Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 579
Filter
1.
Endocrine ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971945

ABSTRACT

Diabetes is one of the major diseases and concerns of public health systems that affects over 200 million patients worldwide. It is estimated that 90% of these patients suffer from diabetes type 2, while 10% present diabetes type 1. This type of diabetes and certain types of diabetes type 2, are characterized by dysregulation of blood glycemic levels due to the total or partial depletion of insulin-secreting pancreatic ß-cells. Different approaches have been proposed for long-term treatment of insulin-dependent patients; amongst them, cell-based approaches have been the subject of basic and clinical research since they allow blood glucose level sensing and in situ insulin secretion. The current gold standard for insulin-dependent patients is on-demand exogenous insulin application; cell-based therapies aim to remove this burden from the patient and caregivers. In recent years, protocols to isolate and implant pancreatic islets from diseased donors have been developed and tested in clinical trials. Nevertheless, the shortage of donors, along with the need of immunosuppressive companion therapies, have pushed researchers to focus their attention and efforts to overcome these disadvantages and develop alternative strategies. This review discusses current tested clinical approaches and future potential alternatives for diabetes type 1, and some diabetes type 2, insulin-dependent patients. Additionally, advantages and disadvantages of these discussed methods.

2.
Oman Med J ; 39(3): e636, 2024 May.
Article in English | MEDLINE | ID: mdl-39045280

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is a common inherited condition characterized by the growth of multiple bilateral cysts in the kidneys. We describe the case of a 35-year-old male with combined ADPKD and type 1 diabetes mellitus with a strong family history of both. At the age of 32, he developed end-stage kidney disease for which he underwent preemptive simultaneous pancreatic and kidney transplant, which in turn led to multiple perioperative complications. Evaluation of familial clustering of genetic disease is critical in genetic epidemiology and precision medicine as it enables estimation of lifetime disease risk and early assessment as well as detection of the disease among one's siblings.

3.
Mech Ageing Dev ; 220: 111951, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38825059

ABSTRACT

Animal longevity is a function of global vital organ functionality and, consequently, a complex polygenic trait. Yet, monogenic regulators controlling overall or organ-specific ageing exist, owing their conservation to their function in growth and development. Here, by using pathway analysis combined with wet-biology methods on several dynamic timelines, we identified Hnf1a as a novel master regulator of the maturation and ageing in the adult pancreatic islet during the first year of life. Conditional transgenic mice bearing suboptimal levels of this transcription factor in the pancreatic islets displayed age-dependent changes, with a profile echoing precocious maturation. Additionally, the comparative pathway analysis revealed a link between Hnf1a age-dependent regulation and immune signaling, which was confirmed in the ageing timeline of an overly immunodeficient mouse model. Last, the global proteome analysis of human islets spanning three decades of life largely backed the age-specific regulation observed in mice. Collectively, our results suggest a novel role of Hnf1a as a monogenic regulator of the maturation and ageing process in the pancreatic islet via a direct or indirect regulatory loop with immune signaling.


Subject(s)
Aging , Hepatocyte Nuclear Factor 1-alpha , Islets of Langerhans , Signal Transduction , Hepatocyte Nuclear Factor 1-alpha/metabolism , Animals , Islets of Langerhans/metabolism , Mice , Humans , Signal Transduction/physiology , Aging/metabolism , Aging/physiology , Mice, Transgenic
4.
Adv Sci (Weinh) ; : e2401385, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884159

ABSTRACT

Type 1 diabetes mellitus (T1DM) is characterized by absolute insulin deficiency primarily due to autoimmune destruction of pancreatic ß-cells. The prevailing treatment for T1DM involves daily subcutaneous insulin injections, but a substantial proportion of patients face challenges such as severe hypoglycemic episodes and poorly controlled hyperglycemia. For T1DM patients, a more effective therapeutic option involves the replacement of ß-cells through allogeneic transplantation of either the entire pancreas or isolated pancreatic islets. Unfortunately, the scarcity of transplantable human organs has led to a growing list of patients waiting for an islet transplant. One potential alternative is xenotransplantation of porcine pancreatic islets. However, due to inter-species molecular incompatibilities, porcine tissues trigger a robust immune response in humans, leading to xenograft rejection. Several promising strategies aim to overcome this challenge and enhance the long-term survival and functionality of xenogeneic islet grafts. These strategies include the use of islets derived from genetically modified pigs, immunoisolation of islets by encapsulation in biocompatible materials, and the creation of an immunomodulatory microenvironment by co-transplanting islets with accessory cells or utilizing immunomodulatory biomaterials. This review concentrates on delineating the primary obstacles in islet xenotransplantation and elucidates the fundamental principles and recent breakthroughs aimed at addressing these challenges.

5.
Int J Mol Sci ; 25(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892122

ABSTRACT

Pancreatic islet isolation is critical for type 2 diabetes research. Although -omics approaches have shed light on islet molecular profiles, inconsistencies persist; on the other hand, functional studies are essential, but they require reliable and standardized isolation methods. Here, we propose a simplified protocol applied to very small-sized samples collected from partially pancreatectomized living donors. Islet isolation was performed by digesting tissue specimens collected during surgery within a collagenase P solution, followed by a Lympholyte density gradient separation; finally, functional assays and staining with dithizone were carried out. Isolated pancreatic islets exhibited functional responses to glucose and arginine stimulation mirroring donors' metabolic profiles, with insulin secretion significantly decreasing in diabetic islets compared to non-diabetic islets; conversely, proinsulin secretion showed an increasing trend from non-diabetic to diabetic islets. This novel islet isolation method from living patients undergoing partial pancreatectomy offers a valuable opportunity for targeted study of islet physiology, with the primary advantage of being time-effective and successfully preserving islet viability and functionality. It enables the generation of islet preparations that closely reflect donors' clinical profiles, simplifying the isolation process and eliminating the need for a Ricordi chamber. Thus, this method holds promises for advancing our understanding of diabetes and for new personalized pharmacological approaches.


Subject(s)
Cell Separation , Islets of Langerhans , Humans , Islets of Langerhans/metabolism , Islets of Langerhans/cytology , Cell Separation/methods , Living Donors , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Male , Female , Middle Aged , Adult , Insulin/metabolism , Glucose/metabolism , Insulin Secretion
6.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892240

ABSTRACT

A detailed study of palmitate metabolism in pancreatic islets subject to different experimental conditions, like varying concentrations of glucose, as well as fed or starved conditions, has allowed us to explore the interaction between the two main plasma nutrients and its consequences on hormone secretion. Palmitate potentiates glucose-induced insulin secretion in a concentration-dependent manner, in a physiological range of both palmitate (0-2 mM) and glucose (6-20 mM) concentrations; at glucose concentrations lower than 6 mM, no metabolic interaction with palmitate was apparent. Starvation (48 h) increased islet palmitate oxidation two-fold, and the effect was resistant to its inhibition by glucose (6-20 mM). Consequently, labelled palmitate and glucose incorporation into complex lipids were strongly suppressed, as well as glucose-induced insulin secretion and its potentiation by palmitate. 2-bromostearate, a palmitate oxidation inhibitor, fully recovered the synthesis of complex lipids and insulin secretion. We concluded that palmitate potentiation of the insulin response to glucose is not attributable to its catabolic mitochondrial oxidation but to its anabolism to complex lipids: islet lipid biosynthesis is dependent on the uptake of plasma fatty acids and the supply of α-glycerol phosphate from glycolysis. Islet secretion of glucagon and somatostatin showed a similar dependence on palmitate anabolism as insulin. The possible mechanisms implicated in the metabolic coupling between glucose and palmitate were commented on. Moreover, possible mechanisms responsible for islet gluco- or lipotoxicity after a long-term stimulation of insulin secretion were also discussed. Our own data on the simultaneous stimulation of insulin, glucagon, and somatostatin by glucose, as well as their modification by 2-bromostearate in perifused rat islets, give support to the conclusion that increased FFA anabolism, rather than its mitochondrial oxidation, results in a potentiation of their stimulated release. Starvation, besides suppressing glucose stimulation of insulin secretion, also blocks the inhibitory effect of glucose on glucagon secretion: this suggests that glucagon inhibition might be an indirect or direct effect of insulin, but not of glucose. In summary, there seems to exist three mechanisms of glucagon secretion stimulation: 1. glucagon stimulation through the same secretion coupling mechanism as insulin, but in a different range of glucose concentrations (0 to 5 mM). 2. Direct or indirect inhibition by secreted insulin in response to glucose (5-20 mM). 3. Stimulation by increased FFA anabolism in glucose intolerance or diabetes in the context of hyperlipidemia, hyperglycemia, and hypo-insulinemia. These conclusions were discussed and compared with previous published data in the literature. Specially, we discussed the mechanism for inhibition of glucagon release by glucose, which was apparently contradictory with the secretion coupling mechanism of its stimulation.


Subject(s)
Glucagon , Glucose , Insulin Secretion , Insulin , Islets of Langerhans , Glucose/metabolism , Animals , Insulin/metabolism , Glucagon/metabolism , Islets of Langerhans/metabolism , Islets of Langerhans/drug effects , Insulin Secretion/drug effects , Fatty Acids/metabolism , Rats , Palmitates/metabolism , Palmitates/pharmacology , Oxidation-Reduction/drug effects
7.
Nutrients ; 16(12)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38931174

ABSTRACT

Zinc deficiency has been associated with the worsening of diabetes while zinc supplementation has been proposed to ameliorate diabetes. This study examined the effects of marginal zinc deficiency (MZD) and zinc supplementation (ZS) on obesity, glycemic control, pancreatic islets, hepatic steatosis and renal function of Zucker diabetic fatty (ZDF) rats. Male ZDF rats were fed an MZD, zinc control (ZC) or ZS diet (4, 30 and 300 mg Zn/kg diet, respectively), and lean Zucker rats were fed a ZC diet for 8 weeks. MZD and ZS did not alter body weight or whole-body composition in ZDF rats. MZD ZDF rats had reduced zinc concentrations in the femur and pancreas, a greater number of enlarged pancreatic islets and a diminished response to an oral glucose load based on a 1.8-fold greater incremental area-under-the-curve (AUC) for glucose compared to ZC ZDF. ZS ZDF rats had elevated serum, femur and pancreatic zinc concentrations, unchanged pancreatic parameters and a 50% reduction in the AUC for insulin compared to ZC ZDF rats, suggesting greater insulin sensitivity. Dietary zinc intake did not alter hepatic steatosis, creatinine clearance, or levels of proteins that contribute to insulin signaling, inflammation or zinc transport in epididymal fat. Potential adverse effects of ZS were suggested by reduced hepatic copper concentrations and elevated serum urea compared to ZC ZDF rats. In summary, ZS improved the pancreatic insulin response but not the glucose handling. In contrast, reduced zinc status in ZDF rats led to impaired glucose tolerance and a compensatory increase in the number and size of pancreatic islets which could lead to ß-cell exhaustion.


Subject(s)
Dietary Supplements , Insulin , Islets of Langerhans , Zinc , Animals , Male , Rats , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/drug therapy , Insulin/blood , Insulin/metabolism , Insulin Resistance , Islets of Langerhans/metabolism , Islets of Langerhans/drug effects , Liver/metabolism , Liver/drug effects , Obesity/metabolism , Pancreas/metabolism , Pancreas/drug effects , Rats, Zucker , Zinc/deficiency
8.
Cells ; 13(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38786091

ABSTRACT

The dysfunction of α and ß cells in pancreatic islets can lead to diabetes. Many questions remain on the subcellular organization of islet cells during the progression of disease. Existing three-dimensional cellular mapping approaches face challenges such as time-intensive sample sectioning and subjective cellular identification. To address these challenges, we have developed a subcellular feature-based classification approach, which allows us to identify α and ß cells and quantify their subcellular structural characteristics using soft X-ray tomography (SXT). We observed significant differences in whole-cell morphological and organelle statistics between the two cell types. Additionally, we characterize subtle biophysical differences between individual insulin and glucagon vesicles by analyzing vesicle size and molecular density distributions, which were not previously possible using other methods. These sub-vesicular parameters enable us to predict cell types systematically using supervised machine learning. We also visualize distinct vesicle and cell subtypes using Uniform Manifold Approximation and Projection (UMAP) embeddings, which provides us with an innovative approach to explore structural heterogeneity in islet cells. This methodology presents an innovative approach for tracking biologically meaningful heterogeneity in cells that can be applied to any cellular system.


Subject(s)
Glucagon-Secreting Cells , Insulin-Secreting Cells , Insulin-Secreting Cells/metabolism , Glucagon-Secreting Cells/metabolism , Animals , Tomography, X-Ray/methods , Mice , Humans , Insulin/metabolism
9.
Cell Transplant ; 33: 9636897241249556, 2024.
Article in English | MEDLINE | ID: mdl-38742734

ABSTRACT

Pancreatic islet transplantation is one of the clinical options for certain types of diabetes. However, difficulty in maintaining islets prior to transplantation limits the clinical expansion of islet transplantations. Our study introduces a dynamic culture platform developed specifically for primary human islets by mimicking the physiological microenvironment, including tissue fluidics and extracellular matrix support. We engineered the dynamic culture system by incorporating our distinctive microwell-patterned porous collagen scaffolds for loading isolated human islets, enabling vertical medium flow through the scaffolds. The dynamic culture system featured four 12 mm diameter islet culture chambers, each capable of accommodating 500 islet equivalents (IEQ) per chamber. This configuration calculates > five-fold higher seeding density than the conventional islet culture in flasks prior to the clinical transplantations (442 vs 86 IEQ/cm2). We tested our culture platform with three separate batches of human islets isolated from deceased donors for an extended period of 2 weeks, exceeding the limits of conventional culture methods for preserving islet quality. Static cultures served as controls. The computational simulation revealed that the dynamic culture reduced the islet volume exposed to the lethal hypoxia (< 10 mmHg) to ~1/3 of the static culture. Dynamic culture ameliorated the morphological islet degradation in long-term culture and maintained islet viability, with reduced expressions of hypoxia markers. Furthermore, dynamic culture maintained the islet metabolism and insulin-secreting function over static culture in a long-term culture. Collectively, the physiological microenvironment-mimetic culture platform supported the viability and quality of isolated human islets at high-seeding density. Such a platform has a high potential for broad applications in cell therapies and tissue engineering, including extended islet culture prior to clinical islet transplantations and extended culture of stem cell-derived islets for maturation.


Subject(s)
Collagen , Islets of Langerhans , Tissue Scaffolds , Humans , Islets of Langerhans/cytology , Islets of Langerhans/metabolism , Tissue Scaffolds/chemistry , Porosity , Cell Culture Techniques/methods , Cell Culture Techniques/instrumentation , Islets of Langerhans Transplantation/methods
10.
Immunity ; 57(7): 1629-1647.e8, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38754432

ABSTRACT

The pancreatic islet microenvironment is highly oxidative, rendering ß cells vulnerable to autoinflammatory insults. Here, we examined the role of islet resident macrophages in the autoimmune attack that initiates type 1 diabetes. Islet macrophages highly expressed CXCL16, a chemokine and scavenger receptor for oxidized low-density lipoproteins (OxLDLs), regardless of autoimmune predisposition. Deletion of Cxcl16 in nonobese diabetic (NOD) mice suppressed the development of autoimmune diabetes. Mechanistically, Cxcl16 deficiency impaired clearance of OxLDL by islet macrophages, leading to OxLDL accumulation in pancreatic islets and a substantial reduction in intra-islet transitory (Texint) CD8+ T cells displaying proliferative and effector signatures. Texint cells were vulnerable to oxidative stress and diminished by ferroptosis; PD-1 blockade rescued this population and reversed diabetes resistance in NOD.Cxcl16-/- mice. Thus, OxLDL scavenging in pancreatic islets inadvertently promotes differentiation of pathogenic CD8+ T cells, presenting a paradigm wherein tissue homeostasis processes can facilitate autoimmune pathogenesis in predisposed individuals.


Subject(s)
Autoimmunity , CD8-Positive T-Lymphocytes , Cell Differentiation , Chemokine CXCL16 , Diabetes Mellitus, Type 1 , Islets of Langerhans , Lipoproteins, LDL , Macrophages , Mice, Inbred NOD , Mice, Knockout , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Mice , Lipoproteins, LDL/metabolism , Lipoproteins, LDL/immunology , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/metabolism , Chemokine CXCL16/metabolism , Macrophages/immunology , Macrophages/metabolism , Islets of Langerhans/immunology , Islets of Langerhans/metabolism , Mice, Inbred C57BL
11.
Math Biosci ; 374: 109224, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38821258

ABSTRACT

Gain of function mutations in the pore forming Kir6 subunits of the ATP sensitive K+ channels (K(ATP) channels) of pancreatic ß-cells are the major cause of neonatal diabetes in humans. In this study, we show that in insulin secreting mouse ß-cell lines, gain of function mutations in Kir6.1 result in a significant connexin36 (Cx36) overexpression, which form gap junctional connections and mediate electrical coupling between ß-cells within pancreatic islets. Using computational modeling, we show that upregulation in Cx36 might play a functional role in the impairment of glucose stimulated Ca2+ oscillations in a cluster of ß-cells with Kir6.1 gain of function mutations in their K(ATP) channels (GoF-K(ATP) channels). Our results show that without an increase in Cx36 expression, a gain of function mutation in Kir6.1 might not be sufficient to diminish glucose stimulated Ca2+ oscillations in a ß-cell cluster. We also show that a reduced Cx36 expression, which leads to loss of coordination in a wild-type ß-cell cluster, restores coordinated Ca2+ oscillations in a ß-cell cluster with GoF-K(ATP) channels. Our results indicate that in a heterogenous ß-cell cluster with GoF-K(ATP) channels, there is an inverted u-shaped nonmonotonic relation between the cluster activity and Cx36 expression. These results show that in a neonatal diabetic ß-cell model, gain of function mutations in the Kir6.1 cause Cx36 overexpression, which aggravates the impairment of glucose stimulated Ca2+ oscillations.


Subject(s)
Insulin-Secreting Cells , KATP Channels , Up-Regulation , Insulin-Secreting Cells/metabolism , Animals , Mice , KATP Channels/genetics , KATP Channels/metabolism , Connexins/genetics , Connexins/metabolism , Gain of Function Mutation , Gap Junction delta-2 Protein , Calcium Signaling , Models, Biological , Calcium/metabolism , Humans
12.
Nutrients ; 16(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38794702

ABSTRACT

Insulin secretion from pancreatic ß cells is a key pillar of glucose homeostasis, which is impaired under obesity and aging. Growth hormone secretagogue receptor (GHSR) is the receptor of nutrient-sensing hormone ghrelin. Previously, we showed that ß-cell GHSR regulated glucose-stimulated insulin secretion (GSIS) in young mice. In the current study, we further investigated the effects of GHSR on insulin secretion in male mice under diet-induced obesity (DIO) and streptozotocin (STZ)-induced ß-cell injury in aging. ß-cell-specific-Ghsr-deficient (Ghsr-ßKO) mice exhibited no glycemic phenotype under DIO but showed significantly improved ex vivo GSIS in aging. We also detected reduced insulin sensitivity and impaired insulin secretion during aging both in vivo and ex vivo. Accordingly, there were age-related alterations in expression of glucose transporter, insulin signaling pathway, and inflammatory genes. To further determine whether GHSR deficiency affected ß-cell susceptibility to acute injury, young, middle-aged, and old Ghsr-ßKO mice were subjected to STZ. We found that middle-aged and old Ghsr-ßKO mice were protected from STZ-induced hyperglycemia and impaired insulin secretion, correlated with increased expression of insulin signaling regulators but decreased pro-inflammatory cytokines in pancreatic islets. Collectively, our findings indicate that ß-cell GHSR has a major impact on insulin secretion in aging but not obesity, and GHSR deficiency protects against STZ-induced ß-cell injury in aging.


Subject(s)
Aging , Insulin-Secreting Cells , Insulin , Mice, Knockout , Obesity , Receptors, Ghrelin , Streptozocin , Animals , Male , Insulin-Secreting Cells/metabolism , Receptors, Ghrelin/metabolism , Receptors, Ghrelin/genetics , Obesity/metabolism , Mice , Insulin/metabolism , Insulin Secretion , Signal Transduction , Mice, Inbred C57BL , Insulin Resistance , Blood Glucose/metabolism , Hyperglycemia , Diabetes Mellitus, Experimental
13.
Biomedicines ; 12(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38790954

ABSTRACT

Extracellular vesicles represent a group of structures with the capacity to communicate with different cells and organs. This complex network of interactions can regulate multiple physiological processes in the organism. Very importantly, these processes can be altered during the appearance of different diseases including cancer, metabolic diseases, etc. In addition, these extracellular vesicles can transport different cargoes, altering the initiation of the disease, driving the progression, or even accelerating the pathogenesis. Then, we have explored the implication of these structures in different alterations such as pancreatic cancer, and in different metabolic alterations such as diabetes and its complications and non-alcoholic fatty liver disease. Finally, we have explored in more detail the communication between the liver and the pancreas. In summary, extracellular vesicles represent a very efficient system for the communication among different tissues and permit an efficient system as biomarkers of the disease, as well as being involved in the extracellular-vesicle-mediated transport of molecules, serving as a potential therapy for different diseases.

14.
Physiol Rep ; 12(9): e16040, 2024 May.
Article in English | MEDLINE | ID: mdl-38725080

ABSTRACT

The endocrine pancreas is composed of clusters of cell groups called pancreatic islets. These cells are responsible for the synthesis and secretion of hormones crucial for glycemic homeostasis, such as insulin and glucagon. Therefore, these cells were the targets of many studies. One method to study and/or understand endocrine pancreatic physiology is the isolation of these islets and stimulation of hormone production using different concentrations of glucose, agonists, and/or antagonists of specific secretagogues and mimicking the stimulation of hormonal synthesis and secretion. Many researchers studied pancreatic physiology in murine models due to their ease of maintenance and rapid development. However, the isolation of pancreatic islets involves meticulous processes that may vary between rodent species. The present study describes a simple and effective technical protocol for isolating intact islets from mice and rats for use as a practical guide for researchers. The method involves digestion of the acinar parenchyma by intraductal collagenase. Isolated islets are suitable for in vitro endocrine secretion analyses, microscopy techniques, and biochemical analyses.


Subject(s)
Islets of Langerhans , Animals , Islets of Langerhans/metabolism , Islets of Langerhans/cytology , Mice , Rats , Male , Mice, Inbred C57BL , Cell Separation/methods
15.
bioRxiv ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38562689

ABSTRACT

We previously showed that miR-146a-5p is upregulated in pancreatic islets treated with pro-inflammatory cytokines. Others have reported that miR-146a-5p overexpression is associated with ß cell apoptosis and impaired insulin secretion. However, the molecular mechanisms mediating these effects remain elusive. To investigate the role of miR-146a-5p in ß cell function, we developed stable MIN6 cell lines to either overexpress or inhibit the expression of miR-146a-5p. Monoclonal cell populations were treated with pro-inflammatory cytokines (IL-1ß, IFNγ, and TNFα) to model T1D in vitro. We found that overexpression of miR-146a-5p increased cell death under conditions of inflammatory stress, whereas inhibition of miR-146a-5p reversed these effects. Additionally, inhibition of miR-146a-5p increased mitochondrial DNA copy number, respiration rate, and ATP production. Further, RNA sequencing data showed enrichment of pathways related to insulin secretion, apoptosis, and mitochondrial function when the expression levels of miR-146a-5p were altered. Finally, a temporal increase in miR-146a-5p expression levels and a decrease in mitochondria function markers was observed in islets derived from NOD mice. Collectively, these data suggest that miR-146a-5p may promote ß cell dysfunction and death during inflammatory stress by suppressing mitochondrial function.

16.
Endokrynol Pol ; 75(2): 140-147, 2024.
Article in English | MEDLINE | ID: mdl-38646984

ABSTRACT

Despite advances in insulin delivery and glucose monitoring technology, prevention of the progression of secondary complications in patients with type 1 diabetes (T1DM) remains a challenge. Beta cell replacement therapy in the form of islet or pancreas transplantation can restore long-term normoglycaemia with sustained periods of insulin independence among T1DM patients. However, the same genetic, behavioural, or gut microbiota-related factors that promoted autoimmunity and primary islet destruction may also affect the function of transplanted islets and the ultimate results of transplant procedures. In such cases, identifying genetic risk factors and modifying behavioural factors and those related to gut microbiota may be beneficial for the outcomes of transplant procedures. Herein, we review related literature to the identified current gap in knowledge to be addressed in future clinical trials.


Subject(s)
Diabetes Mellitus, Type 1 , Gastrointestinal Microbiome , Islets of Langerhans Transplantation , Humans , Risk Factors , Pancreas Transplantation , Diet
17.
Neuroendocrinology ; : 1-17, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38599200

ABSTRACT

BACKGROUND: Obesity and type 2 diabetes are strongly associated pathologies, currently considered as a worldwide epidemic problem. Understanding the mechanisms that drive the development of these diseases would enable to develop new therapeutic strategies for their prevention and treatment. Particularly, the role of the brain in energy and glucose homeostasis has been studied for 2 decades. In specific, the hypothalamus contains well-identified neural networks that regulate appetite and potentially also glucose homeostasis. A new concept has thus emerged, suggesting that obesity and diabetes could be due to a dysfunction of the same, still poorly understood, neural networks. SUMMARY: The neuropeptide 26RFa (also termed QRFP) belongs to the family of RFamide regulatory peptides and has been identified as the endogenous ligand of the human G protein-coupled receptor GPR103 (QRFPR). The primary structure of 26RFa is strongly conserved during vertebrate evolution, suggesting its crucial roles in the control of vital functions. Indeed, the 26RFa/GPR103 peptidergic system is reported to be involved in the control of various neuroendocrine functions, notably the control of energy metabolism in which it plays an important role, both centrally and peripherally, since 26RFa regulates feeding behavior, thermogenesis and lipogenesis. Moreover, 26RFa is reported to control glucose homeostasis both peripherally, where it acts as an incretin, and centrally, where the 26RFa/GPR103 system relays insulin signaling in the brain to control glucose metabolism. KEY MESSAGES: This review gives a comprehensive overview of the role of the 26RFa/GPR103 system as a key player in the control of energy and glucose metabolism. In a pathophysiological context, this neuropeptidergic system represents a prime therapeutic target whose mechanisms are highly relevant to decipher.

18.
Am J Physiol Cell Physiol ; 326(4): C1262-C1271, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38497111

ABSTRACT

Defining the oxygen level that induces cell death within 3-D tissues is vital for understanding tissue hypoxia; however, obtaining accurate measurements has been technically challenging. In this study, we introduce a noninvasive, high-throughput methodology to quantify critical survival partial oxygen pressure (pO2) with high spatial resolution within spheroids by using a combination of controlled hypoxic conditions, semiautomated live/dead cell imaging, and computational oxygen modeling. The oxygen-permeable, micropyramid patterned culture plates created a precisely controlled oxygen condition around the individual spheroid. Live/dead cell imaging provided the geometric information of the live/dead boundary within spheroids. Finally, computational oxygen modeling calculated the pO2 at the live/dead boundary within spheroids. As proof of concept, we determined the critical survival pO2 in two types of spheroids: isolated primary pancreatic islets and tumor-derived pseudoislets (2.43 ± 0.08 vs. 0.84 ± 0.04 mmHg), indicating higher hypoxia tolerance in pseudoislets due to their tumorigenic origin. We also applied this method for evaluating graft survival in cell transplantations for diabetes therapy, where hypoxia is a critical barrier to successful transplantation outcomes; thus, designing oxygenation strategies is required. Based on the elucidated critical survival pO2, 100% viability could be maintained in a typically sized primary islet under the tissue pO2 above 14.5 mmHg. This work presents a valuable tool that is potentially instrumental for fundamental hypoxia research. It offers insights into physiological responses to hypoxia among different cell types and may refine translational research in cell therapies.NEW & NOTEWORTHY Our study introduces an innovative combinatory approach for noninvasively determining the critical survival oxygen level of cells within small cell spheroids, which replicates a 3-D tissue environment, by seamlessly integrating three pivotal techniques: cell death induction under controlled oxygen conditions, semiautomated imaging that precisely identifies live/dead cells, and computational modeling of oxygen distribution. Notably, our method ensures high-throughput analysis applicable to various cell types, offering a versatile solution for researchers in diverse fields.


Subject(s)
Islets of Langerhans , Oxygen , Humans , Oxygen/metabolism , Hypoxia/metabolism , Islets of Langerhans/metabolism , Spheroids, Cellular/metabolism , Cell Hypoxia , Cell Survival
19.
Protein Sci ; 33(4): e4949, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38511500

ABSTRACT

Primary defects in folding of mutant proinsulin can cause dominant-negative proinsulin accumulation in the endoplasmic reticulum (ER), impaired anterograde proinsulin trafficking, perturbed ER homeostasis, diminished insulin production, and ß-cell dysfunction. Conversely, if primary impairment of ER-to-Golgi trafficking (which also perturbs ER homeostasis) drives misfolding of nonmutant proinsulin-this might suggest bi-directional entry into a common pathological phenotype (proinsulin misfolding, perturbed ER homeostasis, and deficient ER export of proinsulin) that can culminate in diminished insulin storage and diabetes. Here, we've challenged ß-cells with conditions that impair ER-to-Golgi trafficking, and devised an accurate means to assess the relative abundance of distinct folded/misfolded forms of proinsulin using a novel nonreducing SDS-PAGE/immunoblotting protocol. We confirm abundant proinsulin misfolding upon introduction of a diabetogenic INS mutation, or in the islets of db/db mice. Whereas blockade of proinsulin trafficking in Golgi/post-Golgi compartments results in intracellular accumulation of properly-folded proinsulin (bearing native disulfide bonds), impairment of ER-to-Golgi trafficking (regardless whether such impairment is achieved by genetic or pharmacologic means) results in decreased native proinsulin with more misfolded proinsulin. Remarkably, reversible ER-to-Golgi transport defects (such as treatment with brefeldin A or cellular energy depletion) upon reversal quickly restore the ER folding environment, resulting in the disappearance of pre-existing misfolded proinsulin while preserving proinsulin bearing native disulfide bonds. Thus, proper homeostatic balance of ER-to-Golgi trafficking is linked to a more favorable proinsulin folding (as well as trafficking) outcome.


Subject(s)
Diabetes Mellitus , Insulin-Secreting Cells , Mice , Animals , Proinsulin/genetics , Proinsulin/chemistry , Protein Folding , Insulin/chemistry , Endoplasmic Reticulum , Homeostasis , Disulfides/chemistry
20.
Mol Metab ; 83: 101922, 2024 May.
Article in English | MEDLINE | ID: mdl-38521184

ABSTRACT

OBJECTIVE: Evaluation of mitochondrial oxygen consumption and ATP production is important to investigate pancreatic islet pathophysiology. Most studies use cell lines due to difficulties in measuring primary islet respiration, which requires specific equipment and consumables, is expensive and poorly reproducible. Our aim was to establish a practical method to assess primary islet metabolic fluxes using standard commercial consumables. METHODS: Pancreatic islets were isolated from mice/rats, dispersed with trypsin, and adhered to pre-coated standard Seahorse or Resipher microplates. Oxygen consumption was evaluated using a Seahorse Extracellular Flux Analyzer or a Resipher Real-time Cell Analyzer. RESULTS: We provide a detailed protocol with all steps to optimize islet isolation with high yield and functionality. Our method requires a few islets per replicate; both rat and mouse islets present robust basal respiration and proper response to mitochondrial modulators and glucose. The technique was validated by other functional assays, which show these cells present conserved calcium influx and insulin secretion in response to glucose. We also show that our dispersed islets maintain robust basal respiration levels, in addition to maintaining up to 89% viability after five days in dispersed cultures. Furthermore, OCRs can be measured in Seahorse analyzers and in other plate respirometry systems, using standard materials. CONCLUSIONS: Overall, we established a practical and robust method to assess islet metabolic fluxes and oxidative phosphorylation, a valuable tool to uncover basic ß-cell metabolic mechanisms as well as for translational investigations, such as pharmacological candidate discovery and islet transplantation protocols.


Subject(s)
Islets of Langerhans , Mitochondria , Oxygen Consumption , Animals , Islets of Langerhans/metabolism , Mice , Rats , Mitochondria/metabolism , Male , Glucose/metabolism , Mice, Inbred C57BL , Insulin Secretion , Cells, Cultured , Oxidative Phosphorylation , Insulin/metabolism , Adenosine Triphosphate/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...