Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.370
Filter
1.
Neuron ; 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38955183

ABSTRACT

Brain oscillations are crucial for perception, memory, and behavior. Parvalbumin-expressing (PV) interneurons are critical for these oscillations, but their population dynamics remain unclear. Using voltage imaging, we simultaneously recorded membrane potentials in up to 26 PV interneurons in vivo during hippocampal ripple oscillations in mice. We found that PV cells generate ripple-frequency rhythms by forming highly dynamic cell assemblies. These assemblies exhibit rapid and significant changes from cycle to cycle, varying greatly in both size and membership. Importantly, this variability is not just random spiking failures of individual neurons. Rather, the activities of other PV cells contain significant information about whether a PV cell spikes or not in a given cycle. This coordination persists without network oscillations, and it exists in subthreshold potentials even when the cells are not spiking. Dynamic assemblies of interneurons may provide a new mechanism to modulate postsynaptic dynamics and impact cognitive functions flexibly and rapidly.

2.
Front Cell Neurosci ; 18: 1421617, 2024.
Article in English | MEDLINE | ID: mdl-38994327

ABSTRACT

The basolateral amygdala plays pivotal roles in the regulation of fear and anxiety and these processes are profoundly modulated by different neuromodulatory systems that are recruited during emotional arousal. Recent studies suggest activities of BLA interneurons and inhibitory synaptic transmission in BLA principal cells are regulated by neuromodulators to influence the output and oscillatory network states of the BLA, and ultimately the behavioral expression of fear and anxiety. In this review, we first summarize a cellular mechanism of stress-induced anxiogenesis mediated by the interaction of glucocorticoid and endocannabinoid signaling at inhibitory synapses in the BLA. Then we discuss cell type-specific activity patterns induced by neuromodulators converging on the Gq signaling pathway in BLA perisomatic parvalbumin-expressing (PV) and cholecystokinin-expressing (CCK) basket cells and their effects on BLA network oscillations and fear learning.

3.
Neurobiol Dis ; 199: 106596, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986718

ABSTRACT

Mesial temporal lobe epilepsy (MTLE) is characterized by recurring focal seizures that arise from limbic areas and are often refractory to pharmacological interventions. We have reported that optogenetic stimulation of PV-positive cells in the medial septum at 0.5 Hz exerts seizure-suppressive effects. Therefore, we compared here these results with those obtained by optogenetic stimulation of medial septum PV-positive neurons at 8 Hz in male PV-ChR2 mice (P60-P100) undergoing an initial, pilocarpine-induced status epilepticus (SE). Optogenetic stimulation (5 min ON, 10 min OFF) was performed from day 8 to day 12 after SE at a frequency of 8 Hz (n = 6 animals) or 0.5 Hz (n = 8 animals). Surprisingly, in both groups, no effects were observed on the occurrence of interictal spikes and interictal high frequency oscillations (HFOs). However, 0.5 Hz stimulation induced a significant decrease of seizure occurrence (p < 0.05). Such anti-ictogenic effect was not observed in the 8 Hz protocol that instead triggered seizures (p < 0.05); these seizures were significantly longer under optogenetic stimulation compared to when optogenetic stimulation was not implemented (p < 0.05). Analysis of ictal HFOs revealed that in the 0.5 Hz group, but not in the 8 Hz group, seizures occurring under optogenetic stimulation were associated with significantly lower rates of fast ripples compared to when optogenetic stimulation was not performed (p < 0.05). Our results indicate that activation of GABAergic PV-positive neurons in the medial septum exerts seizure-suppressing effects that are frequency-dependent and associated with low rates of fast ripples. Optogenetic activation of medial septum PV-positive neurons at 0.5 Hz is efficient in blocking seizures in the pilocarpine model of MTLE, an effect that did not occur with 8 Hz stimulation.

4.
J Comp Neurol ; 532(7): e25651, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961597

ABSTRACT

The superficial layers of the mammalian superior colliculus (SC) contain neurons that are generally responsive to visual stimuli but can differ considerably in morphology and response properties. To elucidate the structure and function of these neurons, we combined extracellular recording and juxtacellular labeling, detailed anatomical reconstruction, and ultrastructural analysis of the synaptic contacts of labeled neurons, using transmission electron microscopy. Our labeled neurons project to different brainstem nuclei. Of particular importance are neurons that fit the morphological criteria of the wide field (WF) neurons and whose dendrites are horizontally oriented. They display a rather characteristic axonal projection pattern to the nucleus of optic tract (NOT); thus, we call them superior collicular WF projecting to the NOT (SCWFNOT) neurons. We corroborated the morphological characterization of this neuronal type as a distinct neuronal class with the help of unsupervised hierarchical cluster analysis. Our ultrastructural data demonstrate that SCWFNOT neurons establish excitatory connections with their targets in the NOT. Although, in rodents, the literature about the WF neurons has focused on their extensive projection to the lateral posterior nucleus of the thalamus, as a conduit for information to reach the visual association areas of the cortex, our data suggest that this subclass of WF neurons may participate in the optokinetic nystagmus.


Subject(s)
Neurons , Superior Colliculi , Visual Pathways , Animals , Superior Colliculi/cytology , Superior Colliculi/physiology , Superior Colliculi/ultrastructure , Neurons/ultrastructure , Neurons/physiology , Rats , Visual Pathways/ultrastructure , Visual Pathways/physiology , Visual Pathways/cytology , Male , Optic Tract/physiology , Rats, Wistar , Microscopy, Electron, Transmission
5.
Front Psychiatry ; 15: 1403476, 2024.
Article in English | MEDLINE | ID: mdl-38903649

ABSTRACT

Background: Social isolation during critical periods of development is associated with alterations in behavior and neuronal circuitry. This study aimed to investigate the immediate and developmental effects of social isolation on firing properties, neuronal activity-regulated pentraxin (NARP) and parvalbumin (PV) expression in the prefrontal cortex (PFC), social behavior in juvenile socially isolated mice, and the biological relevance of NARP expression in autism spectrum disorder (ASD). Methods: Mice were subjected to social isolation during postnatal days 21-35 (P21-P35) and were compared with group-housed control mice. Firing properties in the PFC pyramidal neurons were altered in P35 socially isolated mice, which might be associated with alterations in NARP and PV expression. Results: In adulthood, mice that underwent juvenile social isolation exhibited difficulty distinguishing between novel and familiar mice during a social memory task, while maintaining similar levels of social interaction as the control mice. Furthermore, a marked decrease in NARP expression in lymphoblastoid cell lines derived from adolescent humans with ASD as compared to typically developing (TD) humans was found. Conclusion: Our study highlights the role of electrophysiological properties, as well as NARP and PV expression in the PFC in mediating the developmental consequences of social isolation on behavior.

6.
Br J Pharmacol ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886118

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is associated with gradual memory loss and anxiety which affects ~75% of AD patients. This study investigated whether AD-associated anxiety correlated with modulation of extrasynaptic δ-subunit-containing GABAA receptors (δ-GABAARs) in experimental mouse models of AD. EXPERIMENTAL APPROACH: We combined behavioural experimental paradigms to measure cognition performance, and anxiety with neuroanatomy and molecular biology, using familial knock-in (KI) mouse models of AD that harbour ß-amyloid (Aß) precursor protein App (AppNL-F) with or without humanized microtubule-associated protein tau (MAPT), age-matched to wild-type control mice at three different age windows. RESULTS: AppNL-F KI and AppNL-F/MAPT AD models showed a similar magnitude of cognitive decline and elevated magnitude of anxiety correlated with neuroinflammatory hallmarks, including triggering receptor expressed on myeloid cells 2 (TREM2), reactive astrocytes and activated microglia consistent with accumulation of Aß, tau and down-regulation of Wnt/ß-catenin signalling compared to aged-matched WT controls. In both the CA1 region of the hippocampus and dentate gyrus, there was an age-dependent decline in the expression of δ-GABAARs selectively expressed in parvalbumin (PV)-expressing interneurons, encapsulated by perineuronal nets (PNNs) in the AD mouse models compared to WT mice. In vivo positive allosteric modulation of the δ-GABAARs, using a δ-selective-compound DS2, decreased the level of anxiety in the AD mouse models, which was correlated with reduced hallmarks of neuroinflammation, and 'normalisation' of the expression of δ-GABAARs. CONCLUSIONS: Our data show that the δ-GABAARs could potentially be targeted for alleviating symptoms of anxiety, which would greatly improve the quality of life of AD individuals.

7.
Eur J Neurosci ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844747

ABSTRACT

Despite widespread use of combination antiretroviral therapy (cART), there remains a subset of individuals who display cognitive impairment broadly known as HIV-associated neurocognitive disorder (HAND). Interestingly, HIV-infected cells continuously release the HIV-1 protein Tat even in the presence of cART. Persistent exposure to Tat is proposed to increase both neuroinflammation and neurotoxicity. In vitro evidence shows that matrix metalloproteinases (MMPs) are among the neuroinflammatory molecules induced by Tat, which are known to disrupt specialized neuronal extracellular matrix structures called perineuronal nets (PNNs). PNNs predominantly surround parvalbumin interneurons and help to buffer these cells from oxidant stress and to independently increase their excitability. In order to better understand the link between short-term exposure to Tat, neuroinflammation, and PNNs, we explored the direct effects of Tat on glial cells and neurons. Herein, we report that in mixed glial cultures, Tat directly increases the expression of proinflammatory molecules, including MMP-9. Moreover, direct injection of Tat protein into mouse hippocampus increases the expression of astrocyte and microglia markers as well as MMP-9. The number of PNNs is decreased following Tat exposure, followed later by decreased numbers of hippocampal parvalbumin-expressing neurons. In older mice, Tat induced significant increases in the gene expression of proinflammatory molecules including markers of gliosis, MMPs and complement system proteins. Taken together, these data support a direct effect of Tat on glial-derived MMP expression subsequently affecting PNNs and neuronal health, with older mice more susceptible to Tat-induced inflammation.

8.
Transl Neurodegener ; 13(1): 33, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38926897

ABSTRACT

The last decades have witnessed huge efforts devoted to deciphering the pathological mechanisms underlying Alzheimer's Disease (AD) and to testing new drugs, with the recent FDA approval of two anti-amyloid monoclonal antibodies for AD treatment. Beyond these drug-based experimentations, a number of pre-clinical and clinical trials are exploring the benefits of alternative treatments, such as non-invasive stimulation techniques on AD neuropathology and symptoms. Among the different non-invasive brain stimulation approaches, transcranial alternating current stimulation (tACS) is gaining particular attention due to its ability to externally control gamma oscillations. Here, we outline the current knowledge concerning the clinical efficacy, safety, ease-of-use and cost-effectiveness of tACS on early and advanced AD, applied specifically at 40 Hz frequency, and also summarise pre-clinical results on validated models of AD and ongoing patient-centred trials.


Subject(s)
Alzheimer Disease , Disease Progression , Transcranial Direct Current Stimulation , Alzheimer Disease/therapy , Humans , Transcranial Direct Current Stimulation/methods , Gamma Rhythm/physiology , Animals
9.
Biol Psychiatry ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38848814

ABSTRACT

BACKGROUND: MEF2C is strongly linked to various neurodevelopmental disorders (NDDs) including autism, intellectual disability, schizophrenia, and attention-deficit/hyperactivity. Mice constitutively lacking one copy of Mef2c, or selectively lacking both copies of Mef2c in cortical excitatory neurons, display a variety of behavioral phenotypes associated with NDDs. The MEF2C protein is a transcription factor necessary for cellular development and synaptic modulation of excitatory neurons. MEF2C is also expressed in a subset of cortical GABAergic inhibitory neurons, but its function in those cell types remains largely unknown. METHODS: Using conditional deletions of the Mef2c gene in mice, we investigated the role of MEF2C in Parvalbumin-expressing Interneurons (PV-INs), the largest subpopulation of cortical GABAergic cells, at two developmental timepoints. We performed slice electrophysiology, in vivo recordings, and behavior assays to test how embryonic and late postnatal loss of MEF2C from GABAergic interneurons impacts their survival and maturation, and alters brain function and behavior. RESULTS: Loss of MEF2C from PV-INs during embryonic, but not late postnatal, development resulted in reduced PV-IN number and failure of PV-INs to molecularly and synaptically mature. In association with these deficits, early loss of MEF2C in GABAergic interneurons lead to abnormal cortical network activity, hyperactive and stereotypic behavior, and impaired cognitive and social behavior. CONCLUSIONS: MEF2C expression is critical for the development of cortical GABAergic interneurons, particularly PV-INs. Embryonic loss of function of MEF2C mediates dysfunction of GABAergic interneurons, leading to altered in vivo patterns of cortical activity and behavioral phenotypes associated with neurodevelopmental disorders.

10.
bioRxiv ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38853938

ABSTRACT

Parvalbumin-expressing inhibitory neurons (PVNs) stabilize cortical network activity, generate gamma rhythms, and regulate experience-dependent plasticity. Here, we observed that activation or inactivation of PVNs functioned like a volume knob in the mouse auditory cortex (ACtx), turning neural and behavioral classification of sound level up or down over a 20dB range. PVN loudness adjustments were "sticky", such that a single bout of 40Hz PVN stimulation sustainably suppressed ACtx sound responsiveness, potentiated feedforward inhibition, and behaviorally desensitized mice to loudness. Sensory sensitivity is a cardinal feature of autism, aging, and peripheral neuropathy, prompting us to ask whether PVN stimulation can persistently desensitize mice with ACtx hyperactivity, PVN hypofunction, and loudness hypersensitivity triggered by cochlear sensorineural damage. We found that a single 16-minute bout of 40Hz PVN stimulation session restored normal loudness perception for one week, showing that perceptual deficits triggered by irreversible peripheral injuries can be reversed through targeted cortical circuit interventions.

11.
Proc Natl Acad Sci U S A ; 121(24): e2311570121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38830095

ABSTRACT

Even a transient period of hearing loss during the developmental critical period can induce long-lasting deficits in temporal and spectral perception. These perceptual deficits correlate with speech perception in humans. In gerbils, these hearing loss-induced perceptual deficits are correlated with a reduction of both ionotropic GABAA and metabotropic GABAB receptor-mediated synaptic inhibition in auditory cortex, but most research on critical period plasticity has focused on GABAA receptors. Therefore, we developed viral vectors to express proteins that would upregulate gerbil postsynaptic inhibitory receptor subunits (GABAA, Gabra1; GABAB, Gabbr1b) in pyramidal neurons, and an enzyme that mediates GABA synthesis (GAD65) presynaptically in parvalbumin-expressing interneurons. A transient period of developmental hearing loss during the auditory critical period significantly impaired perceptual performance on two auditory tasks: amplitude modulation depth detection and spectral modulation depth detection. We then tested the capacity of each vector to restore perceptual performance on these auditory tasks. While both GABA receptor vectors increased the amplitude of cortical inhibitory postsynaptic potentials, only viral expression of postsynaptic GABAB receptors improved perceptual thresholds to control levels. Similarly, presynaptic GAD65 expression improved perceptual performance on spectral modulation detection. These findings suggest that recovering performance on auditory perceptual tasks depends on GABAB receptor-dependent transmission at the auditory cortex parvalbumin to pyramidal synapse and point to potential therapeutic targets for developmental sensory disorders.


Subject(s)
Auditory Cortex , Gerbillinae , Hearing Loss , Animals , Auditory Cortex/metabolism , Auditory Cortex/physiopathology , Hearing Loss/genetics , Hearing Loss/physiopathology , Receptors, GABA-B/metabolism , Receptors, GABA-B/genetics , Glutamate Decarboxylase/metabolism , Glutamate Decarboxylase/genetics , Receptors, GABA-A/metabolism , Receptors, GABA-A/genetics , Parvalbumins/metabolism , Parvalbumins/genetics , Auditory Perception/physiology , Pyramidal Cells/metabolism , Pyramidal Cells/physiology , Genetic Vectors/genetics
12.
Poult Sci ; 103(8): 103862, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38843562

ABSTRACT

Oncomodulins (OCMs), also known as non-α-parvalbumins, are small molecules known for their high-affinity binding of Ca2+ ions. They play crucial roles as Ca2+ buffers and participate in signaling pathways within muscle and neuron cells. In chickens, 3 oncomodulin molecules have been identified at the protein level and are named chicken oncomodulin 1 (OCM1), -3 (OCM3), and alpha-parvalbumin (PVALB). OCM4 was newly assigned by genome annotation. A gene cluster containing OCM1, OCM3, and OCM4 is located in chromosome 14, while a single gene of PVALB is on chromosome 1. The Ca2+ signaling pathway may be a potential contributor to the onset of chicken breast myopathies. However, chicken OCMs have not been extensively studied in muscle tissues. In this study, the genetic specifications, tissue-specific and differential expression of OCM1, OCM3, OCM4, and PVALB in the context of chicken breast myopathies were investigated. OCM1 exhibited moderate expression in the liver, intestine, and kidney. OCM3 was highly expressed in thymus and breast muscle. A long noncoding RNA (lncRNA) transcribed from the antisense strand of the OCM3 gene was found to be expressed in liver, lung, heart, intestine, and kidney tissues. OCM4 was barely expressed in thymus, thigh-, and breast muscle. PVALB exhibited high expression across all tissues examined. Results of quantitative PCR (qPCR) indicated that the expression of OCM3 was significantly increased (4.4 ± 0.7 fold; P-value = 0.03) in woody breast (WB) muscle and even greater (8.5 ± 0.6 fold; P-value = 0.004) in WB/white striping (WS) muscles. The expression of PVALB showed no difference in WB muscle, but it was notably higher (4.6 ± 0.7 fold; P-value = 0.054) in WB/WS muscle, although statistical significance was not reached. These findings suggest that increased expression of OCM3 and PVALB may be linked to chicken breast myopathies with regard to disruption of Ca2+ buffering.

13.
bioRxiv ; 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38915522

ABSTRACT

Neuronal regulation of cerebrovasculature underlies brain imaging techniques reliant on cerebral blood flow (CBF) changes. However, interpreting these signals requires understanding their neural correlates. Parvalbumin (PV) interneurons are crucial in network activity, but their impact on CBF is not fully understood. Optogenetic studies show that stimulating cortical PV interneurons induces diverse CBF responses, including rapid increases, decreases, and slower delayed increases. To clarify this relationship, we measured hemodynamic and neural responses to optogenetic stimulation of PV interneurons expressing Channelrhodopsin-2 during evoked and ongoing resting-state activity in the somatosensory cortex of awake mice. Two-photon microscopy (2P) Ca2+ imaging showed robust activation of PV-positive (PV+) cells and inhibition of PV-negative (PV-) cells. Prolonged PV+ cell stimulation led to a delayed, slow CBF increase, resembling a secondary peak in the CBF response to whisker stimulation. 2P vessel diameter measurements revealed that PV+ cell stimulation induced rapid arterial vasodilation in superficial layers and delayed vasodilation in deeper layers. Ongoing activity recordings indicated that both PV+ and PV- cell populations modulate arterial fluctuations at rest, with PV+ cells having a greater impact. These findings show that PV interneurons generate a complex depth-dependent vascular response, dominated by slow vascular changes in deeper layers.

14.
Food Chem ; 455: 139882, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38824729

ABSTRACT

A common epitope (AGSFDHKKFFKACGLSGKST) of parvalbumin from 16 fish species was excavated using bioinformatics tools combined with the characterization of fish parvalbumin binding profile of anti-single epitope antibody in this study. A competitive enzyme-linked immunosorbent assay (ELISA) based on the common epitope was established with a limit of detection of 10.15 ng/mL and a limit of quantification of 49.29 ng/mL. The developed ELISA exhibited a narrow range (71% to 107%) of related cross-reactivity of 15 fish parvalbumin. Besides, the recovery, the coefficient of variations for the intra-assay and the inter-assay were 84.3% to 108.2%, 7.4% to 13.9% and 8.5% to 15.6%. Our findings provide a novel idea for the development of a broad detection method for fish allergens and a practical tool for the detection of parvalbumin of economic fish species in food samples.


Subject(s)
Enzyme-Linked Immunosorbent Assay , Epitopes , Fish Proteins , Fishes , Parvalbumins , Animals , Parvalbumins/immunology , Parvalbumins/analysis , Enzyme-Linked Immunosorbent Assay/methods , Fishes/immunology , Epitopes/immunology , Fish Proteins/immunology , Fish Proteins/chemistry , Allergens/immunology , Allergens/analysis
15.
Proc Natl Acad Sci U S A ; 121(27): e2403777121, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38916998

ABSTRACT

Spinal cord dorsal horn inhibition is critical to the processing of sensory inputs, and its impairment leads to mechanical allodynia. How this decreased inhibition occurs and whether its restoration alleviates allodynic pain are poorly understood. Here, we show that a critical step in the loss of inhibitory tone is the change in the firing pattern of inhibitory parvalbumin (PV)-expressing neurons (PVNs). Our results show that PV, a calcium-binding protein, controls the firing activity of PVNs by enabling them to sustain high-frequency tonic firing patterns. Upon nerve injury, PVNs transition to adaptive firing and decrease their PV expression. Interestingly, decreased PV is necessary and sufficient for the development of mechanical allodynia and the transition of PVNs to adaptive firing. This transition of the firing pattern is due to the recruitment of calcium-activated potassium (SK) channels, and blocking them during chronic pain restores normal tonic firing and alleviates chronic pain. Our findings indicate that PV is essential for controlling the firing pattern of PVNs and for preventing allodynia. Developing approaches to manipulate these mechanisms may lead to different strategies for chronic pain relief.


Subject(s)
Chronic Pain , Parvalbumins , Parvalbumins/metabolism , Animals , Chronic Pain/metabolism , Chronic Pain/physiopathology , Mice , Neurons/metabolism , Neurons/physiology , Hyperalgesia/metabolism , Hyperalgesia/physiopathology , Male , Action Potentials/physiology , Small-Conductance Calcium-Activated Potassium Channels/metabolism
16.
Curr Biol ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38936365

ABSTRACT

Predictive learning can engage a selective form of cognitive control that biases choice between actions based on information about future outcomes that the learning provides. This influence has been hypothesized to depend on a feedback circuit in the brain through which the basal ganglia modulate activity in the prefrontal cortex; however, direct evidence for this functional circuit has proven elusive. Here, using an animal model of cognitive control, we found that the influence of predictive learning on decision making is mediated by an inhibitory feedback circuit linking the medial ventral pallidum and the mediodorsal thalamus, the activation of which causes disinhibition of the orbitofrontal cortex via reduced activation of inhibitory parvalbumin interneurons during choice. Thus, we found that, for this function, the mediodorsal thalamus serves as a pallidal-cortical relay through which predictive learning controls action selection, which has important implications for understanding cognitive control and its vicissitudes in various psychiatric disorders and addiction.

17.
FEBS J ; 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38923676

ABSTRACT

Especially in higher eukaryotes, the N termini of proteins are subject to enzymatic modifications, with the acetylation of the alpha-amino group of nascent polypeptides being a prominent one. In recent years, the specificities and substrates of the enzymes responsible for this modification, the Nα-terminal acetyltransferases, have been mapped in several proteomic studies. Aberrant expression of, and mutations in these enzymes were found to be associated with several human diseases, explaining the growing interest in protein Nα-terminal acetylation. With some enzymes, such as the Nα-terminal acetyltransferase A complex having thousands of possible substrates, researchers are now trying to decipher the functional outcome of Nα-terminal protein acetylation. In this review, we zoom in on one possible functional consequence of Nα-terminal protein acetylation; its effect on protein folding. Using selected examples of proteins associated with human diseases such as alpha-synuclein and huntingtin, here, we discuss the sometimes contradictory findings of the effects of Nα-terminal protein acetylation on protein (mis)folding and aggregation.

18.
Cells ; 13(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38920687

ABSTRACT

Glial cell line-derived neurotrophic factor (GDNF) is among the strongest dopamine neuron function- and survival-promoting factors known. Due to this reason, it has clinical relevance in dopamine disorders such as Parkinson's disease and schizophrenia. In the striatum, GDNF is exclusively expressed in interneurons, which make up only about 0.6% of striatal cells. Despite clinical significance, histological analysis of striatal GDNF system arborization and relevance to incoming dopamine axons, which bear its receptor RET, has remained enigmatic. This is mainly due to the lack of antibodies able to visualize GDNF- and RET-positive cellular processes; here, we overcome this problem by using knock-in marker alleles. We find that GDNF neurons chemoattract RET+ axons at least seven times farther in distance than medium spiny neurons (MSNs), which make up 95% of striatal neurons. Furthermore, we provide evidence that tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, is enriched towards GDNF neurons in the dopamine axons. Finally, we find that GDNF neuron arborizations occupy approximately only twelve times less striatal volume than 135 times more abundant MSNs. Collectively, our results improve our understanding of how endogenous GDNF affects striatal dopamine system function.


Subject(s)
Axons , Corpus Striatum , Dopaminergic Neurons , Glial Cell Line-Derived Neurotrophic Factor , Proto-Oncogene Proteins c-ret , Animals , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Axons/metabolism , Corpus Striatum/metabolism , Corpus Striatum/cytology , Mice , Proto-Oncogene Proteins c-ret/metabolism , Proto-Oncogene Proteins c-ret/genetics , Dopaminergic Neurons/metabolism , Dopamine/metabolism , Tyrosine 3-Monooxygenase/metabolism , Mice, Inbred C57BL , Neurons/metabolism , Medium Spiny Neurons
19.
CNS Neurosci Ther ; 30(6): e14782, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828651

ABSTRACT

BACKGROUND: The thalamus system plays critical roles in the regulation of reversible unconsciousness induced by general anesthetics, especially the arousal stage of general anesthesia (GA). But the function of thalamus in GA-induced loss of consciousness (LOC) is little known. The thalamic reticular nucleus (TRN) is the only GABAergic neurons-composed nucleus in the thalamus, which is composed of parvalbumin (PV) and somatostatin (SST)-expressing GABAergic neurons. The anterior sector of TRN (aTRN) is indicated to participate in the induction of anesthesia, but the roles remain unclear. This study aimed to reveal the role of the aTRN in propofol and isoflurane anesthesia. METHODS: We first set up c-Fos straining to monitor the activity variation of aTRNPV and aTRNSST neurons during propofol and isoflurane anesthesia. Subsequently, optogenetic tools were utilized to activate aTRNPV and aTRNSST neurons to elucidate the roles of aTRNPV and aTRNSST neurons in propofol and isoflurane anesthesia. Electroencephalogram (EEG) recordings and behavioral tests were recorded and analyzed. Lastly, chemogenetic activation of the aTRNPV neurons was applied to confirm the function of the aTRN neurons in propofol and isoflurane anesthesia. RESULTS: c-Fos straining showed that both aTRNPV and aTRNSST neurons are activated during the LOC period of propofol and isoflurane anesthesia. Optogenetic activation of aTRNPV and aTRNSST neurons promoted isoflurane induction and delayed the recovery of consciousness (ROC) after propofol and isoflurane anesthesia, meanwhile chemogenetic activation of the aTRNPV neurons displayed the similar effects. Moreover, optogenetic and chemogenetic activation of the aTRN neurons resulted in the accumulated burst suppression ratio (BSR) during propofol and isoflurane GA, although they represented different effects on the power distribution of EEG frequency. CONCLUSION: Our findings reveal that the aTRN GABAergic neurons play a critical role in promoting the induction of propofol- and isoflurane-mediated GA.


Subject(s)
Anesthesia, General , Consciousness , GABAergic Neurons , Isoflurane , Propofol , Propofol/pharmacology , Isoflurane/pharmacology , Animals , GABAergic Neurons/drug effects , GABAergic Neurons/physiology , Mice , Consciousness/drug effects , Consciousness/physiology , Male , Electroencephalography , Anesthetics, Inhalation/pharmacology , Anterior Thalamic Nuclei/drug effects , Anterior Thalamic Nuclei/physiology , Mice, Inbred C57BL , Mice, Transgenic , Anesthetics, Intravenous/pharmacology , Proto-Oncogene Proteins c-fos/metabolism , Optogenetics
20.
Biol Psychiatry Glob Open Sci ; 4(4): 100315, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38726036

ABSTRACT

Background: Fear responses significantly affect daily life and shape our approach to uncertainty. However, the potential resurgence of fear in unfamiliar situations poses a significant challenge to exposure-based therapies for maladaptive fear responses. Nonetheless, how novel contextual stimuli are associated with the relapse of extinguished fear remains unknown. Methods: Using a context-dependent fear renewal model, the functional circuits and underlying mechanisms of the posterior parietal cortex (PPC) and anterior cingulate cortex (ACC) were investigated using optogenetic, histological, in vivo, and ex vivo electrophysiological and pharmacological techniques. Results: We demonstrated that the PPC-to-ACC pathway governs fear relapse in a novel context. We observed enhanced populational calcium activity in the ACC neurons that received projections from the PPC and increased synaptic activity in the basolateral amygdala-projecting PPC-to-ACC neurons upon renewal in a novel context, where excitatory postsynaptic currents amplitudes increased but inhibitory postsynaptic current amplitudes decreased. In addition, we found that parvalbumin-expressing interneurons controlled novel context-dependent fear renewal, which was blocked by the chronic administration of fluoxetine. Conclusions: Our findings highlight the PPC-to-ACC pathway in mediating the relapse of extinguished fear in novel contexts, thereby contributing significant insights into the intricate neural mechanisms that govern fear renewal.


To improve outcomes for exposure-based therapy, it is vital to understand the renewal of fear after extinction in new environments. Using optogenetics and other techniques, Joo et al. found that a brain circuit connecting the posterior parietal cortex (PPC) to the anterior cingulate cortex (ACC) is crucial for the return of fear memories in mice exposed to a novel context. Certain PPC→ACC neuron types and their connections to the amygdala became more active during fear renewal in a novel context, and inhibiting parvalbumin-expressing interneurons reduced this fear response. This study provides insights into the brain mechanisms underlying the reappearance of fear in unfamiliar situations.

SELECTION OF CITATIONS
SEARCH DETAIL
...