Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Polymers (Basel) ; 16(17)2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39274082

ABSTRACT

This research delves into the primary issue of polyimide (PI) insulation failures in high-frequency power transformers (HFPTs) by scrutinizing partial discharge development under high-frequency electrical stress. This study employs an experimental approach coupled with a plasma simulation model for a ball-sphere electrode structure. The simulation model integrates the particle transport equation, Poisson equation, and complex chemical reactions to ascertain microscopic parameters, including plasma distribution, electric field, electron density, electron temperature, surface, and space charge distribution. The effect of the voltage polarity and electrical energy on the PD process is also discussed. The contact point plays a pivotal role in triggering partial discharges and culminating in the breakdown of PI insulation. Asymmetry phenomena were found between positive and negative half-cycles by analyzing the PD data stage by stage. A significant number of PDs increased at every stage and the PD amplitude was higher during the negative cycle at the initial stage, but in later stages, the PD amplitude was found to be higher in the positive half-cycle, and scanning electron microscopy (SEM) revealed that the maximum damage occurred near the contact point junction. The simulation results show that the plasma initially accumulates the electron density near the contact point junction. Under the action of the electric field, plasma starts traveling at the PI surface outward from the contact point. Before the PD activity, all parameters have higher values in the plasma head. The microscopic parameters reveal maximum values near the contact point junction, during PD activities where significant damage takes place. These parameter distributions exhibit a decreasing trend over time as when the PD activity ends. The model's predictions are consistent with the experimental data. The paper lays the foundation for future research in polymer insulation design under high-frequency electrical stress.

2.
Sensors (Basel) ; 23(7)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37050465

ABSTRACT

The article presents in detail the construction of a low-cost, portable online PD monitoring system based on the acoustic emission (AE) technique. A highly sensitive piezoelectric transducer was used as the PD detector, whose frequency response characteristics were optimized to the frequency of AE waves generated by discharges in oil-paper insulation. The popular and inexpensive Teensy 3.2 development board featuring a 32-bit MK20DX256 microcontroller with the ARM Cortex-M4 core was used to count the AE pulses. The advantage of the system is its small dimensions and weight, easy and quick installation on the transformer tank, storage of measurement data on a memory card, battery power supply, and immediate readiness for operation without the need to configure. This system may contribute to promoting the idea of short-term (several days or weeks) PD monitoring, especially in developing countries where, with the dynamically growing demand for electricity, the need for inexpensive transformer diagnostics systems is also increasing. Another area of application is medium-power transformers (up to 100 MVA), where temporary PD monitoring using complex measurement systems requiring additional infrastructure (e.g., control cabinet, cable ducts for power supply, and data transmission) and qualified staff is economically unjustified.

3.
Sensors (Basel) ; 22(14)2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35891086

ABSTRACT

Inspection robots are widely used in the field of smart grid monitoring in substations, and partial discharge (PD) is an important sign of the insulation state of equipment. PD direction of arrival (DOA) algorithms using conventional beam forming and time difference of arrival (TDOA) require large-scale antenna arrays and high computational complexity, making them difficult to implement on inspection robots. To address this problem, a novel directional multiple signal classification (Dir-MUSIC) algorithm for PD direction finding based on signal strength is proposed, and a miniaturized directional spiral antenna circular array is designed in this paper. First, the Dir-MUSIC algorithm is derived based on the array manifold characteristics. This method uses strength intensity information rather than the TDOA information, which could reduce the computational difficulty and the requirement of array size. Second, the effects of signal-to-noise ratio (SNR) and array manifold error on the performance of the algorithm are discussed through simulations in detail. Then, according to the positioning requirements, the antenna array and its arrangement are developed and optimized. Simulation results suggested that the algorithm has reliable direction-finding performance in the form of six elements. Finally, the effectiveness of the algorithm is tested by using the designed spiral circular array in real scenarios. The experimental results show that the PD direction-finding error is 3.39°, which meets the need for partial discharge DOA estimation using inspection robots in substations.

4.
Sensors (Basel) ; 22(6)2022 Mar 20.
Article in English | MEDLINE | ID: mdl-35336566

ABSTRACT

Partial discharge (PD) is a common phenomenon of insulation aging in air-insulated switchgear and will change the gas composition in the equipment. However, it is still a challenge to diagnose and identify the defect types of PD. This paper conducts enclosed experiments based on gas sensors to obtain the concentration data of the characteristic gases CO, NO2, and O3 under four typical defects. The random forest algorithm with grid search optimization is used for fault identification to explore a method of identifying defect types through gas concentration. The results show that the gases concentration variations do have statistical characteristics, and the RF algorithm can achieve high accuracy in prediction. The combination of a sensor and a machine learning algorithm provides the gas component analysis method a way to diagnose PD in an air-insulated switchgear.

5.
Sensors (Basel) ; 20(22)2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33233567

ABSTRACT

Cable termination is a weak point in an underground cable system. The transient earth voltage (TEV) method is an effective and nonintrusive method for estimating the insulation condition of cable termination. However, the practical application of TEV detection is mainly focused on switchgears, generators, and transformers with a flat and conductive shell. A flexible sensor array based on the TEV method is presented for online partial discharge (OLPD) monitoring of the cable termination. Each sensing element is designed with a dual-capacitor structure made of flexible polymer material to obtain better and more stable sensitivity. Based on the electromagnetic (EM) wave propagation theory, the partial discharge (PD) propagation model in the cable termination is built to analyze and verify the rationality and validity of the sensor unit. Some influencing factors are discussed regarding the response characteristics of sensors. Finally, the performance of the sensor array is verified by simulations and experiments. Besides, an OLPD monitoring system is introduced. The monitoring system is composed of the on-site monitoring device and the remote monitoring host. The two parts of the system exchange the data through wireless networks using a wireless communication module. The experiment results show that the monitoring device could supply the PD condition monitoring demand for cable termination.

6.
Sensors (Basel) ; 20(17)2020 Aug 24.
Article in English | MEDLINE | ID: mdl-32846930

ABSTRACT

Partial discharge (PD) usually reflects failures and potential hazards of equipment, so PD detection is important to protect the power system. The most reliable method now is the pulse current method (PCM), but the device of PCM is large and hard to carry. Ultraviolet (UV) pulse detection is another method to detect PD, which has a high precision, strong anti-interference ability, and a long effective distance. However, the existing detection system does not work well when the PD is weak and can hardly reflect the hidden trouble of equipment. This paper introduces an improved PD detection system, based on the UV Pulse Method, which is of high precision and can reflect early discharge. In this study, a corresponding detection device was also built. This device is handheld, non-contact, easy to use, and of high precision.

7.
Sensors (Basel) ; 20(16)2020 Aug 09.
Article in English | MEDLINE | ID: mdl-32784863

ABSTRACT

The research in this paper consists of practical experimentation on a gas insulated section of high voltage equipment filled with carbon dioxide and technical air as a direct replacement to sulphur hexafluoride (SF6) and analyses the results of PD measurement by way of internal UHF sensors and external HFCTs. The results contribute to ongoing efforts to replace the global warming gas SF6 with an alternative such as pure carbon dioxide or technical air and are applicable to mixtures of electronegative gases that have a high content of buffer gas including carbon dioxide. The experiments undertaken involved filling a full-scale gas insulated line demonstrator with different pressures of CO2 or technical air and applying voltages up to 242 kV in both clean conditions and particle contaminated conditions. The results show that carbon dioxide and technical air can insulate a gas section normally insulated with SF6 at phase-to-earth voltage of 242 kV and that both HFCT and UHF sensors can be used to detect partial discharge with natural gases. The internal UHF sensors show the most accurate PD location results but external HFCTs offer a good compromise and very similar location accuracy.

8.
Sensors (Basel) ; 19(8)2019 Apr 18.
Article in English | MEDLINE | ID: mdl-31003527

ABSTRACT

The acoustic emission (AE) technique is one of the unconventional methods of partial discharges (PD) detection. It plays a particularly important role in oil-filled power transformers diagnostics because it enables the detection and online monitoring of PDs as well as localization of their sources. The performance of this technique highly depends on measurement system configuration but mostly on the type of applied AE sensor. The paper presents, in detail, the design and manufacturing stages of an ultrasensitive AE sensor optimized for partial discharge detection in power transformers. The design assumptions were formulated based on extensive laboratory research, which allowed for the identification of dominant acoustic frequencies emitted by partial discharges in oil-paper insulation. The Krimholtz-Leedom-Matthaei (KLM) model was used to iteratively find optimal material and geometric properties of the main structures of the prototype AE sensor. It has two sensing elements with opposite polarization direction and different heights. The fully differential design allowed to obtain the desired properties of the transducer, i.e., a two-resonant (68 kHz and 90 kHz) and wide (30‒100 kHz) frequency response curve, high peak sensitivity (-61.1 dB ref. V/µbar), and low noise. The laboratory tests confirmed that the prototype transducer is characterized by ultrahigh sensitivity of partial discharge detection. Compared to commonly used commercial AE sensors, the average amplitude of PD pulses registered with the prototype sensor was a minimum of 5.2 dB higher, and a maximum of 19.8 dB higher.

9.
Sensors (Basel) ; 19(5)2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30818866

ABSTRACT

The presence of a partial discharge phenomenon in an electrical apparatus is a warning signal that could determine the failure of the insulation system, terminating the service of the apparatus and/or the network. In this paper, an innovative partial discharge (PD) measurement instrument based on an antenna sensor is presented and analyzed. Being non-intrusive is one of the most relevant features of the sensor. The frequency response of the antenna sensor and the features to recognize different PD sources and automatically synchronize them with the supply voltage are described and discussed in details. The results show the performance of the instrument can make a fast and correct diagnosis of the health state of insulation systems.

10.
Sensors (Basel) ; 19(4)2019 Feb 19.
Article in English | MEDLINE | ID: mdl-30791413

ABSTRACT

This paper presents a new concept for partial discharge measurements in gas insulated systems (GIS). The proposed technique uses a novel GIS magnetic antenna that measures the magnetic field produced by partial discharges (PD) propagating in GIS. The foundations of the measurement technique and the magnetic antenna design are presented together with laboratory measurements. The magnetic antenna performance and the sensitivity of the acquisition system are studied. The bandwidth of the measurement system is in the high frequency and very high frequency (HF⁻VHF) range. Laboratory experiments demonstrate the suitability of the novel magnetic antenna-based measuring system for PD in GIS for corona, surface discharges, and free moving particles in SF6.

11.
Sensors (Basel) ; 18(2)2018 Feb 11.
Article in English | MEDLINE | ID: mdl-29439475

ABSTRACT

Metal-enclosed switchgear, which are widely used in the distribution of electrical energy, play an important role in power distribution networks. Their safe operation is directly related to the reliability of power system as well as the power quality on the consumer side. Partial discharge detection is an effective way to identify potential faults and can be utilized for insulation diagnosis of metal-enclosed switchgear. The transient earth voltage method, an effective non-intrusive method, has substantial engineering application value for estimating the insulation condition of switchgear. However, the practical application effectiveness of TEV detection is not satisfactory because of the lack of a TEV detection application method, i.e., a method with sufficient technical cognition and analysis. This paper proposes an innovative online PD detection system and a corresponding application strategy based on an intelligent feedback distributed TEV wireless sensor network, consisting of sensing, communication, and diagnosis layers. In the proposed system, the TEV signal or status data are wirelessly transmitted to the terminal following low-energy signal preprocessing and acquisition by TEV sensors. Then, a central server analyzes the correlation of the uploaded data and gives a fault warning level according to the quantity, trend, parallel analysis, and phase resolved partial discharge pattern recognition. In this way, a TEV detection system and strategy with distributed acquisition, unitized fault warning, and centralized diagnosis is realized. The proposed system has positive significance for reducing the fault rate of medium voltage switchgear and improving its operation and maintenance level.

12.
Sensors (Basel) ; 17(1)2017 Jan 18.
Article in English | MEDLINE | ID: mdl-28106806

ABSTRACT

The ultra-high frequency (UHF) method is widely used in insulation condition assessment. However, UHF signal processing algorithms are complicated and the size of the result is large, which hinders extracting features and recognizing partial discharge (PD) patterns. This article investigated the chromatic methodology that is novel in PD detection. The principle of chromatic methodologies in color science are introduced. The chromatic processing represents UHF signals sparsely. The UHF signals obtained from PD experiments were processed using chromatic methodology and characterized by three parameters in chromatic space (H, L, and S representing dominant wavelength, signal strength, and saturation, respectively). The features of the UHF signals were studied hierarchically. The results showed that the chromatic parameters were consistent with conventional frequency domain parameters. The global chromatic parameters can be used to distinguish UHF signals acquired by different sensors, and they reveal the propagation properties of the UHF signal in the L-shaped gas-insulated switchgear (GIS). Finally, typical PD defect patterns had been recognized by using novel chromatic parameters in an actual GIS tank and good performance of recognition was achieved.

SELECTION OF CITATIONS
SEARCH DETAIL