compounds in seafood, were detected in Salvador, Brazil. Surveillance was established to detect additional cases aiming at describing the clinical characteristics of the cases, identifying associated factors, estimating disease attack rate, and investigating the presence of biotoxins and trace metals in selected fish specimens obtained from cases. Method: Between December/2016-January/2021, surveillance investigated Haff disease suspected cases, and obtained clinical and fish samples to test. Findings: Of 65 cases investigated during the 2016-2017 outbreak, 43 (66%) had high creatine phosphokinase (CPK) levels. Among those with laboratory-confirmed rhabdomyolysis, 38 (88%) were hospitalized, 11 (26%) required intensive care, and three (7%) dialysis. Ingestion of marine fish 24h before disease onset was reported by 74% of the cases with elevated CPK and by 41% of those without CPK measurement (P=0·02). Attack rate for individuals who ate fish related to the outbreak was 55%. Following this outbreak, surveillance identified 12 suspected cases between 2017-2019, and a second outbreak in 2020-2021, with 16 laboratory-confirmed rhabdomyolysis patients (five required intensive care; one died). No traces of ciguatoxins and metals were detected in fish specimens obtained in 2016, found to be Seriola rivoliana. Some fish samples from 2020 were screened for palytoxin (PlTX)-like compounds and contained detectable levels of molecule fragments characteristics of isobaric PlTX, ovatoxin-a (OVTX-a), OVTX-b and OVTX-d. Interpretation: These findings support the hypothesis that compounds related to PlTX accumulated in marine fish may be the toxic agent causing the disease. Haff disease is a life-threatening condition, requiring clinical suspicion for patients with sudden-onset myalgia following fish ingestion. Suspected cases should be reported to health authorities for investigation.

15.
Turk J Ophthalmol ; 51(6): 393-397, 2021 Dec 28.
Article in English | MEDLINE | ID: mdl-34963267

ABSTRACT

Palytoxin (PTX) is produced by corals such as zoanthid corals. Here we present a case of bilateral PTX-induced keratoconjunctivitis. A 63-year-old man presented to the emergency department with symptoms of red eye, purulent discharge, and foreign body sensation in both eyes. On slit lamp examination, epithelial defects in both eyes with a ring-shaped corneal stromal infiltrate in the right eye and a marginal stromal infiltrate in the left eye were noted. High-resolution anterior segment optical coherence tomography (HR-AS-OCT) showed stromal hyperreflectivity and Descemet folds. Bacterial, fungal, and amoebic cultures were taken. Empirical treatment with topical dexamethasone as well as antibiotics and systemic doxycycline was started. The next day the patient stated that he had been handling zoanthid coral without gloves and had rubbed his eyes afterward. Bilateral PTX-induced keratoconjunctivitis was diagnosed. His eyes were irrigated abundantly with saline solution, and umbilical cord serum eye drops were added to the treatment. Treatment was tapered according to improvement of the corneal infiltrates and epithelial defects. After four months, the stromal infiltrates were resolved but corneal scars persisted in both eyes. HR-AS-OCT showed anterior stromal hyperreflectivity corresponding to corneal leucomas. PTX can cause ocular adverse effects such as keratolysis and corneal inflammation, and in some cases can lead to corneal perforation. It can also produce systemic adverse effects, hence the importance of the preventive measures when handling corals that can produce this toxin.


Subject(s)
Cnidarian Venoms , Corneal Diseases , Keratoconjunctivitis , Acrylamides , Corneal Diseases/chemically induced , Corneal Diseases/diagnosis , Humans , Keratoconjunctivitis/diagnosis , Male , Middle Aged , Tomography, Optical Coherence
16.
Case Rep Ophthalmol ; 12(2): 694-698, 2021.
Article in English | MEDLINE | ID: mdl-34594206

ABSTRACT

A 25-year-old woman presented with right eye pain, lid edema, conjunctival injection and chemosis, and mild corneal epitheliopathy after exposure to fluid content from an aquarium coral reef. Topical moxifloxacin and prednisolone were started 4 times daily, with full clinical resolution after 2 weeks. Toxin-mediated keratoconjunctivitis may occur after exposure to zoanthid coral reef, particularly in aquarium enthusiasts. Topical corticosteroids in tandem with topical antibiotics appear to be effective in mild disease. However, in severe cases that exhibit corneal infiltrates and stromal thinning, close observation is warranted in case of possible keratolysis.

17.
Toxins (Basel) ; 13(9)2021 09 14.
Article in English | MEDLINE | ID: mdl-34564654

ABSTRACT

Palytoxin (PLTX) and its congeners are emerging toxins held responsible for a number of human poisonings following the inhalation of toxic aerosols, skin contact, or the ingestion of contaminated seafood. Despite the strong structural analogies, the relative toxic potencies of PLTX congeners are quite different, making it necessary to isolate them individually in sufficient amounts for toxicological and analytical purposes. Previous studies showed poor PLTX recoveries with a dramatic decrease in PLTX yield throughout each purification step. In view of a large-scale preparative work aimed at the preparation of PLTX reference material, we have investigated evaporation as a critical-although unavoidable-step that heavily affects overall recoveries. The experiments were carried out in two laboratories using different liquid chromatography-mass spectrometry (LC-MS) instruments, with either unit or high resolution. Palytoxin behaved differently when concentrated to a minimum volume rather than when evaporated to complete dryness. The recoveries strongly depended on the solubility as well as on the material of the used container. The LC-MS analyses of PLTX dissolved in aqueous organic blends proved to give a peak intensity higher then when dissolved in pure water. After drying, the PLTX adsorption appeared stronger on glass surfaces than on plastic materials. However, both the solvents used to dilute PLTX and that used for re-dissolution had an important role. A quantitative recovery (97%) was achieved when completely drying 80% aqueous EtOH solutions of PLTX under N2-stream in Teflon. The stability of PLTX in acids was also investigated. Although PLTX was quite stable in 0.2% acetic acid solutions, upon exposure to stronger acids (pH < 2.66), degradation products were observed, among which a PLTX methyl-ester was identified.


Subject(s)
Acrylamides/isolation & purification , Chromatography, Liquid , Cnidarian Venoms/isolation & purification , Mass Spectrometry , Solvents , Specimen Handling , Solvents/chemistry , Specimen Handling/methods
18.
Environ Monit Assess ; 193(6): 333, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33970342

ABSTRACT

This study revealed the dynamics of the genus Ostreopsis in the south-western Mediterranean Sea fish farm during the 2016 and 2017 summers. This phytoplankton is known to produce palytoxin-like compounds, listed among the most potent marine toxins known, and can pose a serious concern for humans in the Mediterranean area. Principal component analysis (PCA) explained the significance of temperature, salinity, and dissolved inorganic nitrogen in the proliferation of this toxic dinoflagellate. The peak of the Ostreopsis sp. (6.34 × 103 cells L-1) was recorded at 28.4 °C, at a salinity of 38.3 PSU, and the dissolved inorganic nitrogen had a value of 0.60 µmol L-1. Our results highlight the importance of monitoring the proliferation of this harmful dinoflagellate in southern Mediterranean waters.


Subject(s)
Dinoflagellida , Fisheries , Environmental Monitoring , Humans , Marine Toxins/analysis , Mediterranean Sea
19.
Clin Ophthalmol ; 15: 141-156, 2021.
Article in English | MEDLINE | ID: mdl-33469260

ABSTRACT

Palytoxin is one of the most lethal natural toxins ever discovered. This molecule has been isolated from various marine animals, including zoanthid corals. This popular organism is commonly found in many home saltwater aquariums due to its beauty and survivability. As a result of an increase in popularity, an increased number of individuals are at risk for exposure to this potentially deadly toxin. Affected patients may experience various symptoms based on the route of exposure (ie, cutaneous contact, inhalation of aerosolized toxin, ocular exposure, or ingestion). Ocular exposure can occur in various ways (eg, contact with contaminated water, rubbing the eye with a dirtied hand, or direct spraying into the eye), and incidence rates have dramatically risen in recent years. In this review, we discuss a case of systemic toxicity from inhalation and ocular exposure to presumed palytoxin on a zoanthid coral which resulted in an intensive care unit (ICU) stay, and corneal perforation which required a corneal transplant. Additionally, we review what is known about the mechanism of action of this toxin, propose a comprehensive hypothesis of its effects on corneal cells, and discuss the prognosis and clinical management of patients with systemic symptoms secondary to other routes of exposure.

20.
Int J Mol Sci ; 21(16)2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32823835

ABSTRACT

The marine polyether palytoxin (PLTX) is one of the most toxic natural compounds, and is involved in human poisonings after oral, inhalation, skin and/or ocular exposure. Epidemiological and molecular evidence suggest different inter-individual sensitivities to its toxic effects, possibly related to genetic-dependent differences in the expression of Na+/K+-ATPase, its molecular target. To identify Na+/K+-ATPase subunits, isoforms correlated with in vitro PLTX cytotoxic potency, sensitivity parameters (EC50: PLTX concentration reducing cell viability by 50%; Emax: maximum effect induced by the highest toxin concentration; 10-7 M) were assessed in 60 healthy donors' monocytes by the MTT (methylthiazolyl tetrazolium) assay. Sensitivity parameters, not correlated with donors' demographic variables (gender, age and blood group), demonstrated a high inter-individual variability (median EC50 = 2.7 × 10-10 M, interquartile range: 0.4-13.2 × 10-10 M; median Emax = 92.0%, interquartile range: 87.5-94.4%). Spearman's analysis showed significant positive correlations between the ß2-encoding ATP1B2 gene expression and Emax values (rho = 0.30; p = 0.025) and between Emax and the ATP1B2/ATP1B3 expression ratio (rho = 0.38; p = 0.004), as well as a significant negative correlation between Emax and the ATP1B1/ATP1B2 expression ratio (rho = -0.30; p = 0.026). This toxicogenetic study represents the first approach to define genetic risk factors that may influence the onset of adverse effects in human PLTX poisonings, suggesting that individuals with high gene expression pattern of the Na+/K+-ATPase ß2 subunit (alone or as ß2/ß1 and/or ß2/ß3 ratio) could be highly sensitive to PLTX toxic effects.


Subject(s)
Acrylamides/pharmacology , Adenosine Triphosphatases/genetics , Cation Transport Proteins/genetics , Cell Adhesion Molecules, Neuronal/genetics , Cnidarian Venoms/pharmacology , Gene Expression Regulation/drug effects , Protein Subunits/genetics , Adenosine Triphosphatases/metabolism , Adult , Cation Transport Proteins/metabolism , Cell Adhesion Molecules, Neuronal/metabolism , Female , Humans , Male , Middle Aged , Monocytes/drug effects , Monocytes/enzymology , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Subunits/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL